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Abstract 

Background Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer with high morbidity and 
mortality rates. Due to the heterogeneity of LUAD, its characteristics remain poorly understood. Exploring the clinical 
and molecular characteristics of LUAD is challenging but vital for early diagnosis.

Methods This observational and validation study enrolled 80 patients and 13 healthy controls. Nuclear and mtDNA-
captured sequencings were performed.

Results This study identified a spectrum of nuclear and mitochondrial genome mutations in early-stage lung adeno-
carcinoma and explored their association with diagnosis. The correlation coefficient for somatic mutations in cfDNA 
and patient-matched tumor tissues was high in nuclear and mitochondrial genomes. The mutation number of highly 
mutated genes was evaluated, and the Least Absolute Shrinkage and Selection Operator (LASSO) established a diag-
nostic model. Receiver operating characteristic (ROC) curve analysis explored the diagnostic ability of the two panels. 
All models were verified in the testing cohort, and the mtDNA panel demonstrated excellent performance. This study 
identified somatic mutations in the nuclear and mitochondrial genomes, and detecting mutations in cfDNA displayed 
good diagnostic performance for early-stage LUAD. Moreover, detecting somatic mutations in the mitochondria may 
be a better tool for diagnosing early-stage LUAD.

Conclusions This study identified specific and sensitive diagnostic biomarkers for early-stage LUAD by focusing 
on nuclear and mitochondrial genome mutations. This also further developed an early-stage LUAD-specific muta-
tion gene panel for clinical utility. This study established a foundation for further investigation of LUAD molecular 
pathogenesis.
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Introduction
Lung cancer is a major cause of mortality worldwide, 
responsible for 1,796,000 deaths in 2020, and lung ade-
nocarcinoma (LUAD) is the most common subtype [1]. 
Smoking is usually considered as the main cause of lung 
cancer. However, LUAD is more likely to occur in non-
smoking women and youngsters [2, 3]. Complete surgi-
cal resection is the most effective therapy for LUAD. 
However, many patients are diagnosed at the metastasis 
or advanced stages of cancer progression. A spectrum 
of nuclear and mitochondrial genome mutations can 
be identified in early-stage lung adenocarcinoma, and 
their association with diagnosis has been explored [4]. 
However, late diagnosis and the high mutational burden 
encountered in lung cancer remain a problem [5]. There-
fore, it is essential to improve LUAD’s early diagnosis 
rate.

Recently, high-throughput sequencing and microar-
ray technologies have been used in biomarker research 
for cancer diagnosis and prognosis [6, 7]. lncRNAs, miR-
NAs, and mRNAs expressions were all associated with 
LUAD occurrence. These include DiGeorge syndrome 
critical region gene 5 (DGCR5), kinesin family member 
20A (KIF20A), C-type lectin domain family 10, member 
A (CLEC10A), and has-miR-29c [8–11]. DNA methyla-
tion biomarkers also contribute to lung cancer diagnosis. 
Furthermore, epithelial gene cadherin 1 (Cdh1) and epi-
thelial cell adhesion molecule (EpCAM) are key features 
of the epithelial–mesenchymal transition (EMT) process 
that are significantly hypermethylated in lung cancer 
[12]. The most frequent LUAD-driving genes are epider-
mal growth factor receptor (EGFR), KRAS proto-onco-
gene, GTPase (KRAS), B-Raf proto-oncogene, serine/
threonine kinase (BRAF), and erb-b2 receptor tyrosine 
kinase 2 (ERBB 2). These genes are directly correlated 
with the diagnosis, treatment efficacy, and prognosis of 
LUAD [13–15].

Liquid biopsy is a non-invasive tool for cancer diag-
nosis, monitoring, and treatment decisions [16]. Cir-
culating cell-free DNA (cfDNA) or circulating tumor 
cells (CTCs) in plasma or other body fluids are usually 
used in liquid biopsy assays [17]. Somatic alterations 
are detected in EGFR, tumor protein p53 (TP53), and 
BRCA2 DNA repair associated (BRCA2) in plasma or 
serum ctDNA. These alterations are associated with 
diagnosis, therapy resistance, and response [18–21]. 
Most of these studies focused on nuclear-origin 
cfDNA, but the amount of tumor-derived cfDNA of 
nuclear origin is extremely low in many early-stage 
cancers [22, 23]. mtDNA has a higher copy number 
than nuclear DNA (nDNA) and is susceptible to muta-
tions [24]. Increasing mtDNA copy number may com-
pensate for mtDNA damage or dysfunction [25]. An 

elevated mtDNA copy number in the blood is linked 
to an increased risk of several malignancies, including 
non-Hodgkin lymphoma [26], colorectal cancer [27], 
lung cancer [28], and pancreatic cancer [29].

The current understanding of circulating cell-free 
mitochondrial DNA has great potential as a novel tumor 
biomarker [30]. Our previous study found that the con-
tent and variants of circulating mitochondrially encoded 
NADH dehydrogenase 1 (MT-ND1) may become a versa-
tile tool for diagnosing and monitoring colorectal cancer 
[27]. However, no systematic comparisons between liq-
uid and solid biopsies of the mitochondrial genome have 
been performed.

The major genomic alterations of 131 Stage IA LUAD 
were systematically examined using The Cancer Genome 
Atlas (TCGA) database. This study conducted a whole 
exome sequencing (WES) profile and captured-based 
mitochondrial sequencing diagnosed with early-stage 
Stage IA LUAD, followed by bioinformatic approaches 
to identify a panel of key genes in the genome and mito-
chondrial genome in plasma of LUAD. A novel muta-
tional signature for early diagnosis in the genome and 
mitochondrial genome in the plasma of LUAD was pro-
posed. This research demonstrated that cell-free mtDNA 
from plasma is a potential biomarker for early-stage 
LUAD diagnosis.

Materials and methods
TCGA data download and analysis
The Cancer Genome Atlas (TCGA) is a cancer genom-
ics program that provides publicly available data that 
contributes to cancer studies (https:// www. cancer. gov/ 
about- nci/ organ izati on/ ccg/ resea rch/ struc tural- genom 
ics/ tcga). WES profiles and associated clinicopathologi-
cal data of Stage IA LUAD patients were retrieved on 
1st March 2020 from the TCGA database. The analysis 
included 131 pairs of LUAD tissue samples and adjacent 
normal tissue samples. Somatic mutation data were iden-
tified using four different somatic mutation-calling algo-
rithms (VarScan, SomaticSniper, MuTect, and MuSE) of 
the ‘maftools’ in the R package.

Patients and study design
This research obtained primary Stage IA LUAD tissues, 
their adjacent tissues, and blood from 80 patients not pri-
orly treated with chemotherapy or radiotherapy. All 80 
patients and 13 healthy controls provided informed writ-
ten consent. All experiments followed the relevant guide-
lines and regulations at Shanghai Pulmonary Hospital. 
The approval number for the present study was 2020-038.

For comparative purposes, the study included.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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a. TCGA cohort’s WES profile (131 Stage IA tumor tis-
sues and conditionally normal adjacent tissues from 
the TCGA database).

b. WES data from 15 pairs of primary Stage IA LUAD 
tumor tissues and conditionally normal adjacent tis-
sues.

c. Targeted sequencing data from 43 pairs of primary 
Stage IA LUAD tumor tissues and conditionally nor-
mal adjacent tissues.

d. Mitochondrial sequencing data from 43 pairs of pri-
mary Stage IA LUAD tumor tissues and conditionally 
normal adjacent tissues.

e. Targeted sequencing data from plasma samples of 25 
Stage IA LUAD patients.

f. Mitochondrial sequencing data from plasma samples 
of 20 Stage IA LUAD patients.

g. Targeted sequencing data from plasma samples of six 
healthy individuals for training

h. Mitochondrial sequencing data from plasma samples 
of six healthy individuals for training.

i. Targeted sequencing data from plasma samples of 
seven Stage IA LUAD patients for testing.

j. Mitochondrial sequencing data from plasma samples 
of seven Stage IA LUAD patients for testing.

k. Targeted sequencing data from plasma samples of 
seven healthy individuals for testing.

l. Mitochondrial sequencing data from plasma samples 
of seven healthy individuals for testing.

Sample collection
The Tissue Genomic DNA Isolation Kit (Shanghai Bio-
chip Inc., China) was used following the manufacturer’s 
instructions for tissue DNA extraction. Blood samples 
were collected in tubes with 0.5  M EDTA solution. The 
tubes were centrifuged at 2000×g for 10 min at 4  °C to 
collect the plasma. The plasma samples were then centri-
fuged again at 16,000×g for 10 min at 4 °C. Plasma sam-
ples were collected and stored at − 80 °C. The QIAamp 
Circulating Nucleic Acid Kit (QIAGEN, Germany) was 
used for cfDNA extraction. The Qubit dsDNA HS Assay 
Kit (Life Technologies) and Agilent 4200 Bioanalyzer 
determined DNA concentrations and cfDNA quality, 
respectively.

Library preparation, target capture, and next‑generation 
sequencing
The Twist Human Core Exome Kit (Twist Bioscience, San 
Francisco, CA, USA) performed WES for exome-targeted 
library enrichment. This kit was about 56.6  M covering 
the consensus coding sequence (CCDS) region, non-pro-
tein coding exonic region, and the region surrounding the 
transcription start site. The exome capture kit covered 

approximately 99.841% of the reference gene CDS region. 
Exomes were sequenced on an Illumina NovaSeq (Illu-
mina) according to the manufacturer’s instructions.

The mtDNA sequence was sequenced using a capture-
based mtDNA deep-sequencing approach. Dynagen 
Bioscience provided QuarXeq Mitochondrial Probes 
(Y1035A). The custom panel was approximately 1.5  M, 
covering 115 selected genes synthesized by Dynegen Bio-
science. Then, 500  ng genomic DNA and 30  ng cfDNA 
were used for library construction, and Dynegen Kits 
were used. Library quantification was performed using 
an Agilent 4200 Bioanalyzer before and after PCR ampli-
fication. Both panels were sequenced on an Illumina 
NovaSeq (Illumina) according to the manufacturer’s 
instructions.

Data analysis
The human reference genome (hg38) was downloaded 
from the UCSC genome table browser (http:// genome. 
ucsc. edu/). The revised Cambridge Reference Sequence 
(rCRS) provided the mitochondrial genome (AC: 
NC_012920). Sequencing data for nuclear and mitochon-
drial genome were obtained following standard meth-
ods prior to the experiment procedures. Fastp v0.21.0 
performed quality checks for the sequenced reads. Read 
mapping was aligned to the reference genome using BWA 
version 0.7.17 [31], and duplicated reads were removed 
using Sambamba v0.6.8 (http:// lomer eiter. github. io/ 
samba mba). GATK Mutect2 (Genome Analysis Toolkit) 
(https:// www. broad insti tute. org/ gatk) called up the 
somatic single-nucleotide variant (SNV) and indel muta-
tions with a minimum of five mutant allele read. GATK 
Mutect2 was used for mtDNA in mitochondrial mode to 
call mutations, and GATK FilterMutectCalls filtered the 
sequenced data. Variants in the nuclear and mitochon-
drial genomes were annotated with Annovar and GATK 
Funcotator, respectively. Tumor mutational burden 
(TMB) (mutations per Mb) was calculated by consider-
ing the number of nuclear genomic positions in the cod-
ing region with sufficient coverage to detect a mutation 
with the same variant allele frequencies (VAF). TMB for 
mtDNA was calculated by considering the number of 
mitochondrial genomic positions in all regions with suf-
ficient coverage to detect mutations with the same VAF.

Statistical analysis
The R v.4.0.3 environment (https:// www.r- proje ct. org/) 
and RStudio v1.1 (https:// www. rstud io. com/) performed 
bioinformatic analysis using the packages of ggplot2 
(v3.3.5), maftools (v2.4.12), pROC (v1.18.0), and Circlize 
(v0.4.13). Wilcoxon signed-rank test compared TMB 
between groups. Fisher exact test and Chi-square tests 
were performed to evaluate the significance of mutation 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://lomereiter.github.io/sambamba
http://lomereiter.github.io/sambamba
https://www.broadinstitute.org/gatk
https://www.r-project.org/
https://www.rstudio.com/
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hotspot numbers between the different groups. Statistical 
significance was set at p < 0.05.

Results
Study cohort’s clinical characteristics
This observational and validation study enrolled 80 
patients and 13 healthy controls. Clinical characteris-
tics of the study cohort included age, gender, pathology, 
TNM stage, and smoking status (Table 1).

Genomic alterations in early‑stage LUAD of TCGA database
This study analyzed gene mutations across 131 samples 
of early-stage LUAD in the TCGA database to system-
atically characterize genomic alterations that occur in 
early-stage LUAD. Varscan, Somaticsniper, and Muse 
tools were employed to construct a mutant gene profile 
for early-stage LUAD using the WES profile from TCGA. 
Genomic mutation information was analyzed by VarScan 
(Fig. 1A, B), SomaticSniper (Additional file 1: Figure S1A, 
B), MuTect (Additional file 1: Figure S2A, B), and MuSE 
(Additional file 1: Figure S3A, B).

VarScan identified 12,575 mutated genes with a median 
of 115 mutated genes per sample (Fig. 1A). The top five 
mutated genes were titin (TTN) (35.8% of patients, 
47/131), mucin 16, cell surface-associated (MUC16) 
(38.2%, 50/131), CUB and Sushi multiple domains 3 
(CSMD3) (32.8%, 43/131), ryanodine receptor 2 (RYR2) 
(26.7%, 35/131), and LDL receptor-related protein 1B 
(LRP1B) (29.0%, 38/131) (Fig. 1B). SomaticSniper identi-
fied 10,554 mutated genes, with a median of 78.5 mutated 
genes per sample (Additional file 1: Figure S1A). The top 
five mutated genes were TTN (31.3% of patients, 41/131), 

MUC16 (29.8%, 39/141), CSMD3 (26.7%, 35/131), RYR2 
(22.1%, 29/131), and TP53 (32.1%, 42/131) (Additional 
file  1: Figure S1B). MuTect identified 11,049 mutated 
genes with a median of 151 per sample (Additional file 1: 
Figure S2A). The top five mutated genes were TTN 
(41.2% of patients, 54/131), MUC16 (38.9%, 51/131), 
CSMD3 (35.8%, 47/131), RYR2 (32.1%, 42/131), and 
LRP1B (35.1%, 46/131) (Additional file  1: Figure S2B). 
MuSE identified 12,541 mutated genes with a median 
of 117 mutated genes per sample (Additional file 1: Fig-
ure S3A). The top five mutated genes were TTN (36.6% 
of patients, 48/131), MUC16 (35.1%, 46/131), CSMD3 
(32.1%, 42/131), RYR2 (28.2%, 37/131), and LRP1B 
(29.8%, 39/131) (Additional file 1: Figure S3B).

The intersection of mutant genes analyzed by Var-
Scan, SomaticSniper, MuTect, and MuSE revealed 95 
co-mutant genes (Fig. 1C). The most frequent identified 
alterations occurred in TTN, MUC16, TP53, CSMD3, 
LRP1B, RYR2, zinc finger homeobox 4 (ZFHX4), usherin 
(USH2A), filaggrin (FLG), and dystrophin (DMD). TTN, 
MUC16, CSMD3, RYR2, LRP1B, TP53, and ZFHX4 were 
the top ten mutated genes analyzed by the four tools. 
Missense mutation was the leading variant classification. 
The non-synonymous mutation rate was significantly 
lower than the synonymous mutation rate. The other 
identified mutational signature was characterized by a 
higher frequency of C>A transitions, comprising more 
than 40% of the single nucleotides.

Somatic genomic alterations analyzed by WES
This study employed Strelka and GATK to identify sig-
nificantly mutated genes in Stage TIA LUAD. A mutant 
gene profile was constructed for Stage TIA LUAD using 
the WES profile from 15 pairs of tumor tissues and their 
adjacent tissues. The Strelka and GATK methods ana-
lyzed genomic mutation information (Fig. 2A–D). Strelka 
identified 2561 somatic mutations in exons by WES, 
including 780 synonymous SNVs, 1551 non-synonymous 
SNVs, and 230 indels. The top 150 mutated genes were 
defined in 93.3% (14/15) of pairs of tumor tissues and 
their adjacent tissues, with a median of 125 mutated 
genes per sample. The most mutated genes were mucin 
17, cell surface associated (MUC17) (26.7% of patients), 
TTN (40.0%), and EGFR (40.0%).

GATK identified 820 somatic mutations by WES, 
including 215 synonymous SNVs, 512 non-synonymous 
SNVs, and 93 indels. The top 150 mutated genes were 
identified in all 15 pairs of tumor tissues and their adja-
cent tissues, with a median of 27 mutated genes per sam-
ple. The most mutated genes contained EGFR (40.0% of 
patients), AHNAK nucleoprotein 2 (AHNAK2) (40.0%), 
and TTN (20.0%).

Table 1 Clinical characteristics of the study cohort (n = 93)

LUAD (n = 80) Healthy 
individuals 
(n = 13)

Age (years), median 
(range)

60.31 (32–77) 48(29–66)

 < 60, n (%) 41 (51.25) 7 (53.85)

 ≥ 60, n (%) 39 (48.75) 6 (46.15)

Gender, n (%)

 Male 22 (27.50) 5 (38.46)

 Female 58 (72.50) 8 (61.54)

Stage

 TIA1, n (%) 15 (18.75) –

 TIA2, n (%) 38 (47.50) –

 TIA3, n (%) 27 (33.75) –

Infiltration

 MIA, n (%) 17 (21.25) –

 IA, n (%) 63 (78.75) –
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The research focused on mutant genes with at least 
one somatic mutation in at least two samples and found 
that 15 mutant genes were screened by the two tools 
(Fig. 2E). They were EGFR, RNA binding motif protein 
10 (RBM10), TTN, AHNAK2, AF4/FMR2 family mem-
ber 2 (AFF2), Rho guanine nucleotide exchange factor 
1 (ARHGEF1), collagen beta (1-O)galactosyltransferase 
2 (COLGALT2), catenin beta 1 (CTNNB1), DDB1 and 
CUL4 associated factor 8 like 2 (DCAF8L2), eukaryotic 
translation initiation factor 4 gamma 1 (EIF4G1), erb-
b2 receptor tyrosine kinase 2 (ERBB2), LRP1B, plexin 

B3 (PLXNB3), PNN-interacting serine and arginine-
rich protein (PNISR), and transient receptor poten-
tial cation channel’s subfamily C member 5 (TRPC5). 
Meanwhile, the most common somatic mutations 
reported previously were also included in the mutant 
genes of the LUAD cohort’s WES profile, such as EGFR, 
TTN, CTNNB1, and MUC17 [32, 33]. Missense muta-
tion was the leading variant classification. The other 
identified signature was characterized by a higher fre-
quency of C>T transitions, comprising more than 35% 
of all SNVs analyzed by the two tools. In addition, 

Fig. 1 TGCA early-stage LUAD mutation cohort. A Overview of TGCA Stage IA LUAD mutation cohort analyzed with the VarsSan tool. B Waterfall of 
the top 150 mutated genes in the TCGA Stage IA LUAD cohort was analyzed with the tool of VarScan. C Representative Venn diagrams of mutated 
gene numbers called by VarsSan, SomaticSniper, MuTect, and MuSE
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Fig. 2 Stage IA LUAD mutation cohort. A Overview of TGCA Stage IA LUAD mutation cohort analyzed with the Strelka tool. B Waterfall of the top 
150 mutated genes in the Stage IA LUAD cohort was analyzed with the tool of Strelka. C Overview of Stage IA LUAD cohort mutations analyzed with 
the tool of GATK. D Waterfall of the top 150 mutated genes in the Stage IA LUAD cohort was analyzed with the tool of GATK. E Representative Venn 
diagrams of mutated gene numbers called by MuTect, and Strelka
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somatic genomic alterations for carcinoma in situ were 
analyzed, and there were barely any mutations in the 
tumor tissues compared to their adjacent tissues.

The custom capture panel information
The custom capture panel combined the analysis 
results of TCGA and WES databases with the com-
monly mutated lung cancer genes recommended by the 
National Comprehensive Cancer Network (NCCN). The 
NCCN recommends 12 genes, identified relevant vari-
ants in multiple solid tumors, and is optimized specifi-
cally for lung cancer. These genes include EGFR, ALK 
receptor tyrosine kinase (ALK), BRAF, KRAS, MET 
proto-oncogene, receptor tyrosine kinase (MET), ret 
proto-oncogene (RET), ERBB2, ROS proto-oncogene 
1, receptor tyrosine kinase (ROS1), phosphatidylinosi-
tol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
(PIK3CA), NRAS proto-oncogene, GTPase (NRAS), 
TP53, and mitogen-activated protein kinase kinase 1 
(MAP2K1). The capture panel covered 95 driver genes of 
TCGA primary early-stage LUAD, 15 selected mutations 
in WES, and 12 recommended NCCN genes. The cus-
tom capture panel included 115 genes (Additional file 1: 
Table  S1). The most frequently mutated genes (TTN, 
TP53, LRP1B, KRAS, AFF2, EGFR, and ERBB2) were 
detected in two cohorts (TCGA and WES, TCGA and 
NCCN, and WES and NCCN).

Mutational landscape of nuclear genome for LUAD tissues
This research subjected 43 pairs of tumor tissues and 
their adjacent tissue samples to targeted sequencing 
(median depth ×726) of 115 selected genes to identify the 
landscape of previously detected mutational signatures. 
The results revealed that all 43 tumor tissues had more 
than one shared somatic mutation in the custom capture 

panel. In addition, 95.7% (110/115) genes were identified 
in these 43 LUAD patients, and 290 somatic mutations 
were detected in exons by targeted sequencing, includ-
ing 76 synonymous SNVs, 181 non-synonymous SNVs, 
and 33 indels. Missense mutation was the leading vari-
ant classification. The non-synonymous mutation rate 
was significantly higher than the synonymous mutation 
rate. The other identified signature was characterized by 
a higher frequency of the C:G>T:A transition, comprising 
35.0% of all SNVs. The maximum VAFs of somatic muta-
tions in tumor tissues were illustrated in Fig.  3A. The 
top five mutated genes were EGFR (67.4% of patients, 
29/43), TTN (30.2%, 13/43), TP53 (27.9%, 12/43), 
RBM10 (11.6%, 5/43), and RYR2 (11.6%, 5/43). Mutations 
occurred in 27.0% (31/115) of genes in the panel of No. 
83 Patient, and the patient harbored mutations in genes 
(EGFR, TTN, TP53, and RYR2). When the tumor tissues 
had mutations in these genes (RYR2, RYR3, TP53, TTN, 
and LRP1B), TMB was significantly higher (Fig. 3B–F).

TMB in the tumor tissues with mutated RYR2 
(n = 5) was much higher than that in non-mutated 
RYR2 (n = 38) (p < 0.001). TMB in the tumor tissues 
with mutated RYR3 (n = 5) was much higher than 
that in non-mutated RYR3 (n = 38) (p < 0.01). TMB 
in the tumor tissues with mutated TP53 (n = 12) was 
much higher than that in non-mutated TP53 (n = 31) 
(p < 0.01). In previous studies, the mutation status 
of the driver gene TP53 demonstrated the ability to 
predict LUAD prognosis [34, 35]. The TP53 subtype 
can be used as a biomarker for immune checkpoint 
inhibitors in LUAD [36]. All TMB values of groups 
with mutations in 18 genes (p < 0.05) were higher than 
those with no mutations (Table  2). It was also found 
that TMB was disassociated with age (Additional file 1: 
Figure S4A) but was associated with gender. The TMB 

Fig. 3 Mutation landscape of nuclear genome in tumor tissues of Stage IA LUAD patients. A The mutation landscape of 115 genes in the nuclear 
genome from 43 tumor tissues of Stage IA LUAD patients. Top: the TMB between the tumor tissues with and without mutations. Bottom: the 
maximum VAF for each gene in 43 tumor tissues of Stage IA LUAD patients. The TMB between the tumor tissues with and without mutations in B 
RYR2 (p < 0.001), C RYR3 (p < 0.001), D TP53 (p < 0.01), E TTN (p < 0.05), and F LRP1B (p < 0.05) (***p < 0.001; **p < 0.01; *p < 0.05)
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of female patients was much lower than that of male 
patients (p < 0.05) (Additional file 1: Figure S4B). This 
study analyzed the differences between the landscape 
of LUAD’s minimally invasive adenocarcinoma (MIA) 
and invasive adenocarcinoma (IA). No signature was 
associated with infiltration (MIAs vs. IA) (Additional 
file 1: Figure S4C).

Among the cohort, 15 tumor tissues and their adja-
cent tissue samples were performed by WES, and 
the correlation coefficient of TMB for all variations 
between WES and targeted sequencing was 0.909 
 (R2 = 0.827, p = 2.66 ×  10–6) (Fig.  4A). For variations 
in protein-coding genes, the correlation coefficient of 
TMB between WES and targeted sequencing was 0.916 
 (R2 = 0.839, p = 1.65 ×  10–6) (Fig. 4B). For the 15 pairs 
of tumor tissues and their adjacent tissue samples, 44 
mutated genes were identified using targeted sequenc-
ing. Among these genes, WES identified 36 mutated 
genes. The VAFs for all selected mutant genes are dis-
played in Fig.  4C. The VAFs for the 15 mutant genes 
selected by WES are depicted in Fig.  4D. For each 
mutant gene, allele frequencies were provided for WES 
and targeted sequencing. All 15 mutant genes were 
identified by either WES or targeted sequencing. Some 
EGFR mutations were undetected, possibly owing to 
the sequencing depth. All evidence demonstrated that 
the targeted-captured panel aligned with expectations.

Mutational landscape of mitochondrial genomes for LUAD 
tissues
This experiment subjected 43 pairs of tumor tissues and 
their adjacent tissue samples to captured-based mito-
chondrial sequencing (median depth ×3025), which 
would characterize the somatic mutations in mitochon-
drial genomes of LUAD. Then, 942 somatic mutations 
were identified by targeted-capture sequencing, includ-
ing 122 synonymous SNVs, 757 non-synonymous SNVs, 
and 92 indels. Missense mutation was the leading vari-
ant classification. The non-synonymous mutation rate 
was significantly higher than the synonymous mutation 
rate. C:G>T:A (40.6%) substitution was the most fre-
quent mutation type. All tumor tissues from 43 patients 
had more than one shared somatic mutation of the mito-
chondrial capture panel. For protein-coding genes, the 
top five mutated genes were cytochrome oxidase subunit 
I (COX1) (60.5% of patients, 26/43), NADH dehydro-
genase subunit 5 (ND5) (48.8%, 21/43), cytochrome b 
(CYTB) (46.5%, 20/43), NADH dehydrogenase subunit 4 
(ND4) (44.2%, 19/43), and NADH dehydrogenase subunit 
6 (ND6) (27.9%, 12/43) (Fig. 5A). The top three mutated 
regions for non-protein coding in the mutational land-
scape of mitochondrial genomes were mitochondrially 
encoded 16S RNA (RNR2) (79.1%, 34/43), mitochondri-
ally encoded 12S RNA (RNR1) (67.4%, 29/43), and the 
regulatory displacement loop (D-loop) region (37.2%, 
16/43). The most mutated regions were RNR2, RNR1, 
and COX1 for synonymous and non-synonymous 
somatic mutations.

The locus p.N30fs in ND5 (COSM9217537) was 
reported in LUAD tissues from the Catalogue of 
Somatic Mutations in Cancer (COSMIC) data-
base [37]. The loci p.L105P and p.A459T in ND5 
(COSM9490819/ COSM1132235) and p.A59T in MT-
CYB (COSM1138286) were detected in other cancers 
in the COSMIC database (Fig. 5B). Mutational hotspots 
were observed in RNR2 and RNR1 across all tumor tissue 
samples. Of the 13 protein-coding genes, COX1 was the 
most frequently mutated gene in the tumor tissue sam-
ples. Patients No. 54, No. 56, and No. 31, 47.1% (16/34), 
47.1% (16/34), and 44.1% (15/34) had mutant genes or 
regions, respectively. In addition, TMB was associated 
with the mutation status of some coding genes (ND4, 
ND5, NADH dehydrogenase subunit 4L (ND4L), CYTB, 
COX1, and ND6) (Fig.  5C). ND4 harbored 57 hot spot 
mutations, and p.L65fs, p.L68R, p.T76M, and p.L379fs 
harbored more than one sample. ND5 harbored 102 hot-
spot mutations, and p.V147fs, p.R161LW, p.M314V, and 
p.H394L harbored more than one sample. Higher TMB 
was also related to tumors with mutated genes coding 
for tRNA (RNR1, tRNA-Phe (TRNF), and tRNA-Gly 
(TRNG)) (Fig.  5C). Overall, the TMB of groups with 

Table 2 TMB of nuclear genomes in tumor tissues between 
mutated and non-mutated genes

*Wilcoxon signed rank test compared TMB between different groups

Gene name P value* Number of samples 
with somatic 
mutations

RYR2 < 0.001 5

SI < 0.01 4

RYR3 < 0.01 5

TP53 < 0.01 12

USH2A < 0.01 3

NRXN1 < 0.01 4

FLG < 0.05 3

TTN < 0.05 13

ZFHX4 < 0.05 2

LRP1B < 0.05 5

SPTA1 < 0.05 2

ABCA13 < 0.05 2

RET < 0.05 2

ZNF831 < 0.05 3

PCDH15 < 0.05 2

GRIN2B < 0.05 2

CSMD3 < 0.05 2

SYNE2 < 0.05 2
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Fig. 4 Concordance of mutation calls between targeted sequencing and WES. Concordance of TMB for all variations A between targeted 
sequencing and WES (Cor: 0.905; p = 3.480 ×  10–6;  R2 = 0.820) and B of protein-coding genes between targeted sequencing and WES (Cor: 
0.916; p = 1.650 ×  10–6;  R2 = 0.839). Bar plot showing C VAFs for driver mutations in selected genes by targeted sequencing and D VAFs for driver 
mutations in selected genes by WES. For each mutation, allele frequencies were obtained by targeted sequencing and WES
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mutations in ten genes (p < 0.05) was higher than that 
of no mutations (Table  3). Furthermore, TMB was not 
associated with age or gender (Additional file  1: Figure 
S5A, B). There was no evidence of a differential mutation 

landscape between the MIAs and IA groups (Additional 
file 1: Figure S5C).

The concordance of mutations between cfDNA 
and corresponding tumor
In this study, 29 tumor tissues, their adjacent tissues, 
and plasma cfDNA samples were subjected to targeted 
sequencing using a custom 115 gene panel. All 29 tumor 
(78/115) variations were identified in the independent 
analysis of the cfDNA sample. Among the 29 paired sam-
ples with more than one shared somatic mutation, the 
hierarchy of variant allele fractions for shared mutations 
was highly concordant between liquid and solid biop-
sies (Fig. 6A). The maximum VAF of somatic mutations 
of genes (AHNAK2, TTN, MUC17, MUC16, MAGEC1, 
FAM47C, MACF1, RPL1, FLG, PCLO, and ZNF208) 
in tumor tissues was positively correlated with that in 
cfDNA (Cor = 0.759;  R2 = 0.576; p = 2.65 ×  10–21, Fig. 6B). 
Mutation concordance between ctDNA and matched 
tumor tissue was also high in bladder, prostate, and 
breast cancers [38–41].

This study utilized somatic mutation detection in the 
cfDNA and calculated the proportion of cfDNA that was 
tumor-derived cfDNA (ctDNA) and the ctDNA fraction 

Fig. 5 Mutation landscape of mitochondrial genome in tumor tissues of Stage IA LUAD patients. The mutation landscape of A all the genes in the 
mitochondrial genome from 43 tumor tissues of Stage IA LUAD patients, and B all the top five mutated genes in the mitochondrial genome from 
43 tumor tissues of Stage IA LUAD patients. C The TMB between the tumor tissues with and without mutations in all genes in the mitochondrial 
genome (***p < 0.001; **p < 0.01; *p < 0.05)

Table 3 TMB of mitochondrial genomes in tumor tissues 
between mutated and non-mutated genes

*Wilcoxon signed rank test compared TMB between different groups

Gene name P value* Number of samples 
with somatic 
mutations

ND4 < 0.001 19

ND5 < 0.001 21

ND4L < 0.01 10

RNR1 < 0.01 29

CYTB < 0.05 20

COX1 < 0.05 25

ND3 < 0.05 4

TRNF < 0.05 6

TRNG < 0.05 6

TRNL2 < 0.05 2

ND6 < 0.05 12

Fig. 6 Concordance of mutation calls between solid and liquid biopsies. A Heatmap displayed the VAFs for mutations in selected genes of the 
nuclear genome. For each gene, maximum VAF was provided for 29 tumor tissues, their adjacent tissues, and plasma cfDNA samples. B Correlation 
of somatic mutation maximum VAFs of the nuclear genome in paired tumor tissue and cfDNA samples. Density estimates demonstrated a peak in 
mutations detected exclusively in one gene. The p-value was calculated using linear regression. C Donut chart showing the VAFs for mutations in 
selected genes of the mitochondrial genome. For each gene, maximum VAFs were provided for 10 tumor tissues, their adjacent tissues, and plasma 
cfDNA samples. The outer circle illustrated whether the 10 tumor tissues harbored mutations in relevant genes. The inner circle showed whether 
the ten plasma samples harbored mutations in relevant genes. D Correlation of somatic mutation maximum VAFs of the mitochondrial genome 
in paired tumor tissue and cfDNA samples. Density estimates displayed a peak in mutations detected exclusively in one gene. The p-value was 
calculated using linear regression. E Bar plot illustrating ctDNA fraction of mitochondrial genome in solid and liquid biopsies

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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to be < 1% in all 29 patients. In another lung cancer 
cohort, the mutant allele fraction of ctDNA detected in 
lung cancer patients was ~ 1%, and the ctDNA fraction 
for Stage I was < 1% [41], which aligned with this study. 
The alterations in cfDNA may have originated from 
blood cell proliferation and germline alterations [42, 
43]. Therefore, this research focused on the concord-
ance of mutations between cfDNA and corresponding 
tumors in the mitochondrial genome. Ten tumor tis-
sues, adjacent tissues, and plasma cfDNA samples were 
subjected to targeted sequencing using a capture-based 
mitochondrial sequencing panel. The results demon-
strated that 90.0% (9/10) of tumor tissue and cfDNA 
samples had more than one shared somatic mutation, 
and 60.0% (6/10) of patients had protein-altering genes 
with somatic mutations detected in the tumor were iden-
tified from the plasma (Fig.  6C). Among the ten paired 
samples with more than one shared somatic mutation 
of the mitochondrial genome, the hierarchy of variant 
allele fractions for shared mutations was highly concord-
ant between the liquid and solid biopsies. The correlation 
coefficient for all somatic mutations of the mitochon-
drial genome in cfDNA and patient-matched tumor tis-
sues from ten patients was 0.598, and the value of  R2 was 
0.358 (p = 3.84 ×  10–21, Fig. 6D). The maximum VAFs of 
somatic mutations in NADH dehydrogenase subunit 1 
(ND1), RNR2, and regulatory D-loop region were simi-
lar in the tumor tissue and plasma samples. In all ten 
patients, the ctDNA fraction ranged from 6.3 to 69.6% 
(Fig. 6E), which is much higher than that of the nuclear 
genome. It showed that the ctDNA of the mitochon-
drial genome was released into the blood much earlier 
than that of the nuclear genome because of a high copy 

number of the mitochondrial genome, as reported in 
several studies [28, 29]. The correlation coefficient for 
somatic mutations in mitochondrial genomes was much 
lower than that in nuclear genomes. However, this study 
recognized cell-free mtDNA as a potential tool for detec-
tion, considering its higher ctDNA fraction. The authors’ 
previous study indicated that the concordance of muta-
tions between ctDNA and gDNA of the corresponding 
tumor was high in some mitochondria-encoding genes 
[27]. Due to a much higher ctDNA fraction in the mito-
chondrial genome, most mtDNA somatic mutations were 
much easier to acquire at the early stage of LUAD than in 
the nuclear genome.

Mutational landscape of nuclear genomes in cfDNA 
of LUAD
Twenty-five plasma cfDNA samples from LUAD were 
subjected to targeted sequencing using a custom 115 
gene panel to a median unique read depth of ×368. 
This research identified 435 somatic mutations in 55 
genes by targeted-captured sequencing, including 117 
synonymous SNVs, 231 non-synonymous SNVs, and 
86 indels (Fig.  7A). Missense mutation was the lead-
ing variant classification. The non-synonymous muta-
tion rate was significantly higher than the synonymous 
mutation rate. T:A>C:G (25.4%) substitution was the 
most frequent mutation type. The top five mutated 
genes were MUC17 (92.0%, 23/25), AHNAK2 (88.0%, 
22/25), MAGEC1 (80.0%, 20/25), FAM47C (80.0%, 
20/25), and MACF1(76.0%, 18/25). When the cfDNA 
had mutations in these genes (MAGE family member 
C1 (MAGEC1), TTN, ZNF208, MUC17, and piccolo 
presynaptic cytomatrix protein (PCLO)), the TMB 

Fig. 7 Mutation landscape of nuclear genome in cfDNA from plasma samples of Stage IA LUAD patients. A The mutation landscape of all the 
mitochondrial genome genes from 32 plasma samples of Stage IA LUAD patients. Top: the TMB between the cfDNA from plasma samples with and 
without mutations. Bottom: the maximum VAF for each gene in 32 plasma samples of Stage IA LUAD patients. The TMB between the cfDNA from 
plasma samples with and without mutations in B MAGEC1 (p < 0.01), C ZNF208 (p < 0.01), D PCLO (p < 0.01), E TTN (p < 0.01), and F AHNAK2 (p < 0.05)
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was significantly higher (Fig. 7B–F). Overall, the TMB 
of groups with mutations in five genes (p < 0.05) was 
higher than that of groups with no mutations (Table 4). 
Among these 10 genes, the TMB of TTN was signifi-
cantly higher in tumor tissues. Mutations in TTN har-
bored in cfDNA and tissues were 80.0% (10/25) and 
39.5% (17/43) of patients, respectively. Mutations in 
TTN occurred commonly in LUAD, and a few studies 
reported that TTN mutations might act as a predic-
tor for chemotherapy and immunotherapy response 
in LUAD patients [44, 45]. For Patient No. 58, there 
were 36.5% (25/115) mutated genes, including MUC17, 
AHNAK2, ZNF208, RP1L1, MUC16, FLG, TTN, and 
PCLO. For all plasma cfDNA samples from LUAD 
patients, TMB was not associated with age or gender 
(Additional file 1: Figure S6A, B). There was no signifi-
cant association with infiltration (MIAs vs. IA, Addi-
tional file 1: Figure S6C).

Mutational landscape of mitochondrial genomes in cfDNA 
of LUAD
Twenty plasma cfDNA samples from LUAD were sub-
jected to targeted sequencing using a capture-based 
mitochondrial sequencing panel to a median unique 
read depth of 2431. Overall, 30 mutated genes or regions, 
including 13 protein-coding genes with somatic muta-
tions, were detected in the plasma cfDNA samples. Due 
to the higher sequencing depth in cfDNA than in gDNA, 
some low VAF mutations related to clonal hematopoiesis 
might not be filtered. Protein-altering somatic mutations 
were detected in all 20 patients. In addition, targeted-
capture mitochondrial sequencing identified 647 somatic 
mutations, including 77 synonymous SNVs, 349 non-
synonymous SNVs, and 223 indels. Missense mutation 
was the leading variant classification. The non-synon-
ymous mutation rate was significantly higher than the 
synonymous mutation rate since the coverage of nonpro-
tein-coding genes or regions was wider than that of the 
13 protein-coding genes. T:A>C:G (34.9%) and C:G>T:A 
(27.3%) substitutions were the most and second-most 
frequent mutation types, respectively. All plasma from 
20 patients had more than one shared somatic mutation 
of the mitochondrial capture panel. The top five mutated 
genes for protein-coding genes were ATP synthase F0 
subunit 6 (ATP6) (100.0% of patients, 20/20), CYTB 
(100.0%, 20/20), COX1 (100.0%, 20/20), ND5 (95.0%, 
19/20), ND4 (95.0%, 19/20), and NADH dehydrogenase 
subunit 2 (ND2) (95.0%, 19/20, Fig.  8A). The top three 
mutated regions in the mutational landscape of mito-
chondrial genomes for non-protein coding were RNR1 
(65.0%, 13/20), RNR2 (65.0%, 13/20), and the D-loop 
region (65.0%, 13/20).

Table 4 TMB of nuclear genomes in cfDNA between mutated 
and non-mutated genes

*Wilcoxon signed rank test compared TMB between different groups

Gene name P value* Number of samples 
with somatic 
mutations

MAGEC1 < 0.01 20

TTN < 0.05 10

ZNF208 < 0.05 16

MUC17 < 0.05 23

PCLO < 0.05 7

Fig. 8 Mutation landscape of mitochondrial genome in cfDNA from plasma samples of Stage IA LUAD patients. The mutation landscape of A all the 
genes in the mitochondrial genome from 27 plasma samples of Stage IA LUAD patients, and B all the top five mutated genes in the mitochondrial 
genome from 27 plasma samples of Stage IA LUAD patients. The outer circle showed the SNVs of the top mutated genes in 27 plasma samples. 
The inner circle displayed the INDELs of the top mutated genes in 27 plasma samples. C The TMB between the tumor tissues with and without 
mutations in all the genes in the mitochondrial genome (**p < 0.01; *p < 0.05)
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TMB was associated with mutations in ATP synthase 
F0 subunit 8 (ATP8) (p < 0.001), RNR1 (p < 0.05), and 
RNR2 (p < 0.05, Fig.  8B). ATP6 harbored 44 hot spot 
mutations, and the loci of p.88_89ins, p.P89fs, p.T95I, 
p.Q97fs, p.117_118ins, p.S119F, p.A124T, p.F128L, 
p.E145Q, p.L150F, p.M154V, p.V158M, p.R159H, and 
p.R159P, harbored more than one sample. ND5 har-
bored 75 hot spot mutations, and the loci of p.S104fs, 
p.N109K, p.G146V, p.Y159H, p.I169T, p.A267T, 
p.S270N, p.I29in, p.T449A, and p.F463L harbored more 
than one sample. ND4 harbored 48 hot spot mutations, 
and the loci of p.I132fs, p.T147S, p.L150fs, p.I162fs, 
p.I165T, p.S308N, and p.I423V harbored more than one 
sample (Fig.  8C). Furthermore, the average maximum 
VAF of the regulatory D-loop region was higher than 
that of other genes or regions. Most studies reported 
that the regulatory D-loop region was the most suscep-
tible to either germline or somatic mutations [46, 47]. 
For Patient No.81, there were 42.1% (16/38) of mutated 
genes or regions, including ATP6, NADH dehydroge-
nase subunit 3 (ND3), ND4, ND5, CYTB, ND1, D-loop, 
RNR1, and tRNA-Met (TRNM). Patients No. 243 and 
No. 234 harbored more than 13 gene regions. Across 
the tumor tissue samples above, the protein-coding 
genes, including ND4, ND5, and CYTB, and the non-
coding genes or regions, including the regulatory 
D-loop region, RNR1, and RNR2, also demonstrated 
high mutation frequency, which aligned with the 
cfDNA mutation status.

TMB was associated with the mutation status of the 
coding gene ATP8 (Fig.  8C), while higher TMB was 
also associated with tumors with mutated genes cod-
ing tRNA (RNR1 and RNR2) (Fig.  8C). Overall, the 
TMB of groups with mutations in three genes (p < 0.05) 
was higher than the TMB of groups with no mutations 
(Table 5). TMB was not associated with age or gender 
(Additional file  1: Figure S7A, B). TMB of the MIA 
group was higher than that of the IA group (Additional 
file 1: Figure S7C).

Plasma cfDNA diagnostic prediction for early‑stage LUAD 
with the mutation number of hub genes in the nuclear 
and mitochondrial genomes
This study obtained an optimal cut-off value for plasma 
cfDNA mutation detection in the diagnosis of early-stage 
LUAD. The mutation numbers of selected genes were 
evaluated. Receiver operating characteristic (ROC) curve 
analysis explored the diagnostic potential of the selected 
genes in nuclear and mitochondrial genomes.

Furthermore, the selected genes were evaluated in 
a panel of the nuclear genome with 25 Stage IA LUAD 
patients and six healthy individuals in the training data. 
The selected genes included those whose mutation sta-
tus was associated with higher TMB in tumor tissues or 
plasma cfDNA samples. The selected genes also included 
highly mutated genes in tumor tissues or plasma cfDNA 
samples and the genes’ maximum VAF had high con-
cordance between tumor tissues and plasma cfDNA sam-
ples. The number of mutations in all selected genes in the 
nuclear genomic panel classified early-stage LUAD and 
normal individuals with a high area under curve (AUC) 
(82.33%, 95% CI 68.04–96.63%) in cfDNA of plasma 
samples (sensitivity of 100.00% and specificity of 72.00%, 
Fig.  9A). The number of mutations in these genes that 
have a maximum VAF of somatic mutations were both 
> 25% in tumor tissues and cfDNA of LUAD patients 
classified early-stage LUAD and normal individuals with 
high AUC (81.33%, 95% CI 66.57–96.10%) in cfDNA of 
plasma samples (sensitivity of 100.00% and specificity of 
72.00%, Fig.  9A). The ability of plasma cfDNA diagnos-
tic prediction for early-stage LUAD with all the groups of 
selected genes is illustrated in Fig. 9A and Table 6.

This research validated the plasma cfDNA diagnos-
tic prediction for early-stage LUAD with the mutation 
number of hub genes in the nuclear genome. Seven Stage 
IA LUAD patients and seven healthy individuals were 
included in the testing data. The number of mutations 
in all selected genes in the nuclear genomic panel clas-
sified early-stage LUAD and normal individuals with a 
high AUC (71.43%, 95% CI 35.28–100.00%) in cfDNA 
of plasma samples (sensitivity of 100.00% and specificity 
of 71.43%) (Fig. 9B). The ability of diagnostic prediction 
for early-stage LUAD with plasma cfDNA in all groups 
of selected genes in the nuclear genome was displayed in 
Fig. 9B and Table 7.

This study evaluated the selected genes in a panel of 
the mitochondrial genome by including 20 Stage IA 
LUAD patients and six healthy individuals. The selec-
tion criteria of genes for plasma cfDNA diagnostic 
prediction for early-stage LUAD with the mutation 
number of hub genes in the mitochondrial genome 

Table 5 TMB of mitochondrial genomes in tumor tissues 
between mutated and non-mutated genes

*Wilcoxon signed rank test compared TMB between different groups

Gene name P value* Number of samples 
with somatic 
mutations

ATP8 < 0.01 8

RNR1 < 0.05 13

RNR2 < 0.05 13
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were similar to those in the nuclear genome. The 
mtDNA panel of all selected genes depicted great abil-
ity to classify early-stage LUAD and normal individuals 
with a high AUC (100.00%, 95% CI 100.00–100.00%) in 
cfDNA of plasma samples (sensitivity of 100.00% and 
specificity of 100.00%, Fig.  9C). The mutation number 
of highly mutated genes also demonstrated an excellent 
ability to classify early-stage LUAD and normal individ-
uals (Table 8).

The research validated the plasma cfDNA diagnos-
tic prediction of early-stage LUAD with the mutation 
number of hub genes in the mitochondrial genome 
by including seven Stage IA LUAD patients and seven 

healthy individuals in the testing data. Compared to 
the nuclear genome panel, the mtDNA panel revealed 
a better ability to classify early-stage LUAD and nor-
mal individuals with high AUC (97.15%, 95% CI 92.97–
100.00%) in cfDNA of plasma samples (sensitivity of 
100.00% and specificity of 100.00%) (Fig.  9D). Other 
groups of mitochondrial genomes also demonstrated 
a powerful ability to classify early-stage LUAD and 
normal individuals in cfDNA from plasma samples 
(Table 9).

Detection of the mutation number of selected genes 
in cfDNA demonstrated good diagnostic performance 
for early-stage LUAD. Moreover, detecting the number 

Fig. 9 ROC analysis of the mutations in LUAD and control plasma cfDNA samples in the training data set. ROC analysis for the mutations of the 
nuclear genome in LUAD and control plasma cfDNA samples in the A training data set and B testing data set. ROC analysis for the mitochondrial 
genome mutations in LUAD and control plasma cfDNA samples in the C training data set and D testing data set. TT, the selected genes whose 
mutations were associated with higher TMB in tumor tissues; CFT, the selected genes that had mutations were associated with higher TMB in cfDNA 
of LUAD patients; HC, the selected genes whose variation frequencies in tumor tissues and cfDNA were both > 25%. THF: the top five mutated 
genes in tumor tissues; CFHF: the top five mutated genes in cfDNA of LUAD patients; ALL: all the above-selected genes
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of somatic mutations in mitochondria can potentially 
be a better tool for diagnosing early-stage LUAD.

Plasma cfDNA diagnostic prediction for early‑stage LUAD 
with logistic regression method
This research obtained an optimal cut-off value for 
plasma cfDNA mutation detection in early-stage LUAD 
diagnosis. The Least Absolute Shrinkage and Selection 

Operator (LASSO) was performed. ROC curve analysis 
was used to explore the diagnostic ability of the selected 
genes in the nuclear and mitochondrial genomes.

Furthermore, the selected genes in the panel of the 
nuclear genome were evaluated with LASSO by includ-
ing 25 Stage IA LUAD patients and six healthy indi-
viduals in the training data. LASSO analysis of the hub 
genes of the nuclear genome revealed that MUC17 and 
FAM47A were significant to LUAD diagnosis in all 
selected genes above (λ = 2.181) (Fig. 10A). The logistic 
regression method constructed a diagnostic prediction 
model with the two markers. The model classified early-
stage LUAD and normal individuals with a high AUC 
(92.00%, 95% CI 82.20–100.00%) in cfDNA of plasma 
samples. The model yielded a sensitivity of 76.00% and 
specificity of 100.00% for LUAD in the training dataset 
of 25 LUAD and six normal samples (Fig. 10B). Plasma 
cfDNA diagnostic prediction was validated for early-
stage LUAD with LASSO in the nuclear genome. Seven 
Stage IA LUAD patients and seven healthy individuals 
were included in the testing data. The diagnostic pre-
diction model of LASSO for the nuclear genome clas-
sified early-stage LUAD and normal individuals with 
high AUC (79.59%, 95% CI 53.16–100.00%) in cfDNA 
of plasma samples. The model yielded a sensitivity of 
71.43% and a specificity of 85.71% for LUAD (Fig. 10B).

This study included 20 Stage IA LUAD patients and 
six healthy individuals as the training data to evaluate 
the selected genes in the panel of the mitochondrial 
genome using LASSO. LASSO analysis of the hub genes 
of the mitochondrial genome showed that CYTB and 
RNR2 were significant to LUAD diagnosis in all selected 
genes (λ = 3.787) (Fig.  10C). The logistic regression 
method was used to construct a diagnostic predic-
tion model using the two markers. It classified early-
stage LUAD and normal individuals with a high AUC 
(100.00%, 95% CI 100.00–100.00%) in cfDNA of plasma 
samples. The model yielded a sensitivity of 100.00% 
and a specificity of 100.00% for LUAD (Fig. 10D). This 

Table 6 Somatic mutations of nuclear genome in the plasma 
cfDNA of the training data set for the diagnosis of early-stage 
LUAD

TT: the selected genes whose mutations was associated with higher TMB in 
tumor tissues; CFT: the selected genes whose mutations was associated with 
higher TMB in cfDNA of LUAD patients; HC: the selected genes whose variation 
frequencies in tumor tissues and cfDNA were both > 25%; THF: the top five 
mutation genes in tumor tissues; CFHF: the top five mutation genes in cfDNA of 
LUAD patients; ALL: all the selected genes above

AUC (μ, 95% CI) (%) Sensitivity (%) Specificity (%)

TT 70.00 (48.66–91.34) 83.33 60.00

CFT 60.67 (34.70–86.63) 33.33 84.00

HC 81.33 (66.57–96.10) 100.00 72.00

THF 73.00 (54.59–91.41) 83.33 56.00

CFHF 73.00 (51.91–94.09) 66.67 76.00

ALL 82.33 (68.04–96.63) 100.00 72.00

Table 7 Somatic mutations of nuclear genome in the plasma 
cfDNA of the testing data set for the diagnosis of early-stage 
LUAD

AUC (μ, 95% CI) (%) Sensitivity (%) Specificity (%)

TT 54.08 (18.49–89.67) 100.00 42.86

CFT 47.96 (14.43–81.48) 100.00 14.29

HC 70.41 (34.67–100.00) 100.00 57.15

THF 79.59 (51.28–100.00) 100.00 57.15

CFHF 75.51 (45.31–100.00) 100.00 57.15

ALL 71.43 (35.28–100.00) 100.00 71.43

Table 8 Somatic mutations of mitochondrial genome in the 
plasma cfDNA of the training data set for the diagnosis of early-
stage LUAD

AUC (μ, 95% CI) (%) Sensitivity (%) Specificity (%)

TT 100.00 (100.00–100.00) 100.00 100.00

CFT 97.50 (92.60–100.00) 90.00 100.00

HC 98.33 (94.37–100.00) 90.00 100.00

THF 100.00 (100.00–100.00) 100.00 100.00

CFHF 100.00 (100.00–100.00) 100.00 100.00

ALL 100.00 (100.00–100.00) 100.00 100.00

Table 9 Somatic mutations of mitochondrial genome in the 
plasma cfDNA of the testing data set for the diagnosis of early-
stage LUAD

AUC (μ, 95% CI) (%) Sensitivity (%) Specificity (%)

TT 97.96 (92.30–100.00) 100.00 85.72

CFT 95.92 (86.40–100.00) 100.00 85.72

HC 97.96 (92.30–100.00) 100.00 85.72

THF 100.00 (100.00–100.00) 100.00 100.00

CFHF 100.00 (100.00–100.00) 100.00 100.00

ALL 100.00 (100.00–100.00) 100.00 100.00
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study also validated plasma cfDNA diagnostic predic-
tion for early-stage LUAD with LASSO in the mito-
chondrial genome. Seven Stage IA LUAD patients and 
seven healthy individuals were included in the test-
ing data. The diagnostic prediction model of LASSO 
for the mitochondrial genome demonstrated that it 
classified early-stage LUAD and normal individuals 
with a high AUC (97.96%, 95% CI 92.30–100.00%) in 
cfDNA of plasma samples. The model yielded a sensi-
tivity of 85.71% and a specificity of 100.00% for LUAD 
(Fig. 10D).

The mutation numbers for the MUC17 and FAM47A 
genes in the nuclear genome obtained using the LASSO 
diagnostic model revealed good diagnostic performance 

for early-stage LUAD. The mutation numbers for the 
CYTB and RNR2 genes in the mitochondrial genome 
demonstrated greater potential as a better tool for diag-
nosing early-stage LUAD than the selected biomarkers of 
the nuclear genome.

Discussion
This study comprehensively characterized the mutated 
landscape of nuclear and mitochondrial genomes. Func-
tional alterations in the nuclear genome (EGFR, TP53, 
TTN, and KRAS) were observed, which is largely con-
sistent with large-scale genomic studies. In past dec-
ades, large-scale genomic studies revealed driver genes 
of LUAD and the most common somatic mutations 

Fig. 10 ROC analysis of the mutations in LUAD and control plasma cfDNA samples with LASSO. A LASSO model λ value distribution based on 
nuclear genome mutations in LUAD and control plasma cfDNA samples. B ROC analysis of the mutations of the nuclear genome in LUAD and 
control plasma cfDNA samples with LASSO. C LASSO model λ value distribution based on the mitochondrial genome mutations in LUAD and 
control plasma cfDNA samples. D ROC analysis of the mitochondrial genome mutations in LUAD and control plasma cfDNA samples with LASSO
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harbored in the genes of TP53, KRAS, EGFR, ERBB2, 
MET, Ras-like without CAAX 1 (RIT1), neurofibromin 1 
(NF1), kelch-like ECH associated protein 1 (KEAP1), and 
serine/threonine kinase 11 (STK11) [13, 15, 32]. Genomic 
information correlated with the diagnosis, treatment effi-
cacy, and prognosis of LUAD.

The most common somatic mutated genes in this study 
cohort were verified to have clinical relevance. Patients 
with TTN-mutant had significantly longer overall sur-
vival (OS) than the ones with TTN-wildtype. Mean-
while, patients with TTN-mutant were found to have 
high immunogenicity and inflammatory tumor immune 
microenvironment (TIME). It suggested that TTN-
mutant may be a potential predictive biomarker for 
LUAD patients to accept immune checkpoint inhibitors 
(ICIs) [44]. Several oncogenic pathways (DNA replica-
tion, mismatch repair, and spliceosome) changed notice-
ably in patients with TP53 mutations [48]. TP53 status 
was a reliable and robust immune signature for identify-
ing early-stage LUAD patients with a high risk of unfa-
vorable survival [49]. TCGA data demonstrated that the 
RYR2 mutant group lived longer than the wild group 
[50].

This study systematically reported the nuclear and 
mitochondrial mutation spectra of early-stage LUAD 
patients. Alterations in LUAD patients (ND4, ND5, 
CYTB, COX1, D-loop, RNR1, and RNR2) were observed 
in the mitochondrial genome. Altered energy metabo-
lism is a common feature of cancer, and mitochondria 
is the primary site of energy production, which is regu-
lated by the interplay between nuclear and mitochondrial 
genomes [51–53]. The human mitochondrial genome 
encodes 13 key proteins of four oxidative phospho-
rylation system (OXPHOS) complexes. It is critical for 
mitochondrial metabolism. Somatic mutations in the 
protein-coding genes of the mitochondrial genome might 
have effects on deregulating tumor metabolism [46].

Most studies reported that the regulatory D-loop 
region was the most susceptible to either germline or 
somatic mutations [46, 47]. In another cohort of Chi-
nese lung cancer patients, the regulated D-loop region 
had a higher frequency of somatic mutations than the 
control region, mostly with a heterogeneous status [54]. 
RNR1 and hexokinase 2 (HK2) are important risk factors 
in hepatocellular carcinoma (HCC) patients [55]. RNR2 
plays an anti-apoptotic role by avoiding deploying energy 
from the complete oxidation of organic compounds to 
inorganic wastes and could serve as a new biomarker in 
the diagnosis of bladder carcinoma, especially in blood 
circulation [56].

Most morbidity and mortality in cancer are related to 
late diagnosis, where clinical surgical and pharmacologi-
cal treatments are less effective. Recently, liquid biopsy 

has emerged as a promising approach for cancer detec-
tion, monitoring of tumor progression, and response 
to therapy [57]. Traditional serum-based protein bio-
markers (cancer antigen-125 (CA-125), cancer antigen 
19-9 (CA 19-9), carcinoembryonic antigen (CEA), and 
prostate-specific antigen (PSA)) are commonly used for 
monitoring cancer progression but not for cancer diag-
nosis [41]. Risk factors, including genetic effects on body 
fluids, are still being investigated in LUAD, especially in 
the early stages [46]. Researchers are paying more atten-
tion to ctDNA in plasma or serum. Mutation detection in 
ctDNA is consistent despite intra-patient heterogeneity 
[38, 58]. Moreover, ctDNA can integrate somatic infor-
mation from the primary tumor and multiple metastatic 
lesions. The intrapatient tumor heterogeneity is also sim-
ilar [58].

In this study, the mutant allele fraction of ctDNA for 
the nuclear genome detected in LUAD patients was < 1%, 
which was observed in another cohort of patients with 
Stage I LUAD [41]. Nuclear genome alterations in cfDNA 
may originate from blood cell proliferation and germline 
alterations [42, 43]. Although ctDNA analyses have raised 
the possibility of direct detection of patients at an early 
stage of cancer, de novo identification of somatic altera-
tions has remained a significant challenge for developing 
early detection approaches [59, 60]. Unlike the nuclear 
genome, the mitochondrial genome lacks repair mecha-
nisms, intronic regions, and histones, making it more 
susceptible to damage by reactive oxygen species (ROS) 
and other environmental factors, leading to higher muta-
tion frequency [61–63].

Due to the high copy number of mtDNA, this study 
investigated whether tumor-derived somatic mutations 
in the mitochondrial genome were higher than those 
in the nuclear genome. The correlation coefficients for 
all somatic mutations in the mitochondrial genome of 
cfDNA and patient-matched tumor tissues were lower 
than those in the nuclear genome. However, the ctDNA 
fraction of the mitochondria genome was much higher 
than that of the nuclear genome. This indicated that most 
mtDNA somatic mutations were much easier to acquire 
in the mitochondria genome at the early stage of LUAD 
than in the nuclear genome. Previous research by the 
authors of this study also indicated that the concordance 
of mutations between ctDNA and gDNA of the corre-
sponding tumor was high in some mitochondrial encod-
ing genes [27]. The current understanding of circulating 
cell-free mtDNA has the potential as a novel tumor bio-
marker [30].

This study comprehensively characterized the 
mutated landscape of nuclear and mitochondrial 
genomes. The number of mutations detected in related 
genes in plasma cfDNA samples from early-stage 
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LUAD patients and healthy individuals was used to 
evaluate the diagnostic ability [64]. Functional altera-
tions were observed in the nuclear genome (EGFR, 
TP53, TTN, and KRAS) and mitochondrial genomes 
(ND4, ND5, CYTB, COX1, D-loop, RNR1, and RNR2). 
For the diagnostic model of the nuclear genome, the 
number of mutations in these hub genes was evalu-
ated. This study selected genes that satisfied the fol-
lowing criteria: (i) mutations were associated with 
higher TMB in tumor tissues or cfDNA of LUAD 
patients, (ii) the genes that had variation frequencies 
in tumor tissues and cfDNA were > 25%, and (iii) the 
top five mutated genes in tumor tissues or cfDNA 
of LUAD patients. The number of mutations in all 
selected genes in the nuclear genomic panel could 
classify early-stage LUAD and normal individuals with 
high AUC (82.33%, 95% CI 68.04–96.63%) in cfDNA of 
plasma samples with the training data. The diagnos-
tic model was evaluated with the testing data, and the 
AUC reached 71.43% (95% CI 35.28–100.00%).

For the mitochondrial genome, the gene selection 
criteria for ROC were the same as described above. 
All selected genes in the mitochondrial genome dis-
played excellent ability to classify early-stage LUAD 
and normal individuals with a high AUC (100.00%, 
95% CI 100.00–100.00%) in cfDNA of plasma sam-
ples with the training data. Similar results were 
observed for the testing data. Therefore, the mtDNA 
panel would be a better diagnostic biomarker than the 
nuclear genome panel with the number of mutations 
in selected genes. The diagnostic model analyzed by 
LASSO evaluated panels of nuclear and mitochon-
drial genomes. The mtDNA panel performed better 
and ensured that the diagnostic biomarkers of blood 
were released from tumor tissues. If the VAFs for the 
mutations in the tumor tissues were low, the muta-
tions might be detected in the blood. Meanwhile, the 
VAFs for mutations in tumor tissues were affected by 
blood cell proliferation and germline alterations. The 
ctDNA fraction of mitochondria was much higher 
than that of the nuclear genome, indicating that most 
mtDNA somatic mutations were much easier to detect 
in the early stage of LUAD than in the nuclear genome. 
Therefore, the mitochondrial panel can classify early-
stage LUAD and normal individuals in cfDNA of 
plasma.

This study has two limitations that should be 
addressed in future research. Firstly, the scope of this 
study was limited to one center, and all individuals were 
of the same race. Secondly, we expanded the sample 
size to obtain more credible and reliable data to accel-
erate clinical translation. In the future, multicenter 
collaboration is needed to further expand the sample 

size to include different regions and races to clarify 
the accuracy of these biomarkers for early-stage LUAD 
diagnosis.

Conclusion
This study identified somatic mutations in the nuclear 
and mitochondrial genomes. The mutation detec-
tion of cfDNA revealed good diagnostic performance 
for early-stage LUAD. Moreover, somatic mutation 
detection in the mitochondria may be a better tool for 
diagnosing early-stage LUAD. The panel in the mito-
chondrial genome could classify primary early-stage 
LUAD and normal individuals in cfDNA of plasma. In 
the near future, we will initiate multicenter collabora-
tion that expands the sample size from different regions 
and races to clarify the accuracy of these biomarkers 
for diagnosing early-stage LUAD.
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by SomaticSniper (A) Overview of TGCA Stage IA LUAD cohort muta-
tions analyzed with the tool of SomaticSniper. (B) Waterfall of the top 
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the tool of SomaticSniper.<br>Figure S2. TGCA early LUAD mutation 
cohort analyzed by MuTect (A) Overview of TGCA Stage IA LUAD cohort 
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MuSE (A) Overview of TGCA Stage IA LUAD cohort mutations analyzed 
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TCGA Stage IA LUAD cohort analyzed with the tool of MuSE.<br>Figure 
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with different clinical characteristics. (A) The TMB of nuclear genomes 
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TMB of nuclear genomes in tumor tissues between the groups of male 
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TMB of nuclear genomes in cfDNA from plasma samples between the 
groups of male and female. (I) The TMB of nuclear genomes in cfDNA 
from plasma samples between the MIAs and IA groups. (J) The TMB of 
mitochondrial genomes in cfDNA from plasma samples between the age 
groups of ≤60 years and >60. (K) The TMB of mitochondrial genomes in 
cfDNA from plasma samples between the groups of male and female. 

(L) The TMB of mitochondrial genomes in cfDNA from plasma samples 
between the MIAs and IA groups.
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