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Abstract 

Background  Carotid atherosclerosis (CAS), an important factor in the development of stroke, is a major public health 
concern. The aim of this study was to establish and validate machine learning (ML) models for early screening of CAS 
using routine health check-up indicators in northeast China.

Methods  A total of 69,601 health check-up records from the health examination center of the First Hospital of 
China Medical University (Shenyang, China) were collected between 2018 and 2019. For the 2019 records, 80% were 
assigned to the training set and 20% to the testing set. The 2018 records were used as the external validation dataset. 
Ten ML algorithms, including decision tree (DT), K-nearest neighbors (KNN), logistic regression (LR), naive Bayes (NB), 
random forest (RF), multiplayer perceptron (MLP), extreme gradient boosting machine (XGB), gradient boosting deci-
sion tree (GBDT), linear support vector machine (SVM-linear), and non-linear support vector machine (SVM-nonlinear), 
were used to construct CAS screening models. The area under the receiver operating characteristic curve (auROC) and 
precision-recall curve (auPR) were used as measures of model performance. The SHapley Additive exPlanations (SHAP) 
method was used to demonstrate the interpretability of the optimal model.

Results  A total of 6315 records of patients undergoing carotid ultrasonography were collected; of these, 1632, 407, 
and 1141 patients were diagnosed with CAS in the training, internal validation, and external validation datasets, 
respectively. The GBDT model achieved the highest performance metrics with auROC of 0.860 (95% CI 0.839–0.880) 
in the internal validation dataset and 0.851 (95% CI 0.837–0.863) in the external validation dataset. Individuals with 
diabetes or those over 65 years of age showed low negative predictive value. In the interpretability analysis, age was 
the most important factor influencing the performance of the GBDT model, followed by sex and non-high-density 
lipoprotein cholesterol.

Conclusions  The ML models developed could provide good performance for CAS identification using routine health 
check-up indicators and could hopefully be applied in scenarios without ethnic and geographic heterogeneity for 
CAS prevention.
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Introduction
Carotid atherosclerosis (CAS) is a vital risk factor for 
cardiovascular and cerebral events. It is characterized 
by pathological thickening of the common or inter-
nal carotid intima, and because of the increased risk of 
ischemic stroke, coronary events, and blood flow restric-
tion, it is a non-negligible disease burden in society 
worldwide [1, 2]. A recent study showed that increased 
carotid intima-media thickness (IMT) is projected to 
occur in adults aged 30–79 worldwide at a prevalence 
of 27.62%, carotid plaque at a prevalence of 21.13%, and 
carotid stenosis at a prevalence of 1.50% [3]. In China, 
about 31% of the general population and 39% of peo-
ple aged 60 to 69 have carotid plaques, respectively [4]. 
CAS identification is a prerequisite for early detection 
and intervention in cardiovascular and cerebrovascular 
events, such as stroke [4, 5].

Ultrasonography is widely used to measure carotid lumi-
nal stenosis and identify patients with carotid artery athero-
sclerosis [6]. However, a high proportion of patients have a 
delayed diagnosis of CAS. The reasons for the delay might 
be attributed to the following: (1) CAS is usually asympto-
matic, unless the patient has experienced a symptomatic 
ischemic stroke, transient ischemic attack, or amauro-
sis fugax [3]. (2) The accuracy of the routine ultrasound 
examination varies greatly due to operator manipulation 
experience, hemodynamics, and other factors. (3) Ultra-
sonography is generally not used for routine health check-
ups, especially in economically underdeveloped areas, due 
to its high cost [7]. Recently, with the rapid development 
of artificial intelligence, machine learning (ML) algorithms 
have overcome the limitations of the application scope 
of traditional statistical models and have been success-
fully applied in medical scenarios for its great potential to 
improve the accuracy and efficiency of health outcome 
identification from electronic health record (EHR) datasets 
[8], such as screening high-risk individuals for COVID-19 
[9] and patients with diabetes [10]. It has also been used in 
CAS diagnosis [11–13]. However, the models reported have 
several shortcomings. First, there has been no evaluation of 
common ML algorithms with demonstrated performance, 
such as extreme gradient boosting (XGB) and gradient 
boosting decision trees (GBDT), with good adaptability to 
tabular data [14]. In addition, the previously reported mod-
els used too many uncommon physical examination indi-
cators, which greatly limited the ease of use of the models 
[12]. Furthermore, external validation, calibration, and 
interpretability analyses of established models have not 
been reported, especially the sensitivity and specificity of 
various ML models among different high-risk subgroups of 
CAS. The aim of this study was to develop and validate ML 
models for CAS classification using routine health check-up 
indicators and interpret the outputs of the optimal ML 

model using the SHapley Additive exPlanations (SHAP) 
method.

Methods
Data collection and participant selection
The transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) 
was followed when conducting this study [15]. The health 
examination center of the First Affiliated Hospital of 
China Medical University (Shenyang, China) provided 
us with health check-up medical records between 2018 
and 2019 in the form of excel sheets. Individuals who 
participated in the physical examination were mainly 
employees of various organizations, new recruits, and 
individuals who voluntarily attended health check-ups. 
All participants are local residents of Shenyang, China. 
The training set contains 80% of the 2019 health check-
up data and the internal validation dataset consists of the 
remaining 20%. The 2018 dataset served as the external 
validation set. The inclusion criteria were as follows: (1) 
aged ≥ 18 years, (2) underwent carotid ultrasound exami-
nation, and (3) had undergone routine biochemistry 
blood testing, including liver function, renal function, 
serum lipid, and fasting serum glucose (FSG). The follow-
ing were excluded: (1) age < 18  years, (2) lack of carotid 
ultrasound, and (3) lack of biochemistry testing.

Variables identified
Variables in the collected datasets included demographic 
characteristics, clinical variables, and laboratory indi-
ces. From the 70 health check-up items, 24 demographic 
and biochemical candidate parameters were selected for 
CAS model construction according to the study design 
and the clinician’s advice. The selected 24 variables were: 
demographic characteristics (six variables), including 
age, sex, body mass index (BMI), waist circumference, 
height, and body weight; clinical characteristics (two 
variables), including diastolic blood pressure (DBP) and 
systolic blood pressure (SBP); biochemical characteris-
tics (16 variables), including FSG, total cholesterol (TC), 
triglyceride (TG), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), 
non-high-density lipoprotein cholesterol (non-HDL-C), 
alkaline phosphatase (ALP), gamma-glutamyl transpepti-
dase (GGT), aspartate aminotransferase (AST), alanine 
transaminase (ALT), total protein (TP), total bilirubin 
(TBIL), albumin (ALB), blood urea nitrogen (BUN), cre-
atinine (Cr), and uric acid (UA). An automatic biochemi-
cal analyzer was used to test laboratory indicators (Cobas 
8000 c701 module; Roche Diagnostics, Mannheim, 
Germany).
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Outcome definition and assessment
Bilateral carotid IMT maxima were used as indicators 
to assess the degree of carotid arteriosclerosis. Accord-
ing to the diagnostic criteria from the textbook of diag-
nostic ultrasound (3rd edition) [16], the normal IMT of 
the carotid artery was defined as < 1.0 mm; carotid artery 
atherosclerosis was defined as localized thickening of 
the intima (1.0 mm ≤ IMT < 1.5 mm); and carotid artery 
plaque was defined as an IMT of 1.5  mm or greater, or 
at least 0.5  mm greater than the surrounding normal 
IMT value, or more than 50% greater than the surround-
ing normal IMT value, and local changes to the structure 
protruding to the lumen. Subsequently, increased IMT, 
carotid plaque, and carotid stenosis were classified into 
the CAS group, and other cases were classified into the 
control group. CAS was diagnosed by two independent 
clinicians by examining left and right carotid artery ultra-
sound reports. In cases of disagreement, consensus was 
reached through discussion and consultation.

Feature selection, model construction, and evaluation
To ensure better model discrimination performance and 
reduce redundant variables, a genetic algorithm-based 
k-nearest neighbors (GA-KNN) [17] with a ten-fold 
cross-validation method was used for feature selection 
(repeats = 100). Ten well-known ML algorithms, includ-
ing decision tree (DT), K-nearest neighbors (KNN), 
logistic regression (LR), naive Bayes (NB), random forest 
(RF), multiplayer perceptron (MLP), extreme gradient 
boosting machine (XGB), gradient boosting decision tree 
(GBDT), linear support vector machine (SVM-linear), 
and non-linear support vector machine (SVM-nonlinear), 
were selected to develop the CAS classification model. 
Their performance was assessed using both internal and 
external validation datasets. Given that LR algorithm is 
a highly interpretable and simplified ML algorithm, we 
used it as a performance reference.

To evaluate the model’s performance, we reported 
both the area under the receiver operating characteristic 
(auROC) curve and the precision-recall curve (auPRC). 
A calibration plot was used to assess the agreement 
between predictions and observations. The best cut-
off point for each model was estimated using Youden’s 
method, and the following metrics were also calculated 
to reflect the model performance: sensitivity, specificity, 
positive and negative predictive values (PPV and NPV), 
and positive and negative likelihood ratios (PLR and 
NLR).

CAS can be influenced by various factors. Among 
these, advanced age, obesity, history of hypertension, 
diabetes, and hyperlipidemia are significant risk fac-
tors for the development of CAS. To verify the stability 

of model performance, sensitivity analysis was used to 
explore the performance of the optimal model in five 
subgroups. Subgroup 1: individuals aged ≥ 65 years; sub-
group 2: individuals whose BMI ≥ 30  kg/m2; subgroup 
3: individuals with hypertension [18] (SBP ≥ 140  mmHg 
or DBP ≥ 90  mmHg); subgroup 4: individuals with dia-
betes [19] (FSG ≥ 7.0); and subgroup 5: individuals 
with dyslipidemia [20] (defined as TC ≥ 5.18  mmol/L 
or TG ≥ 1.76  mmol/L, or LDL-C ≥ 3.37  mmol/L, or 
HDL-C ≤ 1.04 mmol/L).

Model interpretability and utility
To better understand the reasoning mechanism behind 
the high-performing ML model, we implemented the 
SHapley Additive exPlanations (SHAP) method using the 
SHAP package (https://​github.​com/​slund​berg/​shap) for 
further analysis [21]. The clinical utility of each model 
was evaluated using Decision Curve Analysis (DCA).

Statistical analysis
The dataset was cleaned up using the listwise method for 
excluding missing data and the Tukey method for identi-
fying and eliminating outliers. For categorical variables, 
data were expressed as n (%) while continuous variables 
were expressed as mean ± SD, or for continuous variables 
with skewed distribution as median (interquartile range 
(IQR)). The chi-squared test, Students T-test, Mann–
Whitney U test, or Kruskal–Wallis H test were all used 
to compare group differences based on variable distribu-
tion and comparison purpose. The models were devel-
oped with our own program built in Python (version 3.7; 
Python Software Foundation, Wilmington, DE, USA) 
using the scikit-learn package (version 0.24.0).

Results
Characteristics of the study populations
A flowchart of the patient selection process is shown 
in Fig.  1. A total of 69,601 patients received health 
check-ups between 2018 and 2019. After excluding 
patients who did not undergo ultrasonography, data for 
6315 patients were included in the analysis. Of these, 
3264 CAS cases were included in the training dataset, 
817 in the internal validation dataset, and 2234 in the 
external validation dataset. Table 1 presents the demo-
graphic and clinical characteristics of the training data-
set, as well as internal and external validation datasets. 
The proportion of CAS in the training, internal, and 
external validation datasets was approximately 50%, 
and there were no statistically significant differences 
between the groups. When comparing the variables in 
each validation dataset with the training dataset, it was 
found that the AST was higher in the internal valida-
tion dataset than in the training dataset, with values of 

https://github.com/slundberg/shap
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20 (IQR: 17, 24) and 19 (IQR: 16, 24) U/L, respectively. 
In addition, age and waist circumference were higher 
in the external validation dataset than in the train-
ing dataset. The external validation dataset had an age 
of 49 (IQR: 40, 57) years old, while the training data-
set had an age of 48 (IQR: 37, 55) years. Similarly, the 
external validation dataset had a waist circumference 
of 85 (IQR: 79, 91) cm, while the training dataset had 
a waist circumference of 85 (IQR: 78, 91) cm. However, 
HDL-C, TP, and ALB levels in the external validation 
set were found to be lower than levels in the training 
set. The HDL-C level in the external validation set was 
1.20 (IQR: 1.01, 1.42) mmol/L, while in the training 
set it was 1.21 (IQR: 1.03, 1.46) mmol/L. The TP level 
was 69.1 (IQR: 66.8, 71.6) g/L in the external validation 
set and 70.2 (IQR: 67.8, 72.6) g/L in the training set. 
The ALB level was 43.80 (IQR: 42.30, 45.40) g/L in the 
external validation set and 44.30 (IQR: 42.70, 45.90) g/L 
in the training set. The other characteristics of each val-
idation set were comparable to those of the training set.

Development and calibration of CAS classification ML 
models
Ten features for CAS classification were selected using 
the GA-KNN algorithm from 24 candidate variables, 
including age, sex, non-HDL-C, FSG, TC, DBP, LDL-C, 
ALB, GGT, and ALP. Table 2 and Fig. 2 provide a sum-
mary of the performance of ML models. In the internal 
validation set, LR and GBDT models had the best perfor-
mance with an auROC up to 0.861 (95% CI 0.841–0.881) 
and 0.860 (95% CI 0.839–0.880), whereas the corre-
sponding performance metrics of KNN, MLP, SVM-lin-
ear, SVM-nonlinear, RF, NB, XGB, and DT were 0.800 
(95% CI 0.777–0.824), 0.852 (95% CI 0.832–0.872), 0.846 
(95% CI 0.824–0.867), 0.835 (95% CI 0.812–0.857), 0.849 
(95% CI 0.828–0.870), 0.829 (95% CI 0.805–0.852), 0.855 
(95% CI 0.835–0.876), and 0.817 (95% CI 0.794–0.840), 
respectively. The model performance reflected by auPR 
is consistent with that of auROC. With a cut-off value of 
the operating point determined by the maximal Youden 
index, the specificity, sensitivity, PPV, NPV, PLR, and 
NLR were 0.85, 0.722, 0.757, 0.804, 3.057, and 0.208 for 
the LR model, respectively, and 0.84, 0.729, 0.762, 0.797, 

Fig. 1  Flowchart of the study
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3.104, and 0.219 for the GBDT model, respectively. Exter-
nal validation was also performed to validate the model 
performance of CAS discrimination, and LR and GBDT 
models demonstrated similar performance in auROC, 
auPR, sensitivity, and specificity (Fig. 2). We also showed 
the calibration curves for the GBDT model in the train-
ing, internal and external validation dataset in Fig.  3, 
which showed good consistency between actual and 
expected probabilities.

Sensitivity analysis of the optimal GBDT model for CAS 
classification
To test performance of the GBDT model in different 
CAS risk groups, sensitivity analysis was performed in 
the following five subsets, individuals aged ≥ 65  years, 
BMI ≥ 30 kg/m2, with dyslipidemia, with hypertension, 
or with diabetes in the training and internal and exter-
nal validation datasets (Table  3). The analysis showed 
moderate to high discriminative performance of GBDT 
models across different subgroups, with an auROC 
range of 0.869–0.996, auPR of 0.866–0.993, sensitivity 

Table 1  Characteristics of the training and validation datasets

Characteristics are presented as median (interquartile range) for continuous features and frequencies (%) for categorical features

ALB  albumin; ALP alkaline phosphatase; ALT alanine aminotransferase; AST aspartate aminotransferase; BMI body mass index; BUN blood urea nitrogen; CAS carotid 
atherosclerosis; Cr creatine; DBP diastolic blood pressure; FPG fasting plasma glucose; GGT​ gamma-glutamyl transpeptidase; HDL-C high-density lipoprotein-C; LDL-C 
low-density lipoprotein-C; non-HDL-C  non high-density lipoprotein cholesterol; SBP systolic blood pressure; TC total cholesterol; TG triglyceride; TP total protein; TBIL 
total bilirubin; UA uric acid
# Comparing each validation set to the training set
* P-value < 0.05; **P-value < 0.01; ***P-value < 0.001

Characteristics Overall, N = 6315 Training set, N = 3264 Internal validation 
set (#), N = 817

External validation set (#), 
N = 2234

CAS proportion 3153 (50%) 1632 (50%) 407 (50%) 1114 (50%)

Age (years) 48 (38, 56) 48 (37, 55) 48 (37, 56) 49 (40, 57)***

Sex (n,%)

 Female 4196 (66%) 2137 (65%) 550 (67%) 1509 (68%)

 Male 2119 (34%) 1127 (35%) 267 (33%) 725 (32%)

BMI (kg/m2) 25.4 (23.2, 27.7) 25.4 (23.1, 27.7) 25.6 (23.3, 27.7) 25.4 (23.3, 27.8)

Waist circumference (cm) 85 (79, 91) 85 (78, 91) 85 (78, 91) 85 (79, 91)*

Height (cm) 169 (162, 175) 169 (162, 175) 170 (163, 175) 169 (163, 174)

Body weight (kg) 73 (63, 82) 72 (63, 82) 73 (64, 82) 73 (63, 82)

SBP (mmHg) 126 (115, 140) 126 (115, 140) 126 (115, 141) 126 (115, 141)

DBP (mmHg) 76 (68, 85) 76 (68, 85) 76 (67, 84) 76 (68, 85)

FPG (mmol/L) 5.18 (4.85, 5.61) 5.17 (4.84, 5.61) 5.16 (4.84, 5.59) 5.19 (4.87, 5.61)

TG (mmol/L) 1.38 (0.93, 2.10) 1.37 (0.92, 2.06) 1.38 (0.91, 2.18) 1.39 (0.94, 2.12)

TC (mmol/L) 4.87 (4.32, 5.49) 4.90 (4.33, 5.51) 4.84 (4.27, 5.48) 4.84 (4.32, 5.48)

HDL-C (mmol/L) 1.20 (1.02, 1.44) 1.21 (1.03, 1.46) 1.21 (1.01, 1.46) 1.20 (1.01, 1.42)**

LDL-C (mmol/L) 3.08 (2.58, 3.61) 3.09 (2.58, 3.62) 3.06 (2.50, 3.61) 3.09 (2.59, 3.61)

Non-HDL-C (mmol/L) 3.63 (3.04, 4.25) 3.65 (3.04, 4.28) 3.59 (3.00, 4.21) 3.62 (3.04, 4.21)

ALP (U/L) 65 (55, 77) 65 (54, 77) 66 (55, 78) 65 (55, 78)

GGT (U/L) 25 (17, 40) 25 (16, 39) 26 (17, 40) 25 (17, 40)

ALT (U/L) 20 (14, 30) 20 (14, 30) 21 (15, 31) 20 (14, 29)

AST (U/L) 20 (16, 24) 19 (16, 24) 20 (17, 24)* 20 (17, 24)

TP (g/L) 69.8 (67.4, 72.3) 70.2 (67.8, 72.6) 70.2 (67.6, 72.6) 69.1 (66.8, 71.6)***

ALB (g/L) 44.10 (42.60, 45.70) 44.30 (42.70, 45.90) 44.30 (42.70, 45.70) 43.80 (42.30, 45.40)***

TBIL (umol/L) 12.8 (10.0, 16.4) 12.7 (10.0, 16.3) 13.2 (10.1, 16.5) 12.8 (10.0, 16.4)

BUN (mmol/L) 5.07 (4.32, 5.92) 5.08 (4.31, 5.90) 5.05 (4.35, 5.88) 5.04 (4.31, 5.97)

Cr (μmol/L) 67 (56, 77) 67 (56, 77) 68 (56, 78) 68 (57, 77)

UA (μmol/L) 349 (285, 412) 348 (284, 409) 347 (281, 411) 350 (286, 417)
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Fig. 2  ROC and PR curves of models with different algorithms in the training, internal validation, and external validation datasets. PR: 
precision-recall; ROC: receiver operating characteristic; KNN k-nearest neighbors; LR logistic regression; NB naive bayes; RF random forest; SVM-linear 
linear support vector machine; SVM-nonlinear non-linear support vector machine; DT decision tree; GBDT gradient boosting decision tree; MLP 
multiplayer perception; XGB extreme gradient boosting machine
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of 0.710–0.948, specificity of 0.775–0.939, PPV of 
0.645–0.951, PLR of 0.93–3.184 and NLR of 0.133–
0.689. However, the NPV was relatively low in sub-
group aged ≥ 65 years, with a range of 0.100–0.333 and 
in subgroup with diabetes with a range of 0.361–0.548.

Interpretability and clinical benefit analysis
Finally, the GBDT model with the best performance was 
selected for SHAP analysis. We also performed SHAP 
analysis on the XGB model, which is an integrated learn-
ing algorithm based on GBDT. Figure  4 shows a global 
summary of the SHAP value distribution for all features, 
which helps to understand the importance of each fea-
ture. Age, gender, Non-HDL-C, FSG, DBP, and TC were 

identified as the top six influencing indicators for CAS 
classification. According to both the GBDT and XGB 
models, age, Non-HDL-C, FSG, and DBP showed a posi-
tive correlation with CAS, while gender and TC showed 
a negative correlation with CAS (Figs. 4a, b). Age is the 
factor that contributes the most to model predictions. 
The clinical utility of ML models at varying risk thresh-
olds is depicted in Fig. 5. The ML models demonstrated 
a net benefit in DCA when compared to “treat-all”, “treat-
none” at a threshold probability of   > 20%. Here, “treat” 
refers to the selection of patients for intervention.

Fig. 3  Calibration plots of the GBDT model in the training, internal validation, and external validation datasets. GBDT: gradient boosting decision 
tree

Table 3  Performance of GBDT model in five high-risk CAS subgroups

GBDT gradient boosting decision tree; auROC area under the receiver operating characteristic curve; auPR area under the Precision-Recall curve; PPV positive 
predictive value; NPV negative predictive value; PLR positive likelihood ratio; NLR negative likelihood ratio; NA not applicable

Disease subgroups Datasets auROC (95% CI) auPR (95% CI) Sensitivity Specificity PPV NPV PLR NLR

Age ≥ 65 Training set (N = 239) 0.996(0.989–1) NA 0.941 1.000 0.930 0.100 1.019 0.689

Internal validation set (N = 64) NA NA 1.000 1.000 0.951 0.333 1.289 0.133

External validation set (N = 252) NA NA 1.000 1.000 0.943 0.200 1.053 0.253

BMI ≥ 30 Training set (N = 341) 0.927(0.904–0.949) 0.939(0.917–0.96) 0.824 0.874 0.708 0.691 2.122 0.390

Internal validation set (N = 68) NA NA 1.000 1.000 0.645 0.676 2.045 0.540

External validation set (N = 213) 0.971(0.954–0.984) 0.972(0.954–0.985) 0.906 0.925 0.714 0.664 2.524 0.511

Dyslipidemia Training set (N = 3027) 0.869(0.858–0.879) 0.866(0.852–0.878) 0.797 0.784 0.751 0.756 3.014 0.321

Internal validation set (N = 754) 0.922(0.907–0.937) 0.928(0.911–0.943) 0.894 0.788 0.743 0.759 2.890 0.318

External validation set 
(N = 2070)

0.877(0.864–0.888) 0.877(0.861–0.891) 0.822 0.775 0.761 0.773 3.184 0.293

Hypertension Training set (N = 897) 0.87(0.85–0.89) 0.945(0.933–0.957) 0.710 0.855 0.793 0.611 1.474 0.244

Internal validation set (N = 235) 0.978(0.962–0.99) 0.992(0.985–0.997) 0.948 0.903 0.802 0.491 1.453 0.372

External validation set (N = 658) 0.895(0.875–0.916) 0.951(0.939–0.963) 0.804 0.829 0.789 0.667 1.621 0.217

Diabetes Training set (N = 241) 0.973(0.954–0.989) 0.993(0.986–0.997) 0.911 0.939 0.824 0.361 1.198 0.452

Internal validation set (N = 49) NA NA 1.000 1.000 0.870 0.000 0.930 NA

External validation set (N = 128) NA NA 1.000 1.000 0.825 0.548 1.702 0.298
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Discussion
This study developed and validated a screening model 
for CAS using ten ML algorithms based on routine clini-
cal and laboratory features. The results showed that the 
GBDT models provided the best discriminatory perfor-
mance (maximum auROC and auPR in validation data-
sets). At the same time, other metrics outperformed 
other ML models in both internal and external validation 
sets, demonstrating the utility of the best model. We fur-
ther performed an interpreted analysis of the model and 
found that age was the most critical factor for the GBDT 
model for decision-making. Other important factors 
included sex, non-HDL-C and SBP. Compared to previ-
ous studies, this study has the following advantages. First, 
we used the GA-KNN algorithm to select the optimal 
combination of features. Second, the model was validated 
using an external dataset, which further confirmed its 
ability to discriminate. Third, the SHAP algorithm com-
pensates for the “black box” problem of advanced ML 
algorithms [21]. This study can be seen as the first step 
in the use of ML models for screening of CAS in clinical 
practice, and can serve as a reference for further research 
in the future.

GA-KNN algorithm was used to select the optimal 
combination of candidate variables for CAS classification 
in our study. Compared to Shao’s study. [11], which mod-
eled carotid plaque classification in physical examination 
populations, five same predictive variables for model con-
struction (age, sex, blood pressure, glucose, and serum 
lipids) were used. Similar findings support the reliability 

of the GA-KNN feature selection algorithm. In terms of 
the number of selected indicators included in the model, 
Fan et al. used 19 features from different medical exami-
nation packages [13], with the possibility of collinear-
ity, which may bias the model predictions. In addition, 
two other studies selected nonclinical indicators, such 
as nonalcoholic fatty liver disease and homocysteine in 
Yu et  al. [12] and platelets and diabetes mellitus in Fan 
et  al. [13]. The inclusion of these uncommon indicators 
greatly limits the scope of application of the model. Our 
study used a genetic algorithm combined with the KNN 
algorithm to find the optimal feature combination of rou-
tine health check-up indicators. This approach helps to 
avoid the underlying bias caused by a lack of experience 
in manually selecting features. This technique is worthy 
of further validation and evaluation in future studies [23].

Our study found that GBDT algorithms achieved the 
best performance in CAS classification, which is signifi-
cantly better than that of other reported ML models [23]. 
The reasons for the better model performance of GBDT 
in our study may be explained as follows: First, we used 
a feature selection strategy to find the best combination 
of CAS predictors to ensure that the selection retains 
important information and avoids information redun-
dancy. Second, although the superiority of LR as a clas-
sical linear statistical analysis model was confirmed in a 
previous study [13], the GBDT model in our study used 
different computational strategies and also achieved sim-
ilar performance. In terms of algorithm principle, GBDT 
is a classical tree-integrated boosting algorithm, which 

Fig. 4  Contribution analysis to the prediction of the GBDT and XGB models in the training dataset using the SHAP technique. The higher the 
ranking, the more important the characteristics; each point is a patient and the color gradient from red to blue corresponds to the high- to 
low-value of this feature. The point on the left side of the digital baseline (with a SHAP value of 0) represents a negative contribution to suffering 
from CAS, while the point on the right represents a positive contribution. The farther from the baseline, the greater the impact. CAS: carotid 
atherosclerosis; GBDT: gradient boosting decision tree; SHAP: SHapley Additive exPlanations; XGB: extreme gradient boosting machine; ALB 
Albumin; ALP Alkaline phosphatase; DBP Diastolic blood pressure; FSG Fasting serum glucose; GGT Gammaglutamyl transpeptidase; LDL-C 
Low-density lipoprotein cholesterol; Non-HDL-C Non-high-density lipoprotein cholesterol; TC Total cholesterol
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Fig. 5  DCA curve analysis of the ML models in the development and validation datasets. DCA: decision curve analysis; KNN k-nearest neighbors; LR 
logistic regression; NB naive bayes; RF random forest; SVM-linear linear support vector machine; SVM-nonlinear non-linear support vector machine; 
DT decision tree; GBDT gradient boosting decision tree; MLP multiplayer perception; XGB extreme gradient boosting machine
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can identify non-linear and interconnected correlations 
between input and output [24]. It is also worth mention-
ing that although the XGB algorithm is modified from 
GBDT, the XGB model in our study does not perform 
as well as the GBDT model. The underlying reason may 
be the XGB model with more parameters and tuning, 
and prone to overfitting than GBDT for real-world EHR 
data. Therefore, the GBDT algorithm can be considered a 
powerful tool for analyzing real-world EHR data.

In addition, subgroup analysis showed that the perfor-
mance of the established GBDT models had a low NPV 
in the subgroup aged ≥ 65 years or with diabetes, indicat-
ing that this model were not specific enough to exclude 
patients with low CAS risk among the above two sub-
groups. The underlying reasons may be the small num-
ber of negative samples and high prevalence of CAS in 
this subgroup, which led to insufficient training of the 
model’s discrimination ability for CAS negative individu-
als. Another reason may be that the features selected in 
our study did not have adequate diagnostic capabilities 
for seniors and diabetes patients, suggesting that adding 
specific predictors with the most discriminatory power 
(e.g., risk genes) improves model performance in the 
future. In addition, patients in both subgroups may fre-
quently have several underlying diseases, which may have 
an impact on the model’s discrimination power. Finally, 
before ML modeling, we can consider conducting clus-
ter analysis [25] to explore the heterogeneity of the tar-
get population, so as to guide the construction of the ML 
model and achieve a balanced performance between bias 
and variance.

Considering the “black box” nature of the advanced ML 
model, this study also used the SHAP algorithm, which 
can be applied to any type of ML model, has the advan-
tages of fast implementation of tree-based models, and 
can ensure consistency and local accuracy, to conduct 
interpretability analysis of GBDT and XGB models. For 
the first time, we ranked the factors affecting CAS, and 
found that age and sex were the first two key factors for 
GBDT models in CAS classification. The potential mech-
anism may be corroborated by previous findings that age 
and sex may influence CAS distribution and ultrasound 
morphology [26, 27], and indicated that age and sex dif-
ferences should be considered in clinical practice [28]. In 
addition, consistent with previous findings, Non-HDL-C, 
FSG, and SBP were also important predictors for CAS 
classification [29], suggesting that CAS is a metabolically 
closely related disease [27] and that above metabolic indi-
cators should be paid more attention for CAS prevention 
[3].

There were several limitations in our study: (1) 
Although we used internal and external validation 
datasets to assess the model’s application stability, the 

risk and benefit of the optimal model deployed in real-
world scenarios requires the design of clinical trials 
for further evaluation. (2) Information on medications 
could not be collected from health check-up records. 
However, preparation prior to the physical examina-
tion,  including monitor diet (e.g. not eating too much 
greasy  and indigestible food),  not taking  non-essential 
medicines  three days before the physical examination, 
and not drinking water or eating food on the day of 
the physical examination, can minimize the impact of 
potential interfering factors. (3) As this study was based 
on physical examination data from people in Northeast 
China, the reliability of the established models needs 
further validation if they are to be applied to scenarios 
beyond the population representation in this study.

Conclusions
The ML models developed could provide good power 
for CAS identification, which will hopefully be applied 
in scenarios without ethnic and geographic heterogene-
ity, and guide prevention and management of individu-
als at risk of CAS.
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