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Abstract 

Background Gene expression profiling is increasingly being utilised as a diagnostic, prognostic and predictive tool 
for managing cancer patients. Single-sample scoring approach has been developed to alleviate instability of signature 
scores due to variations from sample composition. However, it is a challenge to achieve comparable signature scores 
across different expressional platforms.

Methods The pre-treatment biopsies from a total of 158 patients, who have received single-agent anti-PD-1 (n = 84) 
or anti-PD-1 + anti-CTLA-4 therapy (n = 74), were performed using NanoString PanCancer IO360 Panel. Multiple 
immune-related signature scores were measured from a single-sample rank-based scoring approach, singscore. We 
assessed the reproducibility and the performance in reporting immune profile of singscore based on NanoString assay 
in advance melanoma. To conduct cross-platform analyses, singscores between the immune profiles of NanoString 
assay and the previous orthogonal whole transcriptome sequencing (WTS) data were compared through linear 
regression and cross-platform prediction.

Results singscore-derived signature scores reported significantly high scores in responders in multiple PD-1, MHC-
1-, CD8 T-cell-, antigen presentation-, cytokine- and chemokine-related signatures. We found that singscore provided 
stable and reproducible signature scores among the repeats in different batches and cross-sample normalisations. 
The cross-platform comparisons confirmed that singscores derived via NanoString and WTS were comparable. When 
singscore of WTS generated by the overlapping genes to the NanoString gene set, the signatures generated highly 
correlated cross-platform scores (Spearman correlation interquartile range (IQR) [0.88, 0.92] and r2 IQR [0.77, 0.81]) and 
better prediction on cross-platform response (AUC = 86.3%). The model suggested that Tumour Inflammation Signa-
ture (TIS) and Personalised Immunotherapy Platform (PIP) PD-1 are informative signatures for predicting immunother-
apy-response outcomes in advanced melanoma patients treated with anti-PD-1-based therapies.
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Conclusions Overall, the outcome of this study confirms that singscore based on NanoString data is a feasible 
approach to produce reliable signature scores for determining patients’ immune profiles and the potential clinical util-
ity in biomarker implementation, as well as to conduct cross-platform comparisons, such as WTS.

Keywords Advanced melanoma, Immunotherapy, Immune signature, Gene expression profile, Single-sample 
signature score, Cross-platform analyses

Background
Gene expression profiling is commonly used to inves-
tigate the immune profiles of the tumour microen-
vironment for cancer patients, particularly in the 
setting of response and survival predictions for can-
cer patients treated with anti-PD-1 monotherapy and 
anti-PD-1 + anti-CTLA-4 therapy [1–4]. Multiple 
methods are used to generate the raw gene expres-
sion data, including whole transcriptome sequencing 
(WTS), which is a comprehensive and powerful tool 
used to identify a wide spectrum of immune-related 
gene expression profiles, but often requires significant 
infrastructure and resource cost. Alternatively, tar-
geted panel-based approaches, such as the NanoString 
 nCounter® platform, are rapid and scalable to assess 
the immune profile in the tumour microenvironment. 
Other studies have demonstrated the gene expres-
sion patterns by NanoString  nCounter® PanCancer IO 
 360™ are highly correlated to other platforms, includ-
ing WTS and HTG EdgeSeq [5, 6]. For data analysis, 
NanoString nCounter® has an in-built analysis tool, 
 nSolver™ Version 4.0, which provides extensive end-to-
end solutions for researchers including biologists with 
no prior bioinformatic experience to perform quality 
control (QC), normalisation and downstream analysis, 
including differential expression, gene set analysis and 
pathway scoring [7, 8].

Gene set scoring analysis provides inter-sample 
insights on variations and concordances of the tran-
scriptome. An issue for stably generating single sample 
signature scores is that they are commonly affected by 
the number of samples and normalisation of expres-
sion data across an entire cohort. One method, gene 
set variation analysis (GSVA), utilises a kernel func-
tion to estimate the gene expression distribution across 
the samples in a cohort [9], and single sample gene 
set enrichment analysis (ssGSEA) normalises the final 
scores across samples to achieve comparable results 
[10, 11]. The reproducibility of signature score via these 
methods may be critical, since the scores are impacted 
if the number of samples or genes is changed. The sing-
score [11] method is a rank-based scoring approach 
that evaluates the absolute average deviation of a gene 
from the median rank in a gene list. It provides a sim-
ple, stable, and faster scoring approach, even in the 

single sample scale, compared to other signature scor-
ing methods, including GSVA, ssGSEA, PLAGE and 
combination z-scores [11].

Our previous study reported the immune profiles of 
melanoma patients treated with anti-PD-1 monotherapy 
or combined anti-CTLA-4 dual therapy based on WTS 
data [3]. This study investigated the gene expression pro-
files of additional metastatic melanoma patients gener-
ated on the NanoString nCounter® PanCancer IO 360™ 
platform. We evaluated the reproducibility and clini-
cal significance of signature scores for immunotherapy 
response status on the NanoString platform by the rank-
based scoring method, singscore. We then identify an 
integration method that enables concordant singscores 
to be derived via targeted gene expression platforms 
(Nanostring) or WTS from the same sample to enable 
use of datasets from generated via different platforms.

Methods
Patient cohort
Patients with advanced melanoma were treated with 
standard-of-care single agent anti-PD-1 (nivolumab 
or pembrolizumab) or a combined anti-PD-1 + anti-
CTLA-4 (ipilimumab) therapy. Patients were 
retrospectively identified, based on formalin-fixed par-
affin-embedded (FFPE) tissue availability. Patients were 
excluded from the study if they lacked an available base-
line pre-treatment biopsy, or the biopsy had less than 100 
melanoma cells following pathological review (AJP/NM). 
Patient response was determined using the RECIST 1.1 
criteria [12]. Responders were categorised as patients 
with a RECIST response of complete response (CR), 
partial response (PR), or stable disease (SD) greater than 
6  months with no progression, while non-responders 
were categorised as progressive disease (PD) or SD for 
less than or equal to 6 months before disease progression.

RNA isolation and NanoString profiling
Total RNA was isolated from macro-dissected FFPE tissue 
sections using the AllPrep DNA/RNA FFPE Kit (Qiagen) or 
High Pure FFPET RNA Isolation Kit (Roche) according to 
the manufacturer’s instructions. RNA quantity was assessed 
on Qubit, and RNA integrity was assessed using the 
Tapestation system (Agilent). Total RNA samples (60  ng/



Page 3 of 16Mao et al. Journal of Translational Medicine          (2023) 21:257  

ul, total 200 ng) were used as input for the NanoString Pan-
Cancer IO360 Panel, run on the nCounter MAX/FLEX prep 
station and scanner. Samples were hybridised for 20 h, and 
each cartridge contained a panel standard.

NanoString expression data
Data importing, normalisation, and sample calibration 
were conducted on the RCC files in  nSolver™ Version 
4.0 [7]. The 185 samples’ files were imported with QC in 
the default setting. Next, in the MultiRLF analysis, back-
ground thresholding, and positive control normalisation 
followed the default setting. The CodeSet Content nor-
malisation was applied against 19 housekeeping genes 
(HKGs), where the gene, STK11IP, was excluded due to 
a higher mean standard deviation (%CV) value than the 
others. The Panel Standard in each cartridge was selected 
in the CodeSet Calibration step. The samples with over-
all low expression (HKG normalisation ratio ≥ 10) than 
the others were flagged (Additional file  1: Fig. S1A, B). 
Finally, the normalised NanoString expression table fil-
tered out samples with mRNA positive Normalisation 
Flag or mRNA Content Normalisation Flag. There were 
165 samples with 770 genes in normalised NanoString 
count data.

WTS expression data
Prior WTS normalised count data on overlapping patients 
(35 samples) was downloaded [13] (Additional file  2: 
Table S2). The WTS table contained 22,300 genes across all 
samples. To match the NanoString Probe names, six genes 
in WTS were merged into three genes; ten genes were 
replaced by their aliases’ names; and eight NanoString 
Probes were filtered out as there was no matched gene in 
the WTS gene list (Additional file 2: Table S4).

Calculation of signature scores by singscore
A curated set of 81 signatures was used in this study 
based on their known utility in the context of immuno-
therapy response [14–21], internal NanoString signa-
tures, msigdb [22, 23] and signatures derived in this study 
based on the receptor and ligand pairing of immuno-
therapeutic agents in clinical trials [24] (Additional file 2: 
Table  S5). The scoring system utilised the R (version 
4.2.0) package singscore (1.16.0) [11]. Only 63 of 81 sig-
natures which contained all genes within the signature in 
the overlapping 762 genes were applied when calculating 
singscores for the WTS data. All singscores were calcu-
lated in the undirected gene signatures mode. Singscore 
allows introducing stable genes to calibrate ranks across 
samples from different transcriptomic data [25]. When 
introducing a list of “n” stable genes, the rank of genes 

in each sample was stratified into “n” levels based on the 
location of these stable genes.

All rankings were conducted by rankGenes() func-
tion in singscore. It returned the per sample gene ranks 
assigned with integers from 0 in an ascending order 
based on the order of count values. The genes with the 
same count value were assigned the identical rank.

For NanoString data, the rankings were based on three 
options (Fig. 1A): (1) “No stable gene”: without any sta-
ble gene, (2) “HK genes”: 20 NanoString in-built HKGs 
as stable genes, and (3) “Skewed ranks”: the rank of genes 
from the “No stable gene” method was skewed by the 
coefficients from a linear regression (Additional file  1: 
Fig. S7E). This regression was generated by fitting a uni-
form distribution against the median ranks of the over-
lapping 762 genes in the WTS platform. The assumption 
was that the rank of genes in the NanoString platform 
follows a uniform distribution.

For WTS data, two types of WTS gene lists were 
applied in this study: all 22,297 genes and overlapping 
762 genes. Therefore, the rankGenes() function had three 
ranking options (Fig.  1A): (1) “all”: without any stable 
gene, on all 22297 genes, (2) “part”: without any stable 
gene, on all 762 overlapping genes, and (3) “HK genes”: 
20 NanoString in-built HKGs as stable genes.

Consistency of gene ranks
To evaluate the stability of ranks in a list of genes, gene 
rank consistency between NanoString and WTS data was 
measured, which was referred to the process of gene-wise 
rank consistency measurement [25]. For a list of genes, 
the gene-wise rank consistency of each gene was the 
average value of pairwise consistency score. The pairwise 
consistency score for one gene was computed by calcu-
lating the preservation of order on this gene to others. In 
each pair, order preservation was defined as the percent-
age of samples in NanoString data preserving the same 
orders to reference order. The reference order was based 
on the order of the median gene ranks in WTS data. Such 
average consistency scores were measured on 20 HKGs 
to evaluate cross-platform rank consistency, and 762 
overlapping genes to find potential platform-specific “sta-
ble genes”.

Identifying differences in responder status
To define the significant difference between response sta-
tus, the p-values from a statistical test were conducted 
through a multiple testing correction process, Benja-
mini-Hochberg (BH) adjustment, to avoid type 1 errors 
where False Discovery Ratio (FDR) ≤ 0.05 was used as 
the significant threshold. For singscore differences, the 
significantly different signatures between responders 
and non-responders were identified using the Mann 
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Whitney Wilcoxon test. The NanoString in-built differ-
ential expression analysis and pathway scoring were con-
ducted by Advanced analysis in nSolver 4.0 [8] on 165 no 
normalisation-flagged samples. The “Custom Analysis” 
was applied. The “Experiment Type” was set as “Multi-
RLF Merge (standard experiments merged)”. On the “Dif-
ferential Expression” option page, the optimal option was 
chosen, and the p-value was adjusted using the BH pro-
cedure with a threshold of 0.05. The pathway scoring fol-
lowed the default setting. These pathway scoring results 
were further measured on Mann Whitney Wilcoxon test 
to measure the significant differences between response 
status.

Similarity comparisons
Spearman correlation (r) and linear regression were 
applied to evaluate similarity for any pair of comparison.

In repeated comparisons on NanoString data, 12 
repeated samples from 5 patients formed 9 pairs of com-
parisons. Linear regression was conducted on raw and 
normalised counts and singscore values (from the “No 
stable gene” method) within each pair. In singscore sta-
bility comparisons of NanoString data, per sample linear 
regression was run between singscores based on the raw 
and normalised count data.

In cross-platform comparisons, the 35 overlapping 
samples’ singscores generated by different methods from 
the NanoString platform were fitted against the sing-
scores generated by different WTS platform methods. 
There were four types of comparisons: (1) “NS to WTS 
HK”: singscores from utilizing the housekeeping gene 
“HK genes” method in NanoString to the scores from the 
“HK genes” method in WTS, (2–3) “NS to WTS all” and 
“NS to WTS part”: singscores from the “No stable gene” 
method in NanoString to the scores from all genes “all” 

Fig. 1 Workflow outlining singscores calculation across all samples and cross-platform predictive model building. A The workflow displays several 
methods to calculate singscores based on different ranking strategies. Both platforms applied 20 genes labelled as HKG in NanoString probes for 
calibration, named the “HK genes” methods. Without introducing any stable gene, in the NanoString platform singscore directly used such ranks in 
the “No stable gene” method and used the “Skewed ranks” method based on the regression (Additional file 1: Fig. S7E). The “all” and “part” methods 
in the WTS platform also did not include any stable gene, but “all” used all genes to rank, and “part” used overlapping genes to rank. “NS” indicates 
data from the NanoString assay; “WTS” indicates data from the overlapping whole transcriptome Sequencing samples. Four different coloured 
dot-dashed lines represent four pairs of cross-platform comparisons. B The workflow displays the processes of evaluating multiple cross-platform 
predictions by signatures’ singscores. The feature selection by tenfold CV LASSO regression and model building based on the three singscore 
tables derived from three singscore-calculating approaches in A from 126 NanoString samples. Two types of testing datasets were based on 35 
overlapping samples from NanoString and WTS platforms. AUC, sensitivity and specificity and MCC were applied to evaluate model performance
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and subset overlapping genes “part” methods in WTS, 
and (4) “NS skewed to WTS all”: singscores from the 
“Skewed ranks” method in NanoString to the scores from 
the “all” method in WTS (Fig. 1A).

Cross‑platforms predictions
The prediction models were built on singscores in the 
NanoString platform to assess the utility of each signa-
ture quantification approach. Thirty-nine (35 overlap-
ping samples with 4 relative repeats) out of 165 samples 
were excluded from the NanoString. The remaining 126 
non-overlapping samples in NanoString data were used 
to predict the 35 overlapping samples. There were two 
testing datasets: (1) 35 overlapping samples from the 
WTS platform and (2) from the NanoString platform. 
The three different singscore tables from NanoString 
platform were divided into three separated training and 
NanoString testing datasets. The three different singscore 
tables from WTS platform were used as WTS testing 
datasets. The four pairs of cross-platform predictions are 
same to the cross-platform comparisons in Fig. 1A.

The tenfold cross-validation using LASSO regres-
sion was used for feature selection. The feature selection 
kept non-zero coefficients under λ value, which provided 
the largest mean Area Under the Curve (AUC) value on 
the ROC curve in tenfold cross-validation based on the 
training dataset. To achieve more robust and reproduc-
ible features, this feature selection process was repeated 
1000 times and the frequency of selected features was 

recorded. The predictive models were built by the logis-
tic regression with the binary cluster using the frequently 
selected features. The sensitivity, specificity and Mat-
thews Correlation Coefficient (MCC) values of the pre-
dicted binary outcomes (responder/non-responder), as 
well as AUC of predictions were used to evaluate the pre-
dictive performance of the model. There were two types 
of thresholds (probability of responding to PD-1-based 
immunotherapies) applied in binary classification of the 
predicted response status. The one was 0.5 (default). The 
other was based on the optimal threshold which provided 
the maximum Youden index in the predictive ROC curve 
of the training dataset in each model (Fig. 1B).

Results
Patients characteristics
A greater number of patients were classified as respond-
ers (n = 90) compared to non-responders (n = 68). Anti-
PD-1 + anti-CTLA-4 treated patients achieved a higher 
response rate (47 out of 74, 64%) than those treated with 
anti-PD-1 monotherapy (43 out of 84, 51%), but lack sta-
tistical significance. Forty-six percent of the samples were 
subcutaneous specimens (73/158) and 28% were lymph 
node specimens (44/158). No significant association was 
found between the patients’ responses and site of biopsy 
(Table 1).

Samples were assessed for batch variability pre-nor-
malisation using raw counts. Samples from Cartridge 
13–17 (batch 3) displayed an overall lower expression 

Table 1 Clinical characteristics of patients in Nanostring cohort after QC and normalisation

N indicates number
a Pearson’s Chi-squared test with Yates’ continuity correction
b Pearson’s Chi-squared test
c IPI: ipilimumab; PD1: nivolumab or pembrolizumab

Characteristic All (N = 158) Responder (N = 90) Non‑responder 
(N = 68)

P‑value

Patients with repeats, N 5 3 2

Additional repeats, No 7 4 3

Treatment, N. (%): IPI +  PD1c 74 (46.8) 47 (52.2) 27 (39.7) 0.1615a

PD1c 84 (53.2) 43 (47.8) 41 (60.3)

Biopsy sites, N. (%): 0.1461b

Brain 15 (9.5) 9 (10) 6 (8.8)

Liver 2 (1.3) 2 (2.2)

Lung 7 (4.4) 4 (4.4) 3 (4.4)

Lymph node 44 (27.8) 21 (23.3) 23 (33.8)

Mucosa 2 (1.3) 2 (2.9)

Primary 6 (3.8) 5 (5.6) 1 (1.5)

Small bowel 3 (1.9) 2 (2.2) 1 (1.5)

Subcutaneous 73 (46.2) 41 (45.6) 32 (47.1)

Other 6 (3.8) 6 (6.7)
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than the other cartridges (Additional file  1: Fig. S2A). 
There was no clear separation in PCA plots for response 
status, type of treatments, and site of biopsy (Additional 
file 1: Fig. S3B-D). Following normalisation, the samples 
had relatively similar dual-peak distributions (Additional 
file 1: Fig. S1D) but varied in quantiles (Additional file 1: 
Fig. S1C). No clear separation was observed in response 
status or type of immunotherapy (Additional file  1: Fig. 
S2B). However, the batch effect was alleviated following 
normalisation (Additional file 1: Fig. S3A, E). All HKGs’ 
Relative Standard Deviations (RSDs) shrank after nor-
malisation in NanoString data (Additional file 1: Fig. S6A, 
C). All WTS samples had similar distributions and quan-
tiles, but these were normalised counts (Additional file 1: 
Fig. S1E, F).

Differences in gene expression profiles 
between responders and non‑responders
We first compared results obtained from NanoString 
assay using singscore analysis processes to evaluate the 
differences in gene expression signatures in association 
with responders and non-responders. We processed 
the singscores without applying stable gene normalisa-
tion (No stable gene), with HKGs normalisation (HK 
genes), using the skewed ranks method (Skewed ranks) 
and then tested for significant (FDR ≤ 0.05) differ-
ences in responding and non-responding patients. Of 
the 81 immune-related signatures (Additional file  2: 
Table S5), the same list of 57 signatures in the “No sta-
ble gene” and “Skewed ranks” methods (Additional file 3: 
Table  S6-7), 39 signatures in the “HK genes” method 
(Additional file  3: Table  S8) passed the threshold. The 
signatures, including Personalised Immunotherapy Plat-
form (PIP) PD-1, Tumour Inflammation Signature (TIS) 
and CD8 T cells are the top three significant signatures 
(adj. p-value ≤ 2 ×  10–4 and difference of median sing-
scores ≥ 0.1) where responders display high singscores 
in both “No stable gene” and “Skewed ranks” singscore-
calculating approaches (Fig. 2A, Additional file 3: Fig. S6, 
S8). The significant signatures based on the “HK genes” 
singscore-calculating approach provided lower signa-
ture scores (Additional file  1: Fig. S4), but larger differ-
ences in median singscores (Fig. 2A). Regardless of which 
singscore-calculating approach was used, the responding 
patients always showed significantly higher singscores 
in multiple CD8 T cell-, IFN-gamma(g)-, PD-1-, MHC-
I-, and cytotoxic-related signatures (Additional file  3: 
Table  S6–S8). Additionally, the “No stable gene” and 
“Skewed ranks” methods identified signatures relating to 
autophagy, hypoxia, angiogenesis, DNA damage repair, 
cell proliferation, as well as multiple cancer-related sig-
nalling pathways including PI3K/Akt, Notch, TGFβ, 
MAPK, and WNT, which had significantly higher 

singscores in non-responders (Additional file 3: Table S6, 
S8). However, none of singscore-calculating approach 
can provide a good binary classification of response sta-
tus based on the significant signatures using hierarchal 
clustering (Additional file 1: Fig. S4). Furthermore, lymph 
node specimens (61.4%: 27 out of 48 are in the left cluster 
in Additional file 1: Fig. S4A) displayed higher scores for 
multiple immune cell-related signatures, including CD8 
T cells, Exhausted CD8, T cells, CD45, and B cells, com-
pared to other specimens. The Wilcoxon test also showed 
the statistical significance of higher scores in these signa-
tures in the samples extracted from lymph node samples 
(Additional file 3: Table S9).

We then sought to analyse the same data using the 
nSolver4.0 Advanced Analysis pipeline. Differential 
expression analysis between the response groups iden-
tified 142 significant differential expression genes (adj. 
p-value ≤ 0.05), of which 30 had a  log2-fold change (FC) 
larger or equal to 1. There were more significantly highly 
expressed genes in responders (29 genes  log2FC ≥ 1: 
TNFRSF17, LYZ, IRF1, CXCL11, GBP1, LY9, FASLG, 
CXCL13, FBP1, CXCR6, TNFRSF9, MMP1, IL21R, 
GZMH, FAM30A, TRAT1, CXCL10, CXCL9, CD8B, 
LAG3, CD38, GZMA, SERPINA1, CD2, CTLA4, KLRD1, 
CXCL1, FCRL2, CD79A) than in non-responders (1 
gene  log2FC ≤ -1: ANGPT1) (Fig.  2B, Additional file  4: 
Table S10). These 30 DEGs classified samples into to two 
clusters, where 47 out of 71 (66.2%) non-responders are 
in the left cluster and 58 out of 94 (61.7%) responders 
are in the right cluster (Fig. 2D). Based on 25 NanoString 
in-built pathway scores, Antigen Presentation, Apop-
tosis, and Costimulatory Signalling were the top three 
signatures with significantly higher median scores (adj. 
p-value ≤ 4 ×  10–3) in the responders, and DNA Damage 
Repair and Cell Proliferation displayed higher median 
scores in the non-responders, but these did not reach sig-
nificance (Fig. 2C, Additional file 4: Table S12). The top 
two predominant clusters are 37 out of 71 (52.1%) non-
responders in the left cluster and 68 out of 94 (72.3%) 
responders in the right cluster (Fig. 2E).

Stability and reproducibility of NanoString and singscore
Here, we aimed to identify a robust analysis process that 
could provide reproducible and clinically relevant gene 
expression signature scores. We therefore tested the sta-
bility and reliability of singscores across repeats among 
different processing batches and between the scores 
derived from raw and normalised count data in the same 
sample. Each pair of repeats displayed high similarity 
in raw counts, normalised counts and singscores. When 
comparing the normalised counts, few gene variations 
could be observed in the low count region (Additional 
file 1: Fig. S5). Correlations and linear regression r2 were 
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Fig. 2 Differences in response status by NanoString data. A Volcano plot of singscores based on the three singscore-calculating approaches. The 
red dots denote gene expression signatures (FDR ≤ 0.05) detailing the top 10 significant signatures. The y-axis is –log10-transformed FDR. The 
x-axis is the difference in the median singscores between responders and non-responders. B Volcano plot of gene expressions from Advanced 
Analysis in nSolver4.0. The y-axis is –log10-transformed adjusted p-values. The x-axis is  log2-transformed fold change. C The plots based on scores 
of 25 in-built pathways from Advanced Analysis in nSolver4.0. Each dot represents the centralized average scores in each signature in responders/
non-responders. D Heatmap of 30 DEGs with adj. p-values ≤ 0.05 and |log2FC|≥ 1. The color shows the  log2(count). E Heatmaps of scores of 13 
significant in-built pathways with hierarchical clustering. The color indicates the pathway score
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larger than 0.99 in all pairs of repeats (Fig.  3A). Highly 
consistent signature scores can be observed in the sing-
scores from raw and normalised counts. All 165 samples 
displayed correlations, r2 and slopes close to 1 (inter-
quartile range (IQR) [0.998, 0.999], [0.995, 0.999], and 
[1.003,1.036]), and intercepts close to 0 (IQR [− 0.007, 0]) 
(Fig. 3B).

Cross‑platform gene ranks consistencies
We compared the expressional level similarity based 
on NanoString and WTS gene count data. For expres-
sion correlations,  log2-transformed count data showed 
Spearman correlation (r) between 0.57 to 0.86 on 762 
overlapping genes in homologous samples, and 33 out of 
35 samples had r > 0.7 (Additional file 5: Table S13). For 
rank-based consistency, we first sought to examine the 
consistency of gene ranks, especially HKGs, across the 

NanoString and WTS platforms. The majority of the 20 
HKGs used within the NanoString Pancancer 360 panel 
had robust expression patterns in both NanoString and 
WTS (Additional file  1: Fig. S6C, E). When referring to 
the rank, HKGs from NanoString had dispersed distribu-
tion, while the same HKGs from WTS were concentrated 
in the upper-half rank region with highly expressed por-
tions and lower dispersions (Additional file  1: Fig. S6D, 
F). For the cross-platform rank consistencies of 20 HKGs, 
8 HKGs displayed average consistency scores above 0.7. 
The highest consistency score was 0.84 in the POLR2A 
gene (Fig.  4A, Additional file  5: Table  S14). Focusing 
only on the ranks of HKGs, they covered more rank 
regions in NanoString (25–100% rank region) compared 
to WTS (top 40% region) (Fig.  4B). Furthermore, to 
select potential cross-platform “stable genes”, the cross-
platform rank consistency scores were measured on the 

Fig. 2 continued

Fig. 3 Comparisons of counts and singscores within samples from NanoString assay. A Linear regression between 12 NanoString repeats from 
5 samples. The repeats were derived from samples from the same patients (Pt1-5). Linear regression of raw count data (top lane); normalised 
count data (middle lane); singscores using the “No stable gene” method (bottom lane). B Boxplot of Spearman correlation (r) and Linear regression 
coefficients, including the r2, slope and intercept, between singscores of 81 signatures derived from raw and normalised NanoString counts using 
“No stable gene” method of 165 samples
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overlapping 762 genes. Among them, 562 genes showed 
average consistency scores above 0.7 (Fig. 4C, Additional 
file 5: Table S15). More stably ranked genes were identi-
fied based on their Median Absolute Deviation (MAD) 
of the ranks among the samples. The top 50 smallest 
MAD genes gathered in the top and bottom quarter rank 
regions (Fig. 4C).

For the “Skewed ranks” method to measure singscores 
on NanoString platform, the cross-platform rank skew-
ness was concerned. The median ranks of 770 genes in 
the NanoString platform and 22,297 genes in the WTS 

platform followed a relatively uniform distribution, 
lowly expressed gene (Additional file  1: Fig. S7A, B). 
The skewness in overlapping 762 genes can be observed 
that their ranks were concentrated at the median and 
high-rank regions in the WTS platform (Additional 
file 1: Fig. S7C). When fitting median ranks of the over-
lapping 762 genes in the WTS platform against a uni-
form distribution, a linear relation was revealed except 
for the bottom 20% of the lowly expressed genes (Addi-
tional file  1: Fig. S7E). This trend was consistent even 
if fitting regression in separate response groups (Addi-
tional file 1: Fig. S7F, G).

Fig. 4 Rank consistency between NanoString and WTS platforms. A Cross-platform average consistency scores of 20 HKGs. The color bar indicates 
the pairwise consistency score. The darker colour in one cell represents a more consistent rank among the overlapping samples between this pair 
of genes. The left dot plot is each HKG’s average consistency. B, C The x- and y-axes are the median of the relative gene ranks in the NanoString 
and WTS platforms. The genes with average consistency scores > 0.7 in the NanoString platform are labelled. The horizontal and vertical error bars 
show the MAD of gene relative ranks in the NanoString and WTS platforms. B Rank locations and dispersions of 20 HKGs. C Rank locations of all 762 
overlapping genes. The high consistency is average consistency score > 0.7; The high consistency, small MAD highlight the top 50 low MAD genes
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Cross‑platform singscores consistencies
We performed four pairs of comparisons to evaluate the 
similarity of cross-platform singscores.

All samples displayed highly correlated (r > 0.7) sing-
scores between the NanoString and WTS platforms in all 
pairs of comparisons when using all signature scores. The 
three comparisons, “NS to WTS all genes”, limited to just 
the overlapping genes “NS to WTS part”, and “NS skewed 
to WTS all genes”, have high and similar correlations r 
(IQR [0.88, 0.92]) and r2 (IQR [0.77, 0.81]) (Fig. 5A). The 
“NS to WTS all” comparison had overall higher inter-
cepts and lower slopes compared to “NS to WTS part” 
and “NS skewed to WTS all”. The “NS to WTS HK” 

comparison displayed lower r, r2, slope, and intercept val-
ues in all overlapping samples (Fig. 5C, Additional file 1: 
Fig. S8, Additional file 6: Table S17). When only focusing 
on the highly correlated signatures (per signature sing-
scores correlation: r ≥ 0.8) (Additional file  6: Table  S16), 
the “NS to WTS all” and “NS skewed to WTS all” com-
parison methods showed similar r (IQR [0.76, 0.87]) 
and r2 (IQR [0.53, 0.64]), while the “NS to WTS part” 
method had generally higher scores in these two values 
(r: IQR [0.75, 0.89]; r2: IQR [0.53, 0.74]) (Fig. 5B). The “NS 
to WTS all” comparison consistently displayed a higher 
intercept and lower slope compared to the others. The 
“NS to WTS HK” comparison method generated worse r, 

Fig. 5 Cross-platform singscore consistency. A, B Radar plots of Spearman correlation (r), r2, of 35 overlapping samples (S1-35). The pairs of 
comparisons are labelled as different. The red dot-dashed circle line in each subplot represents the theoretical value when cross-platform singscores 
are identical in overlapping samples. A The left two plots display values based on 63 signatures, and (B) the right two display values from highly 
correlated signatures (r ≥ 0.8). 23 signatures were included in the “NS to WTS all” and “NS skewed to WTS all” comparison pairs, 40 signatures 
were chosen for the “NS to WTS part” comparison, and 31 signatures were chosen for the “NS to WTS HK” comparison. C, D The dot plots display 
consistency signatures’ singscores using sample S21 as an example. The four subplots are divided by four pairs of comparisons. The blue dotted line 
represents linear regression line. C all 63 signatures; D highly correlated signatures (r ≥ 0.8) only
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r2, slopes and intercepts when only focusing on the highly 
correlated signatures (Fig.  5D, Additional file  1: Fig. S9, 
Additional file 6: Table S18).

At the signature level, the “NS to WTS all” and “NS 
skewed to WTS all” comparison methods provided the 
same list of highly correlated signatures (23 signatures 
with r ≥ 0.8), and the “NS to WTS part” method dis-
played more highly correlated signatures (40 signatures 
with r ≥ 0.8) (Additional file 6: Table S16). Based on the 
number of signatures, those with more genes were more 
likely to generate consistent singscores in the cross-plat-
form study (Additional file 1: Fig. S10B, C).

Cross‑platform predictions using singscores
To evaluate the utility of the good-performing highly 
correlated singscores, we assessed their ability to classify 
the responders from the non-responders. The singscores 
from different calculating methods in 126 NanoString 
training samples were applied in the LASSO regression 
to select signatures, which were further used in building 
the logistic regression model and then tested in predict-
ing the probability of response of the 35 overlapping sam-
ples in the NanoString and WTS platforms. During the 
feature selection on the singscores from “No stable gene” 
and “Skewed rank” methods, the TIS and PIP PD-1 were 
the top two frequently selected signatures in the most 
repeats, while the IFNg-6 was the commonly selected 
signature in the “HK genes” method (Fig. 1B, Additional 
file 1: Fig. S11). When focusing on TIS and PIP PD-1 sig-
natures, samples tended to form separate clusters based 
on different response statuses (Fig. 6A) and displays sig-
nificantly higher values in responders in both platforms 
(Fig. 6B).

When predicting training and testing datasets from 
NanoString platform, the predictive ROC curves pro-
vided similar AUC values among logistic regression 
models based on three different training singscore tables 
(Fig. 6B right, middle). The model generated by the “HK 
genes” method displayed a significantly (p-value = 0.02) 
low AUC (73.5%) then the values from other methods 
(“part”: 86.3%; “Skewed ranks” and “all”: 83.7%) when 
predicting overlapping WTS samples (Fig. 6C left).

When predicting response status using the default 
probability threshold, predictive performances (MCC, 

sensitivity and specificity) of testing datasets from 
NanoString samples were similar in three different logis-
tic regression models. In the performance of predicting 
the overlapping WTS sample, the models built on sing-
scores from “No stable gene” method to predict WTS 
samples by “part” method, and “Skewed ranks” method 
to predict WTS samples by “all” method provided better 
predictions (MCC = 0.47 and 0.56). The model built on 
singscores from “No stable gene” method to predict WTS 
samples by “all” method classified the majority of WTS 
samples as responders, and the singscores from the “HK 
genes” methods generated a model that misclassified 
many WTS samples into non-responders (Fig. 6D, Addi-
tional file 6: Table S19).

Differentiated from the default threshold, the optimal 
thresholds are different in three logistic regression mod-
els. All models suggested a stricter threshold to predict a 
sample as a responder (Additional file  6: Table  S19). By 
applying optimal thresholds, all models displayed more 
likely to misclassify true responders as non-responders 
(higher specificity) than using the default threshold in 
the majority of predictions. The model built on singscores 
from “No stable gene” method has better prediction of 
WTS samples by “all” method when using the optimal 
threshold (Fig. 6E).

Discussion
This study found that singscore-based signature scores 
were highly reproducible across replicates, and consist-
ent even after normalisation. The use of singscore gen-
erated highly correlated and reproducible scores across 
12 repeated samples generated from different batches 
of cartridges. Likewise, although the normalisation and 
background thresholding may change low-expression 
gene ranks, singscore still provided stable scores with or 
without the HKGs normalisation function, geNorm [26], 
during the nSolver sample normalisation steps. Moreo-
ver, singscore-derived signature scores could even be used 
in cross-platform analysis. High correlation values were 
observed in the majority of WTS samples. Overall, we 
validated the utility of the approach to reproducibility in 
identifying patients likely to respond to anti-PD-1-based 
immunotherapies based on NanoString gene expression 
data.

(See figure on next page.)
Fig. 6 Cross-platform predictions. A PCA plot and (B) boxplot on singscores for two selected signatures: TIS and PIP PD-1, for all 161 samples (126 
NanoString training samples, 35 WTS testing samples). The singscores were calculated by the “No stable gene” method in the NanoString platform 
and the “part” method in the WTS platform. The dots are colored by the platform (NanoString or WTS). The p-values were measured by Mann 
Whitney Wilcoxon test. C ROC curves of predicting NanoString and WTS samples using logistic regression models. Due to using the same model, the 
“all” and “part” have identical ROC curves when predicting samples from NanoString platform. The colors differentiate the pairs of comparisons. D, 
E MCC, sensitivity and specificity values of binary clustering based on the predictive probability from different logistic regression models. D using 
default threshold (probability of response ≥ 0.5 as responder); E using optimal threshold (maximizing Youden index in ROC curve from training 
samples) in each model. NA in sensitivity was due to no sample being classified as responder
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Fig. 6 (See legend on previous page.)
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Our study explored rank-based signature scores in 
interpreting differences in response status. Within the 
81 signatures, the significantly (FDR ≤ 0.05) different sig-
natures included multiple immune-related and cell sig-
nalling pathways. Many PD-1, T-cell, and IFN-γ-related 
genes and signatures showed significantly high levels in 
responders, which correspond to preferable response in 
immunotherapies [3, 4, 10, 14, 27]. Reverse scoring trends 
were observed in the signatures, including angiogenesis, 
hypoxia and WNT signalling, which were reported to be 
inversely correlated to response [3] and to drug resist-
ance [27]. Additionally, singscore-derived signatures were 
highly reproducible within the NanoString replicates, as 
well as between raw and normalised samples. Therefore, 
using the rank-based signature scores from NanoString is 
a reliable and representative approach to identify the dif-
ferences in response status.

As a highly sensitive, reproducible, and robust tech-
nique for evaluating targeted gene expression profiles, 
our NanoString assay also reported high correlations to 
WTS data in matched samples in the log-transformed 
count data [5]. Differential expression analysis of the 
NanoString data identified similar lists of differential 
expression genes (DEGs) to the analysis performed from 
our previous WTS study [3]. Within 549 DEGs iden-
tified in the WTS study, 115 DEGs exist in NanoString 
probes. Half of them were also reported as DEGs in 
the NanoString assay (56 adj. p-values ≤ 0.05, 74 p-val-
ues ≤ 0.05). Many signature genes highlighted in the 
WTS study were also upregulated in responders with 
an adjusted p-value ≤ 0.05 (IFN-γ-related genes: STAT1, 
IRF1; T cell infiltration and cytotoxicity related genes: 
PDCD1, CXCL13, CD2, CD247, CD274, CD5, CD6; 
Cytokine signalling: CCL4, CCR5, CXCL9, CXCL13; 
Immunosuppressive checkpoints: TNFRSF9, IDO1, 
LAG3). Although genes in the NanoString nSolver in-
built pathways in our study differed from the genes in 
KEGG pathways used in the WTS study, some signifi-
cantly different pathways reported in nSolver analysis 
were also found in the WTS study, such as Cytotoxicity, 
JAK-STAT Signalling, and Cytokine and Chemokine Sig-
nalling [3].

In cross-platform comparisons, highly correlated sing-
scores also support the robustness and reproducibility of 
singscore. Most of the NanoString  nCounter® PanCan-
cer IO  360™ genes are intermediate and high expression 
genes compared to the WTS ranked profiles. It resulted 
in that singscores derived from the NanoString platform 
were generally lower scores under the same scoring 
method from WTS. While highly correlated, the skew in 

gene expression distribution will lead to different sing-
scores between platforms and be problematic in some 
cross-platform analyses, such as model building and 
prediction. Our study suggests two possible solutions to 
alleviate this impact. One is to subset the WTS data to 
analyse only the overlapping genes (“part” method). The 
other way is to modify the ranks in the NanoString plat-
form by fitting the raw ranks using linear regression coef-
ficients (“Skewed ranks” method). Many samples’ ranks 
follow a uniform distribution. However, some samples 
contained more low signal probes (raw count ≤ default 
background noise 20). The transformation did not change 
their ranks (rank always 0 before and after skewing 
ranks). Although the “Skewed ranks” method provided 
highly correlated and similar cross-platform singscores 
and good prediction, it is not a generalisable method. 
When crossing multiple expression datasets or another 
dataset with a different number of genes, the coefficients 
for skewing need to be adjusted per assay. Therefore, 
focusing only on the overlapping genes may be a simpler 
and more feasible option. Additionally, although using a 
different probability threshold to predict binary respond-
ing outcomes (optimal threshold) may alleviate this prob-
lem, it also leads to a higher risk to misclassify the true 
responders as non-responders.

Another intuitive method to overcome this cross-
platform singscore variation was to introduce “stable 
genes” to calibrate across samples. Through analysing 
the perseveration of gene ranks across multiple plat-
forms, Bhuva et.al introduced a list of stable genes, 
which is an in-built function in singscore [25]. How-
ever, only 2 out of the top 20 in-built stable genes 
were found in the NanoString 360 IO probe set. If only 
using these two genes to calibrate, it may underesti-
mate signature scores and veil the differences between 
the response status. Alternatively, we tried to apply 
the 20 HKGs from the NanoString probe set as stable 
genes. Unfortunately, the subsequent results were less 
informative in the differences between response and 
non-response, decreasing overall signature scores, and 
poor cross-platform correlations. HKGs’ rank distribu-
tions and inconsistency in cross-platform ranks may 
explain this problem. Although these HKGs displayed 
robust expressions and ranks in the WTS platform, 
their ranks were concentrated in the upper half region 
of expression. Accurate stable genes should have a 
high-rank consistency which means the orders among 
the stable genes should be persevered across platforms 
[25]. However, nearly all HKGs showed lower average 
consistency scores compared to the recommended 
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stable genes in singscore. Additionally, this study 
attempted to identify platform-specific “stable genes” 
using a similar idea on all 762 overlapping genes. How-
ever, no suitable stable gene for cross-platform cali-
bration could be identified between the NanoString 
Pancancer 360 IO panel and WTS. Therefore, when 
choosing the cross-sample stable genes for singscore, 
the stability in gene expression is not a good selective 
criterion. Checking the distribution and preservation 
of consistency in cross-platform ranks are important 
before introducing any stable gene for calibration.

The LASSO regression was used to select more 
informative signatures and to test the clinical utility 
of the singscore based signatures in predicting immu-
notherapy response. Although such prediction was 
still not highly accurate, it can be further improved by 
combining other information, including tumour muta-
tion burden [4, 28] and clinical features [29]. The PIP 
PD-1 signature and TIS were two the predominant fea-
tures selected during the repeated training. They were 
also in the top-3 signatures where responders have sig-
nificantly higher singscores. The consistent tendency 
can still be observed when crossing platforms. Site 
of biopsy used to generate the subsequent singscores 
should be considered within cohorts prior to model 
building as some signatures can differ significantly 
based on the tissue or origin. While the lymph node 
specimens displayed significantly different scores in 
multiple signatures compared to other biopsy sites, 
there were no statistically significant differences in the 
PIP PD-1 and TIS signatures between sites and or any 
association with responses. The predictive MCC indi-
cated the good power of these two signatures in clas-
sifying response status in the testing datasets. Higher 
PIP PD-1 and TIS scores were observed in some non-
responders, resulting in the internal prediction on 
training samples misclassifying them as responders. 
These patients may have immune-excluded tumours, 
with immune cells enriched in the stroma surround-
ing the tumour region but lacking infiltration in the 
intratumoural region [30, 31]. The PIP PD-1 signature, 
an in-house derived signature, contained three genes, 
PDCD1, PDCD1LG2, CD274. Differential expression 
results in nSolver also labelled these genes as signifi-
cantly highly expressed in responders. Among them, 
the PD-L1 (CD274) gene expression level is a vali-
dated biomarker for anti-PD-1 monotherapy and anti-
PD-1 + anti-CTLA-4 in advanced melanoma [32, 33]. 
TIS is an 18-genes signature containing genes relat-
ing to antigen presentation, IFN signalling, and T-cell 
and NK cell activities [14, 34]. The higher TIS scores 
were observed in responding patients in our study, 
which is consistent with previous studies showing an 

association between high TIS scores and better over-
all survival and response to anti-PD-1 monotherapy 
[34, 35]. The consistency and capability of TIS to be 
a potential biomarker for tumour inflammation and 
response to anti-PD-1 therapy on the NanoString plat-
form have also been validated [36, 37].

Conclusion
Consistent with our previous publication [3], we dem-
onstrate that NanoString  nCounter® PanCancer IO 
 360™ can generate a similar immune profile to that 
generated by the WTS platform in advanced melanoma 
patients, and illustrate that the rank-based scoring tool, 
singscore, is also a reliable and practical approach to 
analyse the variations of immune signatures between 
response status and conduct cross-platform analysis.
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