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Abstract 

Recent evidence has shown that immune checkpoint inhibitors (ICIs) are efficacious for treating brain metastases 
of various primary tumors. However, the immunosuppressive tumor microenvironment and the blood–brain bar-
rier (BBB) or blood-tumor barrier (BTB) essentially restrict the efficacy of ICIs. Stereotactic radiosurgery (SRS) can be a 
powerful ally to ICIs due to its trait of disrupting the BBB/BTB and increasing the immunogenicity of brain metastases. 
The combination of SRS + ICI has shown synergy in brain metastases in several retrospective studies. Nevertheless, 
the optimal schedule for the combination of SRS and ICI in brain metastases is yet to be determined. In this review, we 
summarized the current clinical and preclinical evidence on the timing and sequence of SRS + ICI to provide insight 
into the current state of knowledge about this important area in patient care.
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Background
Metastatic brain tumors occur in approximately 20% 
of patients with malignant tumors [1]. The existence of 
brain metastases often indicates poor quality of life and 
survival with a 2 year survival rate of patients with brain 
metastases less than 10% in general [2]. The evolving anti-
tumor systemic management has improved the survival 

of patients to a certain degree [3]. However, due to the 
pharmacokinetic blocking effect of therapeutic agents by 
the blood–brain barrier (BBB) or the blood-tumor bar-
rier (BTB), and differentiated tumor microenvironment 
(TME) from the primary tumor, these treatments have 
rather limited efficacy in suppressing the progression of 
brain metastases [4]. Still, around one-third of patients 
with brain metastases die of intracranial progression 
eventually [4, 5]. Thus, treatments for brain metastasis 
are yet to be improved.

In the past decade, immune checkpoint inhibitors 
(ICIs) have primarily reshaped the landscape of anti-
tumor treatments for various solid tumors [6]. The 
mechanism of ICIs is restoring anti-tumor immunity by 
blocking immune checkpoints, such as cytotoxic T-lym-
phocyte antigen 4 (CTLA-4), programmed cell death 
protein 1 (PD-1), and programmed cell death protein 
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ligand 1 (PD-L1) [6]. Also, several meta-analyses sup-
port that ICI monotherapy is efficacious for metastatic 
brain tumors [7, 8]. However, in the included studies of 
these meta-analyses, only patients with treatment-naïve 
metastases were enrolled, and the vast majority of pro-
spective studies excluded patients with symptomatic 
brain metastases [7, 8]. Yet, only 20% of the patients 
benefited from immunotherapy [7]. The efficacy of ICIs 
for other patients needs further investigation.

Stereotactic radiosurgery (SRS) has been broadly 
applied in brain metastases of various cancers [9]. 
Owing to its modest improvement in patients’ survival 
and lower chance of causing neurocognitive toxicities 
compared with whole-brain radiotherapy (WBRT), the 
American Society for Radiation Oncology recommended 
SRS as a preferred treatment or an alternative to WBRT 
for patients with newly diagnosed single or multiple 
brain metastases who have a good performance status 
[10]. And the American Society of Clinical Oncology rec-
ommended SRS alone for patients with 1 to 4 unresected 
brain metastases (small cell lung cancer excluded) and 
patients with 1 to 2 safely resected brain metastases for 
treating remaining intracranial disease [11]. SRS also has 
excellent potential to be combined with ICIs because of 
its trait to temporarily “open up” the BBB/BTB and cause 
the death of tumor cells which can induce an inflam-
matory microenvironment with enriched infiltration of 
antigen-presenting cells (APCs) and cytotoxic T lympho-
cytes (CTLs) [12, 13]. Although previous meta-analyses 
denied the clinical advantage of radiotherapy (RT) + ICI 
compared with ICI monotherapy [7, 14], potential bias 
may exist due to the retrospective nature of the included 
studies and baseline differences in patients’ status of the 
two groups, because only patients with symptomatic 
brain metastases receive RT + ICI in clinical practice and 
those who receive ICI monotherapy usually have bet-
ter baseline performance statuses. As for stage III non-
small cell lung cancer (NSCLC), patients who started ICI 
treatment < 14 days  after RT gained significantly better 
benefits than those who received ICIs ≥ 14 days after RT 
in a randomized controlled trial [15]. However, the opti-
mal SRS + ICI schedule for brain metastases, especially 
the sequence of and the interval between SRS and ICI, 
remains controversial. The understanding of the brain 
microenvironment after RT may help us guide the devel-
opment of more effective strategies for brain metastases 
treatment.

In this review, we aim to summarize recent clinical and 
preclinical evidence concerning the combination of SRS 
and ICI in treating brain metastases. From that summary, 
we aim to provide a perspective on how to sequence and 
time the two therapies to improve the clinical outcomes 
of patients with brain metastases.

Therapeutic mechanisms of ICIs in brain 
metastases
The BBB can keep out harmful macromolecular sub-
stances, playing an important role in maintaining intrac-
ranial homeostasis. It consists of tightly connected 
endothelial cells, mural cells, astrocytes, and basement 
membranes [16]. The presence of primary or metastatic 
brain tumors can harm the tight junctions of the BBB 
and relatively increase the permeability to fuel growth 
and invasion, and the BBB is often referred to as the BTB 
in the context [17]. Although the brain was initially con-
sidered to be “immune-privileged” due to the isolating 
capacity of BBB/BTB, newer evidence has shown that 
brain immunity is just limited rather than “silent” [18]. 
Intracranial antigens can be recognized by local APCs 
or translocated to cervical lymph nodes, where the APCs 
present these antigens to T cells and activate them [19]. 
Meanwhile, identical antigens released from primary 
tumors can be recognized and presented to T cells by 
APCs in adjacent lymph nodes [20]. Activated T cells in 
the blood, when entering the intracranial metastatic site, 
get involved in a series of leukocyte-endothelial cell inter-
actions, enabling CTLs to roll and crawl along the vessels 
to reach a most permissible region for diapedesis [21, 22]. 
The extravascular CTLs then secrete matrix metallopro-
teases to decompose dystroglycans in the glia limitans for 
the final traversal through the BBB/BTB [22, 23]. How-
ever, due to chronic tumor antigen exposure, intracra-
nial tumors can send an “off” signal to the CTLs by the 
binding of immune checkpoint proteins to their ligands. 
Blocking the interaction between the checkpoints and 
the ligands by an ICI (anti-PD-L1, anti-PD-1, or anti-
CTLA-4) allows the CTLs to regain activity and recover 
their ability to kill the tumor (Fig. 3A).

The BBB/BTB has a limited permeability and only 
allows the penetrations of small and medium molecules 
[16]. Though ICIs have promising efficacy in treating 
brain metastases of melanoma and NSCLC, they are gen-
erally large molecules (146  kDa-149  kDa) that are not 
likely to cross the normal BBB and may hardly penetrate 
the BTB [24–27]. Even so, nivolumab, an anti-PD-1 agent, 
was detected in cerebrospinal fluid (CSF) of treated mela-
noma patients with leptomeningeal metastases. In the 
study, the investigators found that the CSF nivolumab 
concentration was 35–150  ng/mL, and the CSF/serum 
ratio of nivolumab concentration was 0.88–1.9% [28, 29]. 
Van Bussel et  al. [29] proposed that the transportation 
was mediated by the FcRn receptors on the resided mac-
rophages in the epithelial layer of the blood-CSF barrier, 
which could bind to serum nivolumab, induce endocyto-
sis, and transport and release it to the CSF. However, the 
efficacy of ICIs on brain metastases is commonly believed 
to be based on not the direct penetration of ICIs through 
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the BBB/BTB but the relatively autonomous trafficking 
of CTLs through the BBB/BTB and the moderately dis-
rupted BTB, as mentioned above [18, 21].

Besides the immune barrier effect of the BBB/BTB, 
brain resident cells, such as microglia and astrocytes, 
also exhibit immunomodulatory effects in brain micro-
environment. Microglia are resident macrophages of 
the central nervous system originating from the yolk 
sac and represent the most abundant immune cell 
population in brain [30]. A recent single-cell analy-
sis has revealed considerable heterogeneity among 
microglia in the TME, ranging from a homeostatic to 
reactive phenotype continuum [31]. The homeostatic 
subpopulation with a ramified morphology possesses 
phagocytic abilities, which can enhance the therapeu-
tic effect of ICI by presentation of tumor antigens to T 
cells and leading to activation of CTLs [32]. However, 
proliferating microglia with amoeboid morphology can 
inhibit the therapeutic effect of ICIs by contributing to 
an immunosuppressive TME [32]. Chronic IFN-γ acti-
vation in microglia has been linked to an immunosup-
pressive program, as demonstrated by ex vivo coculture 
studies. Guldner et  al. [33] found that microglia in 
brain metastases had elevated expression of CXCL10, 
V-domain immunoglobulin suppressor of T cell acti-
vation, and PD-L1, which eventually result in recruit-
ment of malfunctional T cells. Furthermore, cytotoxic 
T cells’ production of granzyme B and IFN-γ is reduced 
after coculture with proliferating microglia. Prolif-
erating microglia may also promote the depletion of 
CD8 + T cells. Additionally, activated microglia, along 
with recruited macrophages, can release a wide array 
of growth factors and cytokines that support tumor cell 
proliferation and angiogenesis [34]. Likewise, although 
the functions of astrocytes in brain tumors vary across 
subsets, some subgroups of astrocytes exhibit anti-
inflammatory properties and may contribute to the 
immunosuppressive microenvironment [35]. Heiland 
et al. [36] revealed that astrocytes overexpressed inter-
leukin-10 and transforming growth factor β (TGFβ) in 
company with microglia or macrophages, and the anti-
inflammatory cytokines could further lead to resistance 
to immunotherapy and radiotherapy [37, 38]. Another 
subset of astrocytes characterized by high expres-
sion levels of the immune checkpoint PD-L1 and acti-
vation of the immunomodulatory factor STAT3 was 
identified in the peritumoral area, where they may 
potentially act as a barrier against anti-tumor T lym-
phocytes [39]. Interestingly, the presence of these 
phosphorylated-STAT3 immunosuppressive astrocytes 
is induced by tumor and microglia cells [39]. Addition-
ally, reactive astrocytes have been shown to upregulate 

immunosuppressive and tumor-promoting molecules 
in microglia and macrophages, thus establishing a posi-
tive feedback loop between these cells and TAMs [36]. 
Hence, the bidirectional crosstalk between astrocytes 
and microglia plays a crucial role in shaping the immu-
nosuppressive microenvironment in brain tumors.

Moreover, favorable ICI efficacy requires adequate 
checkpoint expressions and an immune-supportive 
microenvironment for both primary tumors and brain 
metastases. Some tumors exhibit primary resistance 
to ICIs or develop secondary resistance to ICIs dur-
ing treatment [40]. The mechanisms of ICI resistance 
are rather knotty and yet to be explored, which mainly 
include the lack of checkpoint expression, T cell exclu-
sion, impaired interferon signaling, antigen loss, and 
defective tumor antigen presentation. [41]. Previous 
studies have revealed a relatively equivalent level of 
PD-L1 expression between the primary tumor and the 
paired brain metastases despite noticeable temporal 
and spatial heterogeneities [42, 43]. This phenomenon 
suggests that brain metastases originating from ICI-
resistant primary tumors are also unlikely to respond 
to ICIs. However, brain metastases are commonly char-
acterized by much lower immune cell infiltrations and 
higher proportions of immunosuppressive cells com-
pared with primary tumors, which largely limit the 
efficacy of ICIs in brain metastases [44]. Our research 
team investigated transcriptional profiles of 70 brain 
metastases lesions and 12 samples of paired lung ade-
nocarcinoma and brain metastases, and we found that 
brain metastases presented an immunosuppressed 
TME compared with the primary tumor, manifested 
in inhibition of immune-related pathways, low expres-
sion of immune checkpoint, decreased infiltration of 
CD8 + T cells and cytotoxic lymphocyte, increased 
proportion of suppressive M2 TAMs [43]. Efforts have 
been made to transform this “cold tumor” phenotype 
into a “hot tumor”, including targeting transform-
ing growth factor β, indolamine 2,3-dioxygenase, and 
tumor-associated macrophages (TAMs), etc. [18].

In summary, ICIs can restore the cytotoxic abil-
ity of CTL by inhibiting the interaction between the 
checkpoint and its ligand. Nonetheless, the therapeu-
tic efficacy of ICIs may be hindered by several factors, 
including the limited permeability of the blood–brain 
barrier, primary resistance, as well as the immunosup-
pressive microenvironment within the brain. To our 
knowledge, SRS is one of the most promising options to 
fuel intracranial anti-tumor immunity, and we will dis-
cuss it below.
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Clinical efficacy of SRS + ICI in treating brain 
metastases
In order to identify clinical studies on the combination 
of SRS and ICI in treating brain metastases, we searched 
PubMed using terms of “brain metastasis”, “stereotac-
tic radiosurgery”, and “immunotherapy” or “immune 
checkpoint” and manually selected retrospective or pro-
spective clinical studies where at least 1 arm involves 
SRS + ICI as a treatment for patients with brain metasta-
ses from any origins. We summarized information from 
all available studies on the combination of SRS and ICI 
in brain metastases (Table 1), including the first author, 
year of publication, NCT registration number (if avail-
able), type of study (retrospective/prospective), cancer 
type, treatments, and sample sizes (patients and lesions) 
of the intervention arm and the control arm, and inter-
vals. Intervals were defined as the time interval between 
the first day of SRS and the most adjacent day of ICI infu-
sion in the "concurrent" SRS + ICI treatments. The stud-
ies involved 3 classes of primary tumor types, 7 types of 
intervention/control combinations, and 9 definitions of 
intervals for “concurrent” SRS + ICI treatments (Fig.  1). 
In these studies, the definitions for intervals of “con-
current” SRS + ICI were quite different, ranging from 
0.1  months to 6  months (Fig.  1). We demonstrated the 
hazard ratios for the overall survival (OS) in these studies 
in Fig. 2, and we also mentioned other endpoints below, 
such as distant brain failure, best objective response 
(BOR), and intracranial local control, if these data are 
related to the topic of this review. In short, concurrent 
SRS + ICI led to better outcomes compared with several 
controls despite varied definitions of intervals for “con-
current” SRS + ICI (Fig. 2).

Studies aiming to compare concurrent SRS + ICI with 
non-concurrent SRS + ICI generally showed that con-
current SRS + ICI significantly improved local control 
of patients with brain metastases compared with non-
concurrent administrations. Murphy et  al. [45] identi-
fied patients with metastatic melanoma who received 
SRS within 30  days of receiving an ICI infusion (pem-
brolizumab, nivolumab, and/or ipilimumab) as those 
who received “concurrent” SRS + ICI. The multivariate 
analysis showed that concurrent timing of SRS + ICI was 
an independent predictor of patients’ regional progres-
sion-free survival [hazard ratio (HR) = 0.17, P < 0.0001] 
compared with the non-concurrent schedule [45]. Like-
wise, in another study by Qian et al. [46], the SRS + ICI 
combination was identified as “concurrent” if SRS was 
given within 4  weeks away from the beginning or end 
of ICIs, and the results demonstrated a sharper trend of 
reduction in metastatic melanoma lesion volume of the 
concurrent group compared with that of the non-con-
current group at 1.5  months, 3  months, and 6  months 

(P < 0.0001). Also, in the study by Skrepnik et  al. [47], 
concurrent SRS + ipilimumab (≤ 30  days) significantly 
improved the regional brain control (75% vs. 23.5, 
P = 0.03) and prolonged median CNS progression time 
(not reached vs. 5.7  months; P = 0.02) for patients with 
intracranial melanoma metastases compared with the 
non-concurrent group (> 30  days), though this advan-
tage failed to be embodied in OS. Additionally, Le et al. 
[48] supported that concurrent SRS + ICI (≤ 30 days) sig-
nificantly decreased distant brain failure of patients with 
melanoma and NSCLC brain metastases compared with 
non-concurrent SRS + ICI or no ICI (HR = 0.15; 95% 
CI 0.05–0.47, P = 0.0011). Kotecha et  al. [49] more spe-
cifically defined “concurrent” SRS + ICI as those with an 
interval ≤ 5 half-life of the ICI and “immediate” SRS + ICI 
as those with an interval ≤ 1 half-life, and the results 
revealed that the “immediate” schedule met a superior 
BOR of − 100% while the “concurrent” group met a BOR 
of − 67%. Moreover, Yang et al. [50] conducted a meta-
analysis including 9 studies to compare concurrent SRS/
WBRT + ICI (interval ≤ 1  month) with sequential SRS/
WBRT + ICI in NSCLC patients with brain metastases, 
and the results showed that the concurrent schedules sig-
nificantly improved intracranial local control (HR = 0.19; 
95% CI 0.09–0.42; P < 0.001). However, Cabanie et al. [51] 
added that the time-lapse between immunotherapy and 
SRS was not a significant predictor of local control. They 
reported a 76%, 76%, and 83% 1-year local control rate 
for patients with an interval of less than 7 days, an inter-
val between 1 and 2 weeks, and an interval of more than 
2 weeks, respectively.

In contrast, the extracranial and survival benefits 
patients with brain metastases receive from “concur-
rent” SRS + ICI seemed to correlate with the definitions 
on time intervals. The study by Qian et  al. [46] showed 
that the difference in OS between the concurrent (inter-
val ≤ 4  weeks) and non-concurrent groups was not 
significant (concurrent vs. non-concurrent, median 
19.1  months vs. 9.0  months, P = 0.0691). Nevertheless, 
Koenig et  al. [52] also defined “concurrent” SRS + ICI 
as those with the interval within 4  weeks in patients 
with brain metastases of various cancers, but the results 
showed significantly better OS (multivariable HR = 0.57; 
95% CI 0.33–0.99; P = 0.044) and lower extracranial fail-
ure rate (multivariable HR = 0.60; 95% CI 0.42–0.87; 
P = 0.007) compared with the non-concurrent therapy. 
Likewise, the aforementioned meta-analysis by Yang et al. 
[50] showed that concurrent SRS/WBRT + ICI (within 
4  weeks to 1  month) significantly prolonged OS com-
pared with the sequential administrations of SRS/WBRT 
and ICIs (HR = 0.39; 95% CI 0.16–0.97; P = 0.043). Nar-
rowing the intervals between SRS + ICI can lead to con-
sistent conclusions. When narrowing the defined interval 
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of “concurrent” SRS + ICI to less than 2 weeks in patients 
with brain metastases in NSCLC, melanoma, and renal 
cell cancer, Chen et  al. [53] showed an OS benefit of 
concurrent SRS + ICI compared with non-concurrent 
SRS + ICI (non-concurrent vs concurrent HR = 2.40, 
P = 0.006) on multivariate analysis. Moreover, when the 
definition of “concurrent” SRS + ICI was narrowed to less 
than 1 week, the research of Scoccianti et al. [54] upheld 
that the concurrent group had a longer OS, and the time 

interval between SRS and ICIs had no impact on the 
toxicity.

Taken together, concurrent SRS + ICI typically leads 
to better local control of patients with brain metasta-
ses than that of nonconcurrent schedules. Whereas it is 
noteworthy that although the intervention arms of these 
studies are all defined as “concurrent”, different intervals 
between SRS and ICI are likely to affect the outcomes 
of patients with brain metastases. There is a trend that 
more narrowed definitions of the time intervals result in 
more favorable survival benefits, suggesting that shorter 
intervals between SRS and ICIs lead to better clinical 
outcomes.

Impact of the timing on the safety of SRS + ICI
The timing and sequence can be important factors in 
influencing the safety of SRS + ICI. However, contra-
dictory results have been observed in the impact of the 
interval of SRS + ICI. Retrospective studies with rela-
tively large samples have shown that SRS + ICI does not 
increase the rates of adverse events in patients with brain 
metastases compared with SRS alone, and the chance of 
radiation necrosis is rather low [49, 53, 55, 56]. Chen et al. 
[53] reported no increase in CNS toxicity or immune-
related adverse events in the concurrent SRS + ICI 
(interval < 2  weeks) group compared with the noncur-
rent group (30% vs. 32%) in patients with brain metas-
tases from various primary tumors based on a median 
follow-up of 9.2  months. Kotecha et  al. [49] reported 
similar 12-month cumulative chances of radiation necro-
sis (3.2% vs. 3.5%) in the patients treated with immedi-
ate ICI (interval ± 1 half-life of the ICI) and all patients 
treated with concurrent or non-concurrent SRS + ICI. 
Nevertheless, some contradictory results suggested 
that, compared with SRS alone, SRS + ICI increased 
the likelihood of symptomatic necrosis within 4  years 
after SRS [57]. Koenig et  al. [52] revealed that concur-
rent SRS + ICI (interval < 4 weeks) led to a higher risk of 
adverse radiation events (HR = 4.47, 95% CI 1.57–12.73, 
P = 0.005) compared with non-concurrent SRS + ICI 
based on a maximum follow-up of 36  months. Kiess 
et al. [58] also reported an increased chance of grade 3–4 
adverse events in the concurrent group compared with 
the non-concurrent group based on a maximum follow-
up of 50  months. The contradictions can be caused by 
distinct durations of follow-up of these studies because 
radiation-related or immune-related adverse events can 
occur even after 1 year from radiation [57]. For example, 
delayed radiation-induced vasculitis leukoencephalopa-
thy related to SRS of brain metastases could be observed 
in 9 to 18 months after treatment [59].

In short, concurrent SRS + ICI may increase the inci-
dences of adverse events compared with nonconcurrent 

Fig. 1 Graphic summary of studies on the combination therapy 
of SRS and ICI for brain metastases by tumor types, intervention/
control arms, and intervals between SRS and ICI defined as 
“concurrent”. A: Concurrent SRS + ICI vs. SRS; B: Concurrent SRS + ICI 
vs. non-Concurrent SRS + ICI; C: Concurrent SRS + ICI vs. SRS after ICI; 
D: Concurrent SRS + ICI vs. SRS before ICI; E: Concurrent SRS + /before 
ICI vs. SRS after ICI; F: Non-concurrent SRS + ICI vs. SRS; G: Concurrent 
SRS + ICI vs. Concurrent WBRT + ICI
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Fig. 2 Forest plot of hazard ratios for overall survival in groups by tumor types, intervention/control arms, and intervals (months) between SRS and 
ICI defined as “concurrent”
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administrations from the perspective of long-term fol-
low-up, while RCTs with a large sample size and long 
follow-up are needed to draw a final conclusion.

Mechanisms of synergy in concurrent SRS + ICI 
in treating brain metastases
The immunostimulatory effect of SRS on brain metastases
Radiation-induced immunogenic cell death (ICD) and 
subsequently enhanced anti-tumor immunity have 
received massive attention in the era of immunother-
apy (Fig.  3B) [60]. Besides directly killing tumor cells 
by breaking double-strand DNA, radiation leads to the 
formation of reactive oxygen species and endoplasmic 
reticulum stress in tumor cells, which causes exposition 
or secretion of damage-associated molecular patterns 
(DAMPs), mainly calreticulin (CRT), heat-shock pro-
teins (HSPs), high mobility group box  1 (HMGB1), and 
adenosine triphosphate, and the release of tumor-asso-
ciated antigens and tumor-specific antigens [61]. The 
interactions between the DAMPs and their receptors 
initiate the recruitment and activation of APCs, espe-
cially dendritic cells (DCs), which is a prerequisite for 
the cross-presentation of tumor-associated antigens 
and tumor-specific antigens to CTLs [61–63]. Addition-
ally, cytosolic damaged DNAs activate the DNA-sensing 

cGAS-STING pathway, which consequently leads to the 
secretion of type I interferon (T1IFN) [64]. And T1IFN 
correlates with enhanced crossing-priming capacity of 
DCs to CTLs, increased intratumor infiltration of CTLs, 
and cell-killing functions of the CTLs [65]. Moreover, 
ionizing radiation increases the expressions of major his-
tocompatibility complex class I, Fas death receptor, and 
checkpoints expression on tumor cells, improving the 
anti-tumor immunity and sensitizing tumor cells to ICI 
treatment [66].

The duration of this effect is a critical concern in RT 
combined with ICI. Kim et  al. demonstrated that the 
radiation-induced trafficking of the mannose-6-phos-
phate receptor to the cell surface enhanced the efficacy 
of ipilimumab, and this effect peaked within 3 days after 
irradiation and normalized over 7–14 days [67]. Dovedi 
et  al. [68] demonstrated a significant decrease in PD-1 
expression on both  CD4+ and  CD8+ T cells at day 7 after 
the last dose of low-dose fractioned radiation in mouse 
models. Gameiro et al. [69] exposed MDA-MB-231 cells 
to 10 Gy 137Cs radiation, and the results showed that the 
membrane CRT increased within 24 hours, but the peak 
of CRT was not reached due to the short follow-up of the 
study. And Huang et  al. [70] showed that CRT exposi-
tion was time-dependent, and the level increased within 

Fig. 3 A APCs first identify antigens from intracranial and primary lesions, then translocate to cervical or adjacent lymph nodes, where the APCs 
activate T cells by presenting these antigens. Meanwhile, ICIs activate exhausted T cells by blocking the interaction between the checkpoints and 
the ligands. The BBB is a physical barrier made of endothelial cells with tight cell-to-cell junctions. The extravascular CTLs finally traverse through 
the BBB through a series of leukocyte-endothelial cell contacts and matrix metalloprotease secretion and enter the brain metastatic location. 
B Reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress produced by irradiated tumor cells promote the exposure or release 
of damage-associated molecular patterns. On irradiation of tumor cells, PD-L1 expression is seen to have significantly increased. C Due to the 
radio-responsiveness of both the surrounding oligodendrocytes and endothelial cells, irradiation can mildly but effectively disrupt the BBB/BTB and 
enhance permeability. Additionally, radiation enhanced the proportion of dendritic cells and activated T cells in brain metastases
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48  h in several tumor cell lines. Gorin et  al. [71] estab-
lished that increased Hsp70 and HMGB1 release started 
24–48 hours after irradiation and lasted over 72 hours in 
murine colon carcinoma and murine melanoma cell lines. 
In contrast, Apetoh et  al. [72] observed that HMGB1 
was released 18  hours after X-ray irradiation in mice 
implanted with EG7 thymoma cells but did not detect a 
conspicuous exposition of HSPs. Notably, HMGB1 serves 
as a double-edged sword in anti-tumor immunity, as an 
acute increased level of HMGB1 results in the enhance-
ment of ICD. In contrast, a lasting elevation of HMGB1 
leads to immunosuppression and facilitates malignant 
development [73]. The interaction between HMGB1 and 
toll-like receptor 4 induced the expression of a non-clas-
sical type I human leukocyte antigen (HLA) molecule, 
HLA-G, in glioma, which assists in the immune escape of 
the tumor [74]. Also, the co-culture of esophageal squa-
mous cell cancer-derived HMGB1-containing exosomes 
and mononuclear cells for 3 days resulted in the expan-
sion of immunosuppressive  PD1+ M2 TAMs [75]. Addi-
tionally, HMGB1 can enhance the immunosuppressive 
effect both by inducing the differentiation and activation 
of regulatory T cells (Tregs) [76–78] and by promoting 
the proliferation and survival of myeloid-derived sup-
pressor cells [79, 80]. These results stress the importance 
of applying timely ICI around SRS to avoid the immuno-
suppressive phase.

It is also notable that radiation can lead to immuno-
suppressive effects that hamper the efficacy of ICIs. 
First, radiation can kill immune cells per se and change 
the composition of immune cells in the TME [81]. To be 
specific, Kachikwu et  al. [82] showed that the propor-
tion of immunosuppressive Tregs increased in response 
to radiation due to stronger resistance to radiation of 
Tregs than that of other lymphocytes. Second, radia-
tion can reconstruct the immune microenvironment via 
various chemokines and cytokines [83]. After radiation, 
tumors have elevated expression of hypoxia-inducible 
factor 1 (HIF1), which consequently induces secretions 
of VEGF-A, TGFβ, and monocyte colony-stimulating 
factor (M-CSF) [84]. Radiation-induced release of CCL2 
recruits monocytes into the TME, and M-CSF and TGFβ 
polarize these cells to the immunosuppressive M2 pheno-
type [84]. Also, overexpressed VEGF-A recruits MDSCs 
and facilitates Treg proliferation [84]. In summary, radia-
tion has both immunostimulatory and immunosuppres-
sive impacts on TME, which emphasizes the significance 
of counteracting the immunosuppression by immuno-
therapy to amplify the efficacy of treatment.

The disrupting impacts of SRS on the BBB/BTB
The BBB/BTB raises one of the critical concerns in 
administrating systemic therapeutic agents to treat brain 

tumors, as intracranial drug delivery is commonly limited 
by the tight junctions in the BBB/BTB, leading to insuf-
ficient permeations of several systemic anti-tumor drugs 
[17]. Irradiation, especially high-dose irradiation, can 
temporarily but effectively disrupt the BBB/BTB, which 
increases its permeability due to the radio-responsive-
ness of both endothelial cells and surrounding oligoden-
drocytes [17, 85]. The disruption is characterized by both 
elevated paracellular and transcellular transport [17, 85]. 
The increased permeability partially explains radiation-
induced central nervous system (CNS) toxicity, such as 
edema, but may also creates conditions for improved 
drug delivery and immune cell infiltration (Fig. 3C).

Here arises one of the crucial questions about SRS-ICI 
combination therapy—how long does this hyperperme-
ability last, and when does it reach its peak? Teng et al. 
used dynamic contrast-enhanced MRI images of 30 
patients with brain metastases to investigate BBB open-
ing patterns from pre-RT to one-month post-RT, and 
the lesions were classified as low- or high-permeabil-
ity based on pre-RT transfer constant  (Ktrans) [86]. The 
results showed that the permeability of baseline-low-
permeability tumors increased over time while that of 
baseline-high-permeability tumors decreased over time, 
leading to the conclusion that systemic therapy should be 
conducted within 2–4 weeks after RT [86]. However, the 
follow-up of this study is rather short. As an indirect phe-
nomenon, the volume of brain edema develops within 
6 months and lasts for months or even years after SRS or 
WBRT [87]. A recently published meta-analysis summa-
rizing the clinical and preclinical impact of conventional 
photon RT on BBB permeability revealed that there were 
increased permeabilities in all acute (< 1  month), early 
delayed (1–6  months), and late-delayed (> 6  months) 
follow-up categories [88]. Furthermore, there was no sig-
nificant difference in permeability improvement among 
these three groups (p = 0.46) [88]. Still, significant heter-
ogeneity  (I2 = 99%, 96%, and 94%, respectively) existed in 
all of the included studies, which affected the reliability of 
the results to a certain degree [88].

The half‑life of ICIs and the timing of SRS + ICI
The half-life of ICIs is one of the essential factors when 
determining the optimal timing of combining ICIs 
with SRS. The half-life of ipilimumab (anti-CTLA-4), 
nivolumab (anti-PD-1), and pembrolizumab (anti-PD-1) 
are 15 days, 25–26.7 days, and 27 days, respectively [89]. 
This could partially explain why SRS + ICI failed to bring 
benefits to patients whose interval between SRS and the 
contiguous dose of ICI is comparatively long in some 
clinical studies [90].

Taken together, these preclinical results present us 
with a trend to apply ICIs as soon as possible but after 
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24–72 hours post-radiation to meet a high permeability 
of BBB/BTB, the most substantial immunostimulatory 
effect of SRS, and a higher plasma concentration of ICIs. 
However, most of these studies were conducted extrac-
ranially, and the dose and type of radiation varied, which 
might not represent the actual and accurate situation of 
the combination of SRS and ICI in brain metastases.

The optimal treatment design of SRS + ICI in treating brain 
metastases
Treatment design plays a crucial role in the success of 
SRS + ICIs in the clinic. It involves careful planning, and 
execution of the SRS and ICIs to maximize its therapeu-
tic effects while minimizing adverse effects. The radia-
tion dose and fractionation and the sequence of SRS and 
ICIs are critical factors in the design of this combined 
treatment.

The radiation dose is an essential parameter that affects 
both the local tumor control and the systemic immune 
response. An ideal radiation dose will provoke inflam-
matory tumor cell death and activate the anti-tumor 
T-cell responses via APC maturation [91]. Moreover, 
the translocation or secretion level of DAMPs seemed 
to correlate with the radiation dose positively [92]. How-
ever, excessively high doses can cause damage to sur-
rounding healthy tissues and organs, for example, brain 
edema develops within 6 months and lasts for months or 
even years after SRS or WBRT [87]. Vanpouille ‘s study 
showed that Trex1 could be induced by radiation doses 
above 12–18 Gy, regardless of cancer type. While Trex1 
could turn off RT-driven immune responses by degrading 
dsDNA and the subsequent cGAS/STING activation [93, 
94]. Therefore, it is crucial to balance the dose to maxi-
mize the immune response while minimizing the risk of 
adverse effects.

The fractionation refers to the number of radiation 
fractions delivered. By Irradiating the mice engrafted 
with the B16 melanoma cells for 15  Gy × 1 fraction or 
5 Gy × 3 fractions, Lugade et al. [95] proved that the sin-
gle-fractioned radiation increased the antigen availability 
and the number of tumor-specific T-cells secreting IFN-γ 
in the tumor-draining lymph node to a more consider-
able extent than the multi-fractionated RT did. The Fluc-
tuations of permeability of BBB also correlate with the 
fractionation. Single high-dose irradiation leads to rapid 
changes while multi-fractionated RT leads to slow ones 
[13, 96]. However, the optimal fractionation may vary 
depending on tumor types and locations and should be 
individualized based on each patient’s specific condition.

The sequence of SRS + ICI for brain metastases has 
been a topic of significant interest in recent years and, 
however, remains a topic of debate. Our meta-analysis 
reported that the odds ratio of distant brain failure rate 

of SRS-before-ICI and SRS-after-ICI was 0.67. Though 
there was no statistical difference, it shows the potential 
benefit of SRS-before-ICI strategy. Moreover, Krum-
mel et  al. [97] retrospectively identified that the SRS-
before-ICI group had superior survival compared with 
the SRS-after-ICI group. They demonstrated that most of 
the deregulated genes raised in the RT-before-ICI group 
were involved in apoptotic signaling and were crucial 
modulators of activated T-cell signaling. Buchwald et al. 
[91] recommend RT-before-ICI therapy as well. He reck-
oned that SRS may obliterate the freshly infiltrated and 
reinvigorated T-cell reaction in the RT-after-ICI group. 
In contrast, RT will stimulate naïve T-cell differentiation, 
and T-cells apoptosis may be avoided in the RT-before-
ICI group [91]. However, the sequence of treatment may 
be influenced by the location and size of the brain metas-
tases. Whether the brain metastases are symptomatic is 
another concern in the sequence of treatment. Timely 
surgical resection or RT (SRS or WBRT) is recom-
mended for patients with symptomatic lesions to manage 
the symptoms, while patients with asymptomatic metas-
tases usually undergo systemic therapies and observa-
tion. Further research is needed to determine the optimal 
sequence of treatment for different patient populations 
and tumor types.

In summary, treatment design plays a critical role in 
optimizing the therapeutic efficacy and safety of RT com-
bined with ICIs and should be individualized based on 
each patient’s specific condition.

Conclusion
The synergy between SRS and ICIs has been one of the 
hottest topics in treating brain metastases over years. 
All of the preclinical and clinical results above showed 
us a trend that, after 24–72  hours post-SRS, shorter 
intervals between SRS and ICI indicate more favora-
ble clinical benefits for patients with brain metastases. 
And single high-dose irradiations appear to cause more 
potent immunostimulatory effects and more rapid BBB/
BTB opening than fractioned low-dose ones. However, 
metastases from different primary tumors have varied 
radio-sensitivities and neo-antigen load. Additionally, the 
optimal sequence and interval may vary with the specific 
ICI administered, as CTLA-4 and PD-1/PD-L1 antago-
nists have different mechanisms. Hence, the optimal 
timing of SRS + ICI addressed in this review remains an 
active inquiry, which calls for well-designed prospective 
studies for a reliable answer.

Besides SRS, emerging therapeutic techniques are 
being developed to overcome the obstacles in the ICI 
treatment of brain metastases. Nanomedicine can tar-
get the BBB/BTB, tumor cells, immunosuppressive 
cells, APCs, or T cells to boost ICD and the intracranial 
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efficacy of ICIs [98, 99]. A series of local treatments, 
such as focused ultrasound, tumor-treating fields, and 
laser therapy, can also modulate the permeability of the 
BBB/BTB and may have synergy with ICIs [13]. These 
advances may provide a solid backstop for ICI therapy 
for brain metastases.
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