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Abstract 

Background Preterm birth (PTB) is the main driver of newborn deaths. The identification of pregnancies at risk of PTB 
remains challenging, as the incomplete understanding of molecular mechanisms associated with PTB. Although sev-
eral transcriptome studies have been done on the placenta and plasma from PTB women, a comprehensive descrip-
tion of the RNA profiles from plasma and placenta associated with PTB remains lacking.

Methods Candidate markers with consistent trends in the placenta and plasma were identified by implementing 
differential expression analysis using placental tissue and maternal plasma RNA-seq datasets, and then validated by 
RT-qPCR in an independent cohort. In combination with bioinformatics analysis tools, we set up two protein–protein 
interaction networks of the significant PTB-related modules. The support vector machine (SVM) model was used to 
verify the prediction potential of cell free RNAs (cfRNAs) in plasma for PTB and late PTB.

Results We identified 15 genes with consistent regulatory trends in placenta and plasma of PTB while the full term 
birth (FTB) acts as a control. Subsequently, we verified seven cfRNAs in an independent cohort by RT-qPCR in maternal 
plasma. The cfRNA ARHGEF28 showed consistence in the experimental validation and performed excellently in predic-
tion of PTB in the model. The AUC achieved 0.990 for whole PTB and 0.986 for late PTB.

Conclusions In a comparison of PTB versus FTB, the combined investigation of placental and plasma RNA profiles 
has shown a further understanding of the mechanism of PTB. Then, the cfRNA identified has the capacity of predict-
ing whole PTB and late PTB.
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Introduction
Preterm birth (PTB) is the leading cause of death in 
children under 5  years old worldwide. It is estimated 
that 17.7% of global under-five child deaths and 36.1% 
of 0–27  day neonatal deaths were due to complications 
from PTB [1]. In addition, PTB is the leading risk factor 
that contributes to growth disorders such as cognitive, 
visual, and learning disabilities [2]. Efforts to reduce both 
the incidence and mortality of PTB are still crucial [3].

Therefore, the development of predictive tools for 
identifying the risk of PTB from the antenatal popula-
tion is of clinical relevance. A newly developed cervical 
elastography technique has been proposed for screening 
spontaneous preterm birth [4]. However, this method 
has not been used widely for early prediction of PTB 
because standardized baseline values for elastography 
parameters have not been established [4]. Recent stud-
ies have informed the characterization of a wide range 
of biological changes during pregnancy can be measured 
by plasma cell-free RNA (cfRNA) transcripts [5], plasma 
proteome [6], metabolomics [7–9], immunome [8], and 
microbiome [10, 11]. However, the prediction of PTB 
based on such molecular profiles is still challenging.

During pregnancy, the placenta is an important organ 
that connects the mother and the fetus. A placenta with 
impaired function may lead to reduced blood flow, or the 
transfer of oxygen and nutrient to the fetus, which could 
affect the growth and development of the fetus [12]. 
A recently published study provides a comprehensive 
assessment of alterations in the placental transcriptome 
correlated with spontaneous preterm birth, which sug-
gested that we can obtain novel insight into the mecha-
nisms of PTB by discriminating molecular differences in 
the placenta [13]. The cfRNA is a new class of biomark-
ers with enormous potential for the non-invasive diag-
nosis, prognosis and surveillance in many diseases [14], 
which has been proven that released from maternal, fetal 
and placental tissue and can be detected in plasma after 
entering maternal bloodstream [15, 16]. Notably, placen-
tal development is closely linked to pregnancy health. 
The expression level of RNA measurement in maternal 
plasma may be a useful and convenient approach for 
reflecting placental gene-expression profiles as previously 
described. Thus, analysis of plasma RNA may also have 
critical significance in tracking pregnancy progression 
and fetal health [17, 18].

To consolidate the abovementioned considerations, 
our study tried to combine the placental RNA profiles 
and comprehensively explored the significance of plasma 
RNA signature in PTB. To evaluate the correlation of 
RNA expression regulation in plasma and placenta com-
pared with PTB, we integrated a total of 62 RNA-seq 
datasets from the placenta and 15 cfRNA-seq datasets 

from the maternal plasma. Subsequently, we aimed to 
assess whether these cfRNAs with consistent expression 
regulation trends can serve as early biomarkers of PTB. 
Overall, our study offers the novel PTB biomarkers with 
the clinical significance and further elucidate that the 
regulation of RNA in the placenta can be revealed from 
the plasma cfRNA of pregnant women.

Methods
Study design and cohort
Placental samples for 31 PTB infants and 31 paired 
full term birth (FTB) infants were collected from the 
Ma’anshan Birth Cohort (MABC) study. We obtained 
transcriptome data by bulk RNA sequencing from these 
62 samples. The plasma cfRNA-seq data were down-
loaded from Sequence Read Archive (SRA) database, 
including seven FTB samples and eight PTB samples 
(SRP130149). In addition, from March to June 2022, we 
collected 41 maternal plasma samples with recruitment 
criteria for singleton pregnancy live births as a validation 
cohort in Ma’anshan Maternal and Child Health Hospital 
for experimental verification of the identified changes in 
cfRNA expression. Informed consent was obtained from 
each participant. The maternal characteristics of partici-
pants are presented in Additional file 1: Table S1.

Sample collection
For placenta tissues collected from the MABC study, a 
piece of placental lobule tissue was separated from the 
maternal side of the placenta at a distance of 5 cm from 
the umbilical cord within 30 min of delivery of the pla-
centa. Each piece of tissue, about  1cm3 in volume, was 
placed in a cryostorage tube with an RNA later and 
refrigerated overnight at 4 °C, and then stored at − 80 °C 
after the RNA later was absorbed. For plasma samples 
collected from the validation cohort, based on an esti-
mated due date from the last menstrual period (LMP), 
the samples of blood were collected before delivery at 
37  weeks for the validation cohort. All samples were 
placed in EDTA tubes. Within 8 h of sample collection, 
the samples were centrifuged at 3000×g for 6 min to sep-
arate plasma and then reposited at − 80 °C until assay.

RT‑qPCR validation
CfRNAs were extracted from 0.8  ml plasma using the 
Trizol reagent (Invitrogen, USA). 10.5  µl RNA was 
reverse transcribed using First Strand cDNA Synthesis 
Kit (Promega, USA) with adding 1 µl External RNA Con-
trols Consortium (ERCC) according to the manufactur-
er’s protocol. The cDNA was diluted twice and amplified 
by SYBR green (YESEN, Shanghai, China) in a LightCy-
cler® 96 System (Roche).
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
is the internal reference for cfRNAs. Primers for each 
differentially expressed gene were designed by an online 
database PrimerBank and Integrative Genomics Viewer 
(IGV) [19, 20]. All sequences are enumerated in Addi-
tional file 1: Table S2. The average of the three replicates 
was performed as the cycle threshold (Ct) value for each 
cfRNA. Several cfRNAs which considered undetected on 
the basis of the Ct value limit of 39 were excluded for fur-
ther analysis [21]. For the evaluation of cfRNA expression 
levels, we used the 2-ΔCt method and then normalized.

Differential expression analysis
Differentially expressed genes (DEGs) between the 
PTB cases and controls were identified using edgeR 
[22]. The significance cutoff was appraised at |log2(fold-
change)| ≥ 0.59 and p-value < 0.05. All information of 
DEGs was used for principal component analysis (PCA) 
in each group independently. The comparison of DEGs 
was performed by the “UpSetR” R package.

Functional enrichment analysis
We applied g: Profiler for performing Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis [23]. The results of enrichment path-
ways were ranked based on adjusted p-value and plotted 
in R statistical software.

Protein–protein interaction (PPI) network
We respectively incorporate genes with altered expres-
sion levels in plasma and the placenta in PTB to con-
struct the protein–protein interaction (PPI) network. 
The PPI network was implemented using the STRING 
database and then the key nodes were screened using 
the cytohubba in Cytoscape software with four methods 
including Maximal Clique Centrality (MCC), Maximum 
Neighborhood Component (MNC), degree, and close-
ness [24, 25]. The top 25 genes were selected as the key 
genes in each algorithm based on the score. We identified 
the final hub genes by intersecting the key genes obtained 
by these algorithms [26]. Metascape provides the func-
tional annotation of these hub genes [27].

Establishment of a predictive model
To predict PTB (GA at delivery < 37  weeks), we devel-
oped a machine learning model of support vector 
machine (SVM), which relying on a dataset of the meas-
ured relative expression levels of cfRNAs by RT-qPCR. 
The expression levels of cfRNAs whose results of RT-
qPCR were consistent with RNA-seq results and showed 
significantly difference in the preterm and term groups 
were perceived as input features. All samples we col-
lected were divided into 50% train set and 50% test set 

by the createDataPartition method from the caret pack-
age in R statistical software. The area under the comput-
ing receiver-operating characteristic (ROC) curve (AUC) 
was calculated to assess the performance of the machine 
learning model. In addition, maternal age, parity, body-
mass index (BMI), platelet distribution width (PDW), 
neutrophil-to-lymphocyte ratio (NLR), and haemoglo-
bin (HB) were considered as preterm clinical risk factors 
through literature searching [28–33]. Then, we collected 
the above clinical data matched to samples used for inde-
pendent validation by RT-qPCR through electronic med-
ical records.

Statistical analysis
A nonparametric Mann–Whitney U-test was used for all 
tests designed to compare the expression level of differ-
ent groups. The significant differences were considered 
p-value < 0.05.

Results
Discovery of distinct dysregulated genes in RNA‑seq data 
and the pathways involved in preterm birth
We first identified DEGs by analyzing cfRNA-seq in 
plasma, including a binary grouping of seven PTB 
(< 37 weeks) versus eight FTB (≥ 37 weeks). Additionally, 
we applied PCA to our placental and plasma dataset, to 
explore sample features at gene expression levels (Addi-
tional file 1: Fig. S1A, B). The FTB samples were mixed 
with PTB samples, which may be caused by large heter-
ogeneity. Then we observed broad differences using the 
FTB group as control with 721 up-regulated genes and 
602 down-regulated genes in plasma (Fig.  1A). For the 
placental transcriptome, we only identified 404 DEGs by 
comparing 31 PTB samples with 31 FTB samples using 
tissue RNA-seq (Fig.  1B). We found 11 RNAs were up-
regulated both in plasma and placenta of PTB group, 
which accounted for 1.5% and 4.0% of up-regulated genes 
in plasma and placenta, respectively (Fig. 1C, and Addi-
tional file  1: Fig. S2A); and 4 RNAs were down-regu-
lated both in plasma and placenta of PTB group, which 
accounted for 0.66% and 3.0% of down-regulated genes 
in plasma and placenta, respectively (Fig. 1C, and Addi-
tional file 1: Fig. S2A).

GO enrichment and pathway analyses were using 
differently expressed gene-set and the top five path-
ways in each group measured by adjusted p-value were 
presented. We found that the DEGs in plasma were 
involved in distinct biological process (BP) terms from 
those in placenta. The up-regulated genes in PTB in 
plasma were mainly involved in developmental and cel-
lular process (Fig. 1D). By contrast, the most significant 
enrichment pathway of up-regulated genes in PTB in 
the placenta that was individually involved with immune 
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response (Fig. 1E). The down-regulated genes in PTB in 
plasma showed the relationship with immune pathways, 
whereas most down-regulated genes in PTB in the pla-
centa were associated with metabolic process (Fig. 1D, E). 
We detected significant enrichment of DEGs of plasma 
in most molecular function (MF) terms related to bind-
ing, such as protein binding, glycosaminoglycan bind-
ing, and immunoglobulin receptor binding (Fig.  1D). 
In the placenta, the enrichment analysis showed that 
these up-regulated genes were also enriched in signal-
ing receptor binding, and the down-regulated genes were 
mainly enriched in transmembrane transporter activities 
(Fig.  1E). AS for the enrichment result of up-regulated 
genes in plasma, the top five significant cell component 
(CC) terms were dominated by membrane-bounded 
organelle and endomembrane system, while the down-
regulated genes related to the immunoglobulin complex 
and intracellular anatomical structure (Fig.  1D). In the 
placenta, the majority of genes associated with the extra-
cellular region and immunoglobulin complex pathway 
were up-regulated in PTB (Fig.  1E). Cell periphery was 
also amongst the significant pathways in down-regulated 
genes in PTB.

We further performed KEGG pathway analysis for 
plasma and placental DEGs respectively. Only four 
KEGG pathways were detected in plasma group, includ-
ing regulation of actin cytoskeleton, complement and 
coagulation cascades, focal adhesion, and platelet activa-
tion (Fig. 1D). These representative entries of the analysis 
of placental-derived DEGs mostly contained human dis-
ease, steroidogenesis and signaling interaction (Fig.  1E). 
In total, the immune signaling subgroup was the largest 
enriched, which consistent with the previous finding on 
the pathologic mechanisms of PTB [34]. When we com-
pared the pathway enrichment of up-regulated genes 
in plasma vs. the up-regulated genes in the placenta, 23 
common pathways were revealed which accounted for 
a higher proportion of all plasma and placental path-
ways (Additional file  1: Fig. S2A). The data reveal that 
up-regulated genes in PTB have a distinct association in 
the response to stimulus and glycosaminoglycan binding 
for the BP and MF term while sharing enrichment in CC 
related to the extracellular region (Additional file 1: Fig. 
S2C). The same pathway both in plasma and placenta has 
not been identified in the down-regulated genes enrich-
ment pathway.

Fig. 1 Differentially expressed genes in preterm birth placenta and plasma. A Volcano plots of differentially expressed genes (DEGs) in the 
comparison (PTB vs. FTB) of RNA-seq data from plasma. B Volcano plots of differentially expressed genes (DEGs) in the comparison (PTB vs. FTB) of 
RNA-seq data from placenta. C UpSet plot of the gene symbol mapping overlaps for all sets of DEGs’ comparisons. D The top five GO-terms and 
KEGG pathways for the enrichment of DEGs involved in plasma group. E The top five GO-terms and KEGG pathways for the enrichment of DEGs 
involved in placenta group
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The complexity of RNA regulatory molecules in plasma 
and placenta
We separately observed the distribution of expres-
sion levels of different biotypes of RNA molecules co-
detected from plasma and placenta. The expression 
levels of the different RNA classes in the PTB group were 
skewed between maternal plasma and the placenta. We 
found that the majority of annotated mRNA, other non-
coding RNAs (ncRNAs), snoRNAs, and snRNAs were 
expressed weakly in the PTB placenta compared with 
the PTB plasma (Fig. 2A, B). By contrast, the expression 
levels of long noncoding RNAs (lncRNAs) and pseudo-
genes in placenta is higher than that in the plasma for 
the PTB group (Fig. 2A, B). We also obtained this similar 
tendency in the FTB group except for the pseudogenes 
(Additional file 1: Fig. S3A, B). Subsequently, we ranked 
the total number of RNA biotypes that were involved in 
the aberrant regulation of placental and plasma respec-
tively (Fig.  2C). Consistent with the plasma, we found 
that the majority of DEGs in the placenta were distrib-
uted in the following types: mRNA, lncRNA, and pseu-
dogene (Fig. 2C).

Previous work in humans has confirmed that single-
cell resolution (scRNA-seq) can catch a wide range of 
cell types that contribute to the placenta and identified 

distinct differences in the cell type components of pre-
term and full-term pregnancies [35, 36]. To further 
evaluate the alterations in gene expression in PTB, we 
attempted to map placental and plasma DEGs to genes 
with altered expression in different placental cell sub-
types and tested for the presence of single cell-derived 
placental profiles in cfRNA in the maternal circula-
tion [35]. The major populations include cytotropho-
blast (CTB), fibroblast, macrophage, monocyte, NK-cell, 
npiCTB, and T-cell. In the maternal plasma cfRNA 
profile, the largest number of DEGs between the PTB 
and FTB groups were observed in the CTB, followed 
by macrophage (Fig.  2D). Strikingly, the majority of cell 
marker genes were robustly increased in PTB. Using the 
placental profile, we found many of macrophage marker 
genes were significantly altered expression in PTB com-
pared to the FTB group (Fig. 2E). These results validate 
the macrophage signature changes in preterm pregnancy 
that were previously reported, and further revealed the 
single-cell features can be detected non-invasively in the 
maternal circulation throughout the pregnancy period 
[35]. Then, we collected 33 PTB-associated genes from 
several studies, which were identified from different data 
types (ChIP-seq, RNA-seq, methylation, and others) [5, 
37–42]. Meanwhile, 51 genes with differential expression 

Fig. 2 Assessment of RNA regulatory molecular features detected in plasma and placental transcriptomes. A, B The density of expression 
abundance in preterm birth of different RNA biotypes compared in A plasma, and B placenta. C Numbers of differently expressed RNAs for different 
RNA biotypes. D Several placental cell type specific genes were differentially expressed in PTB in the maternal plasma cfRNA profile. E Several 
placental cell type specific genes were differentially expressed in PTB in the placental RNA profile. F The fold change of placenta-associated genes 
between PTB and FTB pregnancies. G The fold change of PTB-associated genes between PTB and FTB pregnancies. The orange indicates that the 
value of |log2 fold change| is higher in plasma, compared to the placenta group. *p-value < 0.05
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in complicated pregnancies and reflection of placenta 
function development were defined as placenta-asso-
ciated genes from a comprehensive study of the human 
placenta transcriptome [43]. Both placenta-associated 
genes and PTB-associated genes showed greater differ-
ences in plasma (PTB group vs. FTB group), indicating 
that plasma may amplify regulatory signals, and demon-
strating that RNA signals in plasma can be used as mark-
ers to detect pregnancy status (Fig.  2F, G). In addition, 
we focused on the correlation between changes in the 
expression levels of each type of RNA in placental tis-
sue and maternal plasma. Among them, the regulation 
trend of mRNA, snoRNA, and pseudogene reached a sig-
nificant level (Additional file 1: Fig. S3C, E, G). By con-
trast, such significant correlation was lack for snRNA and 
lncRNA (Additional file 1: Fig. S3D, F).

Construction of protein–protein interaction network 
and identification of hub genes
Many proteins resulting from the disruption of molecu-
lar interaction networks are involved in the etiology of 
PTB [44]. The DEGs from the placenta and plasma were 
utilized to construct the PPI network. The PPI network 
was constructed using STRING and visualized using 
Cytoscape. We obtained a PPI network with 893 nodes 
and 2,403 edges using DEGs from plasma (Additional 
file  1: Fig. S4A). Another PPI network constructed by 
DEGs from the placenta has 225 nodes and 359 edges 
(Additional file 1: Fig. S4B). The degree, MNC, closeness, 
and MCC algorithms in the cytoHubba plugin were used 

to calculate the PPI network of these DEGs, and the top 
25 genes were selected as the key genes (Additional file 1: 
Fig. S5A, B). In plasma and placenta samples, a total of 
7 hub genes and 22 hub genes were respectively defined 
based on the intersection of these algorithms (Fig. 3A, B, 
Additional file 1: Fig. S5C). There was no overlap of hub 
genes in the plasma and placenta samples (Additional 
file 1: Fig. S5D). We also found a few overlapped genes in 
the plasma and placenta samples of the top 25 key genes 
identified by each algorithm (Additional file 1: Fig. S5D). 
Moreover, we found that hub genes from plasma are 
involved in nucleic acid metabolic process, protein modi-
fication process, and cell cycle phase transition (Fig. 3A, 
Additional file  2 : Table  S3). Then we observed the hub 
genes from the placenta are related to the positive regula-
tion of translation, cytokine-mediated signaling pathway, 
antigen processing and presentation, and cellular process 
primarily (Fig. 3B, Additional file 2 : Table S3).

Identification of cfRNAs as potential biomarkers 
for preterm birth
We identified 15 PTB candidate markers with a con-
sistent regulation trend in the placenta and plasma by 
integrating placental RNA-seq and plasma cfRNA-seq, 
which were progressively narrowed to a panel of seven 
cfRNAs with the following criteria (Fig. 4A): (1) the up-
regulated gene were filtered about the median values 
in the PTB group (median > 1, quantified using fpkm), 
and (2) the results of the comparison of the median val-
ues between the PTB group and the FTB group were 

Fig. 3 Selection of hub genes in protein–protein interaction (PPI) network. A The interaction diagram of PPI network by 7 hub genes from plasma. 
B The interaction diagram of PPI network by 22 hub genes from placenta. Network nodes and edges represent genes and gene–gene associations. 
Blue solid lines represent combination. Purple dotted lines represent the biological process terms corresponding to hub genes
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required to be consistent with the regulatory trend 
results obtained by edgeR. Taken together, we gener-
ated a candidate marker set of seven cfRNAs for subse-
quent validation.

Then we explored the co-expression signatures of these 
genes in the placenta and plasma using Pearson correla-
tion coefficient, which suggested that the occurrence of 
the high synergy of these genes is skewed in the plasma 
transcriptome compared to the placental transcriptome 
(Fig. 4B). Two sets of moderately related genes were pre-
sent in the data from plasma dataset (LIPH and CA2, 
CAMK4 and VTRNA1-2, 0.5 ≤ |R| < 0.8, p-value < 0.05; 
Fig. 4B). In placenta dataset, we found a strong positive 
correlation between PAX5 and the two genes (CRISP3, 
CAMK4), which revealed that they may play a role 
in similar biological processes (R > 0.8, p-value < 0.05; 
Fig. 4B). All of these seven cfRNAs had the same expres-
sion patterns in both sets of samples from the placenta 
and plasma RNA-seq data. Among them, four cfRNAs 
(CA2, VTRNA1-2, ARHGEF28, and LIPH) were observed 
to be up-regulated and three cfRNAs (PAX5, CRISP3, 
and CAMK4) were down-regulated in PTB group com-
pared with FTB group (Fig. 4C, D).

Independent validation of the selected cfRNA biomarkers 
for preterm birth and predictive modeling of PTB
To further validate the potential PTB cfRNA biomark-
ers selected by the analyses described above, we used 
RT-qPCR for experimental verification in an independ-
ent cohort recruiting 41 plasma samples in mid to late 
pregnancy (Fig.  5A, Additional file  1: Table  S1). In the 
PTB group, the 24 women delivered at 34.7 ± 1.9 weeks 
(average ± SD), while in the FTB group, the 17 women 
delivered at 39.7 ± 0.8  weeks. Based on the results of 
RT-qPCR, we found the ARHGEF28 gene was signifi-
cantly up-regulated in the plasma of PTB group, sug-
gesting that ARHGEF28 is a reliable biomarker for PTB 
prediction (Fig.  5B). In our study, most of FTB samples 
were collected later than PTB samples. Therefore, to 
investigate whether the expression level of ARHGEF28 
is altered with the progression of pregnancy, we built a 
subset of plasma samples collected at 35 ± 1  weeks and 
compared the expression level of ARHEGF28 between 
preterm and full-term groups (13 PTB samples, 3 FTB 
samples). We found the ARHGEF28 gene was still signifi-
cantly up-regulated in PTB (Additional file 1: Fig. S6A), 
which suggested that the gene still has the potential to be 

Fig. 4 Candidate cfRNAs for predicting preterm birth. A Heatmap showing expression level in each samples of candidate genes in plasma and 
placental RNA-seq datasets (plasma samples: seven FTB vs. eight PTB, placenta samples: 31 FTB vs. 31 PTB). B Correlation heatmap displaying 
the inter connectivity among candidate genes. The size of the squares and the color scale correlate to the correlation of gene expression in 
RNA-seq data including plasma and placenta. left: plasma, right: placenta. C Expression level for differentially expressed genes in the discovery 
based on plasma cfRNA-seq datasets. D Expression level for differentially expressed genes in the discovery based on placental RNA-seq datasets. 
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001
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a predictive biomarker for preterm birth if all sampling 
times are controlled to 35 ± 1 weeks. In addition, we tried 
to divide the 17 FTB samples into two groups according 
to the time point of collection (Before 37  weeks: n = 4, 
After 37 weeks: n = 13). Then we found no significant dif-
ferences in the expression level changes of ARHGEF28 
between these two groups of samples (Additional file 1: 
Fig. S6B), which suggested that the gene may not be used 
as a biomarker for gestational development. Gestational 
age was considered to be a partial mediator between bio-
logical factors of PTB and neonatal outcomes, associated 
with neonatal morbidity in late preterm and early term 
birth [45]. Additionally, we also observed the significant 
correlation between gene expression level of ARHGEF28 
and gestational age: the decreased expression of ARH-
GEF28 along with the gestational age increased gradually 
(p-value = 0.001, R = − 0.48) (Fig. 5C).

For the prediction of PTB, we divided the RT-qPCR 
data into training datasets with 21 samples and testing 
datasets with 20 samples (training dataset: 9 FTB sam-
ples, 12 PTB samples, testing dataset: 8 FTB samples, 12 
PTB samples) at first. Next, we selected the cfRNA ARH-
GEF28 as a feature applied to the PTB classifier. For the 
SVM model, the AUC was 0.917 in the training dataset 
and 0.990 in the testing dataset (Fig. 5D). Multiple clinical 

risk factors contribute to PTB, so we also collected other 
traditional risk factors that have been reported [28–33]. 
To assess the prediction capability for PTB of traditional 
risk factors, we integrated a base model depending on the 
following factors: maternal age, parity, BMI, PDW, NLR, 
HB. We presented the AUC of traditional risk factors 
with and without the addition of ARHGEF28 applying 
the SVM machine model. After the exclusion of samples 
with missing clinical data, the training dataset included 
19 samples, while the testing dataset included 17 sam-
ples. The lower AUC was yielded in the base model and 
then the AUC increased with the addition of ARHGEF28 
(Additional file  1: Fig. S7A–C). We calculated Pearson 
correlation coefficients to further assess the affiliation 
between the expression level of ARHGEF28, gestational 
age, and PTB-associated clinical characteristics, but no 
significant correlation was detected, which may cause by 
the small amount of clinical data (Additional file 1: Figs. 
S8A–F and S9A–F). Compared to the predictive model 
with ARHGEF28 as an independent factor, the combi-
nation of ARHGEF28 expression levels and clinical risk 
factors may have a more valid predictive performance by 
integrating more samples in the future work.

At last, we performed a separate analysis of PTB sub-
groups defined using the guideline from the American 

Fig. 5 The validation of candidate markers and the performance of predictive models. A Blood sample collection timelines in the validation cohort. 
triangles: GA at blood collection, squares: GA at delivery. B Means ± SD for the relative expression level of ARHGEF28 validated using RT-qPCR. 
***p-value < 0.001 (Mann–Whitney U-test). C The correlation of the relative expression level of ARHGEF28 with gestational age. D Receiver operating 
characteristic (ROC) curve representing prediction of preterm birth by the gene ARHGEF28 across the training dataset and testing dataset using 
SVM algorithm. E Altered in the relative expression level of ARHGEF28 in the three subgroups including early preterm, late preterm, and term. F ROC 
curves representing prediction of late preterm by the gene ARHGEF28 across the training dataset and testing dataset using SVM algorithm
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College of Obstetricians and Gynecologists (ACOG) [46]. 
The result reveals that there has been a rise in the rela-
tive expression level of ARHGEF28 between the early-
preterm group (28–34 weeks) and the late-preterm group 
(34–37  weeks), especially in the late-preterm group 
(Fig. 5E). We constructed a predictive model of late pre-
term using the similar approach, which still achieved an 
excellent performance (training dataset, AUC = 0.975; 
testing dataset, AUC = 0.986) (Fig.  5F). Late preterm is 
the largest group accounting for nearly three-fourths of 
all preterm infants, with the risk of increased neonatal 
morbidities as well as the risk of long-term adverse out-
comes [47, 48]. Therefore, the detection of the risk of late 
preterm clinically remains necessary for infant develop-
ment. The findings from our study confirmed the poten-
tial of ARHGEF28 in the prediction of preterm birth and 
especially late preterm.

Discussion
In this study, for the first time, we systematically deline-
ated the expression profiles of aberrant regulatory genes 
associated with PTB in plasma and placenta, then identi-
fied a novel cfRNA as a biomarker for predicting PTB. By 
integrating and analyzing the RNA-seq data of placental 
tissue and the cfRNA-seq data of maternal plasma, we 
found that the differentially expressed RNA in placen-
tas of preterm infants could be detected in the plasma of 
mothers. Although the main result here was the predic-
tion of PTB, we further supported the altered expression 
level of genes in the placenta can be detected in mater-
nal plasma. This also accords with the observations from 
earlier study which focused that the placental miRNA 
profiles combined with matched profiles from mater-
nal plasma reflecting physiological changes occurring at 
early to middle gestation [49].

To explore the possible molecular mechanisms of PTB, 
we searched enriched pathways for the differentially 
expressed genes of PTB. More enrichment of immune 
pathways is in line with those of previous findings that 
pregnancy and parturition involve widespread changes 
in the maternal immune system [50]. Different from 
PTB-associated pathways in plasma, we detected distinct 
pathways in placenta group about metabolism. These are 
similarities between the observation described by a previ-
ous placental transcriptomic study of PTB [13]. Accumu-
lating evidence indicates that abnormalities in maternal 
or fetal membrane metabolism stimulate inflammatory 
cytokines, which may drive PTB [51]. However, there 
were a few pathways associated with metabolic processes 
in our observations. The estrogen metabolism pathway, 
fetal stress, and fetal anomalies are the regularly reported 
pathways associated with PTB [51], although these path-
ways were not present in our result.

We next explored the regulation of PTB by differ-
ent types of RNA molecules detected in placenta and 
plasma. Existing research revealed the critical associa-
tion between placental gene expression levels and the 
abundance of the genes in maternal plasma [18]. We 
observed significant correlation between altered expres-
sion of mRNA and snoRNA in placenta and plasma in 
our data, this correlation pattern of mRNA is weak and 
the mismatch between placenta and plasma samples may 
be an important reason. In our study, we found the sig-
nificant correlation in snoRNAs. The snoRNAs were con-
sidered to belong to the abundant small non-coding RNA 
(sncRNA) species. The sncRNA molecules can across the 
placenta barrier and then be discharged into the mater-
nal circulation, on account of their stable structure and 
small size [52]. Thus, these sncRNAs could possibly con-
sider to be prime candidates for placental and pregnancy 
diagnostic, and this potential was reflected again in our 
study. Up to date, researches have not treated the specific 
roles within the placenta and pregnancy of sncRNAs in 
much detail. In total, the contribution of sncRNAs is still 
an area worth exploring.

The novel cfRNA marker ARHGEF28 validated by RT-
qPCR on independent samples showed the increased 
expression level in maternal plasma during pregnancy 
and was significantly associated with increased risk of 
PTB. As far as we know, characterization of ARHGEF28 
was measured in the prediction of PTB firstly in our 
study. Previous reports demonstrated the role of ARH-
GEF28 in modulating neuronal function or maintenance, 
and the formation of ARHGEF28 aggregates is involved 
in the pathogenesis of motor neuron disease [53, 54]. 
Accumulating evidence has been pointed out that PTB 
may leave the nervous vulnerable to dysfunction [55–58]. 
These findings perhaps imply the ARHGEF28 involves 
a role in neuron function for PTB children. We subse-
quently tackled the issue of predicting PTB from plasma 
samples collected while women were asymptomatic 
before 37  weeks of gestation. Collectively, the machine 
learning models based on ARHGEF28 have shown excel-
lent performance in predicting PTB, especially late PTB.

To our knowledge, this is the first study to gener-
ate cfRNA profiles as PTB biomarkers using maternal 
plasma in combination with RNA expression from the 
placenta. Analysis based on the framework proposed 
by us, we obtained a more comprehensive understand-
ing of the mechanism about PTB and the regulatory role 
of RNA in PTB. Consistent with the previous pattern of 
analysis [36, 59], our profiling is based on a sample of 
different population cohorts which may facilitate fur-
ther validation of selected biomarkers. In particular, we 
focused on the predictive performance of the validated 
markers for late PTB. We noted that late preterm infants 
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with an increased birth rate composed now 75% of all 
preterm infants [60]. It is still an important public health 
issue. Although the validation study specifically included 
late PTB pregnancies, we were not assuming that late 
PTB was an initial independent event. In other words, 
discovery of potential markers that can be used to predict 
late PTB unaffected by previously proposed hypothetical 
mechanisms. As the etiology of PTB is not fully defini-
tive, the clinical support decision model is crucial in help-
ing doctors provide early intervention for women at high 
risk of PTB [61]. In this setting, we tested to garner a pre-
dictive model combining cfRNA markers and clinical fac-
tors associated with PTB, which provide a novel strategy 
for the development of PTB prediction model with clini-
cal benefit. Our work further supports the application 
of non-invasive blood testing techniques for monitoring 
the risk of PTB, nevertheless, it is limited by several fac-
tors. At first, we collected placenta and plasma samples 
from different datasets and were not paired between two 
sample types, which may have led to the heterogeneity 
in our results and presented bias in correlation analysis. 
The small sample size in our study may weaken the reli-
ability of the predictive model for the heterogeneity are 
more pronounced. Although we attempted to demon-
strate that PTB was the only factor contributing to the 
increasing trend in ARHGEF28 by selecting plasma sam-
ples collected at similar gestation weeks for additional 
analysis and comparison, it may be an inadequate clari-
fication also due to the small sample size. Subsequent 
cohort studies on a large scale are required to resolve 
these concerns. In addition, PTB can be classified into 
three clinical subtypes including spontaneous preterm 
birth with intact fetal membranes, preterm premature 
rupture of membranes (PROM) before the onset of labor, 
and medically indicated preterm birth [62]. Each subtype 
of PTB may cause by differ pathways [63]. We were lack 
of adequately performing specific analysis of each sub-
type of PTB respectively in this study, which leads to a 
poor cognition of the etiological mechanisms of PTB and 
limits the development of predictive markers for specific 
subtypes. Among the RT-qPCR experiment, we found 
that the expression level of ARHGEF28 was significantly 
increased in PTB plasma, suggesting aberrant expression 
of ARHGEF28 may be related to the occurrence of PTB. 
However, there is no clear validation in placental tissues 
for the gene ARHGEF28. The examination of placental 
pathology was considered to be the major phenotype in 
an assessment of PTB and provided important insight 
into subtypes of PTB [64, 65]. We failed to extract the his-
topathological data of these placental specimens in this 
cohort study, which limited understanding of pathologi-
cal features of the preterm placenta. Integration of other 
omics data and consideration of other clinical factors of 

PTB may also generate a more robust RNA profile that 
reveals the signature of PTB in future studies.

In summary, this study provided molecular-level evi-
dence that RNA expression regulation is relevant in the 
placenta and maternal plasma in a comparison of pre-
term and term. The identification of novel biomarkers 
from plasma for preterm birth revealed the ability of 
cfRNA to identify the risk of PTB in advance. Combined 
analysis of different transcriptomic profiles of PTB can 
contribute to a deep mechanistic understanding of early 
parturition, which provides a wider perspective into the 
efficiency of clinical non-invasive diagnostic methods.
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