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Abstract 

Background The clinical heterogeneity of SLE with its complex pathogenesis remains challenging as we strive to 
provide optimal management. The contribution of platelets to endovascular homeostasis, inflammation and immune 
regulation highlights their potential importance in SLE. Prior work from our group showed that the Fcγ receptor type 
IIa (FcγRIIa)–R/H131 biallelic polymorphism is associated with increased platelet activity and cardiovascular risk in 
SLE. The study was initiated to investigate the platelet transcriptome in patients with SLE and evaluate its association 
across FcγRIIa genotypes and distinct clinical features.

Methods Fifty‑one patients fulfilling established criteria for SLE (mean age = 41.1 ± 12.3, 100% female, 45% His‑
panic, 24% black, 22% Asian, 51% white, mean SLEDAI = 4.4 ± 4.2 at baseline) were enrolled and compared with 18 
demographically matched control samples. The FCGR2a receptor was genotyped for each sample, and RNA‑seq was 
performed on isolated, leukocyte‑depleted platelets. Transcriptomic data were used to create a modular landscape to 
explore the differences between SLE patients and controls and various clinical parameters in the context of FCGR2a 
genotypes.

Results There were 2290 differentially expressed genes enriched for pathways involved in interferon signaling, 
immune activation, and coagulation when comparing SLE samples vs controls. When analyzing patients with 
proteinuria, modules associated with oxidative phosphorylation and platelet activity were unexpectedly decreased. 
Furthermore, genes that were increased in SLE and in patients with proteinuria were enriched for immune effector 
processes, while genes increased in SLE but decreased in proteinuria were enriched for coagulation and cell adhesion. 
A low‑binding FCG2Ra allele (R131) was associated with decreases in FCR activation, which further correlated with 
increases in platelet and immune activation pathways. Finally, we were able to create a transcriptomic signature of 
clinically active disease that performed significantly well in discerning SLE patients with active clinical disease form 
those with inactive clinical disease.
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Conclusions In aggregate, these data demonstrate the platelet transcriptome provides insight into lupus pathogen‑
esis and disease activity, and shows potential use as means of assessing this complex disease using a liquid biopsy.

Keywords Platelet, Lupus, RNA‑seq, Transcriptomics, FCGR2a, Lupus Nephritis, Systemic lupus erythematosus

Background
Systemic Lupus Erythematosus (SLE) is often referred 
to as an archetypical example of an autoimmune dis-
ease. The pathology is still not fully understood due to 
the complexity of the underlying mechanism of disease, 
which is further complicated by its heterogenous clini-
cal phenotypes. Over two decades ago it was noted that 
the majority of deaths in patients with longstanding 
SLE were attributed to cardiovascular disease (CVD) 
[1]. Neither traditional cardiovascular risk factors nor 
SLE-associated risk factors such as corticosteroid treat-
ment, antiphospholipid (aPL) antibodies and the ongoing 
inflammatory process entirely account for the increased 
cardiovascular risk [1–4]. Current evaluation of SLE 
using the hybrid SELENA SLEDAI (Safety of Estrogens 
in Lupus National Assessment–Systemic Lupus Erythe-
matosus Disease Activity Index) evaluates patients using 
a points per domain criteria [5–7]. While this current 
assessment measure provides a valuable tool for track-
ing disease changes, molecular based subtyping of the 
pathophysiology of SLE is still not used clinically. The 
use of novel biospecimens in combination with sequenc-
ing analysis has potential for understanding the interplay 
between cardiovascular risk and SLE.

Platelets, long established as more than anucleate cell 
fragments whose sole purpose is clotting, play key roles in 
inflammatory and immune mediated diseases [8]. While 
several studies have demonstrated that platelet activity is 
increased in SLE [8–10], the precise mechanism of how 
SLE activated platelets contribute to the pathogenesis of 
SLE tissue inflammation and injury is unclear. Platelets 
contain transcripts and the necessary molecular machin-
ery to conduct translation and are intercellular regula-
tors of inflammation and immune activation. Activated 
platelets can stimulate endothelial cells, neutrophils, 
and monocytes to produce inflammatory cytokines and 
chemokines [11–13]. Platelet transcriptomics have been 
used to identify individuals with metabolic, inflamma-
tory, and cardiovascular diseases [9, 12, 14–16]. Thus, 
through their genotype, phenotype, and complex net-
work of effects, platelets may be a significant mediator of 
SLE disease activity and life-threatening comorbidities.

In addition to the well described heightened platelet 
activity in SLE, it is necessary to determine how platelets 
interact with their environment and confer their effect 
onto surrounding cells [9]. FcγRIIA, encoded by The 
FCGR2A gene, is a platelet receptor that interacts with 

immunoglobulin and immune complexes and mediates 
interactions with the platelet’s microenvironment and 
surrounding immune cells [17]. The receptor displays a 
functional allelic dimorphism generating two codomi-
nantly expressed allotypes with either a histidine (H) or 
an arginine (R) at amino acid position 131 in the second 
Ig-like extracellular domain [18]. These variants confer 
functional significance since they differ in their ability to 
bind IgG-containing immune complexes: the 131H allo-
type efficiently binds human IgG1 and IgG2, whereas the 
131R allotype binds human IgG1 but poorly binds IgG2 
and as such the variants are referred to as high-binding 
and low-binding, respectively [19]. With regard to anti-
body-mediated disease such as SLE, the consequences 
of this differential binding capacity have demonstrated 
clinical importance, as the expression and response to 
FcγRIIA signaling pathways are associated with lupus 
nephritis [20], and the low binding 131R allele is associ-
ated with increased platelet activity and subclinical CVD 
[21]. Despite these studies, the specific mechanism by 
which FcγRIIA confers CVD risk is still unknown, and 
elucidating its role in platelets and vascular health should 
contribute to our understanding of its role in disease.

Accordingly, this study was designed to better evalu-
ate the role of platelets in SLE. We first characterized 
the platelet transcriptome across all samples using an 
unsupervised approach followed by the identification of 
significant molecular differences seen between SLE and 
controls. Using a modular transcriptomic framework, 
differences were evaluated across SLE disease activity, 
and in participants with active proteinuria, identifying 
both genes and pathways involved in disease pathogene-
sis. Further, the effects of FcγRIIA variants on the platelet 
transcriptome were investigated both in healthy controls 
and participants with SLE. Lastly, we establish a ground-
work for the exploration of platelet transcriptomic pro-
files and their potential use in predicting changes in lupus 
activity over time.

Methods
Patient population
Patients were recruited from the NYU Lupus Cohort. The 
NYU Lupus Cohort is a prospective convenience registry 
open to enrollment of any patient with SLE seen at NYU 
Langone Health and Bellevue Hospital Center since 2014. 
All SLE patients in the NYU Lupus Cohort are age 18 or 
older and fulfill at least one of the following criteria for 
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SLE: (1) the American College of Rheumatology (ACR) 
revised classification criteria [22, 23]; (2) the Systemic 
Lupus International Collaborating Clinics (SLICC) clas-
sification criteria [24]; (3) the European League Against 
Rheumatism (EULAR)/ACR classification criteria [25]. 
All patients and controls signed an informed consent 
(available in English, Spanish, and Mandarin) approved 
by the NYU and Bellevue Institutional Review Boards. 
Exclusion from this study included the use of any dose 
of aspirin and/or an anticoagulant, a platelet count < 100 
X  109 g/l, and a hemoglobin level < 9 g/dl. Despite these 
criteria, three patients were enrolled with a platelet 
count < 100 X  109 g/l, but quality control of data showed 
no specific reason for exclusion in this analysis.

At each patient visit, overall disease activity was meas-
ured by the hybrid SELENA SLEDAI [5–7] (Buyon, Tha-
nou) which incorporates the definition of the proteinuria 
domain used in the SLEDAI 2 K (Gladman), namely pro-
tein > 500 mg/d (UPCR > 0.5) is always scored regardless 
of whether it is persistent. To evaluate clinical pheno-
types, patients were assigned more granularly to one of 8 
groups based on dominance of laboratory and or specific 
organ involvement (Table  1). For each patient a disease 
activity “dominant” category was also assigned. The cate-
gories were defined based on the scoring of each domain 
with a hierarchy as follows: inactive (0 points SLEDAI), 
serologically active no clinical disease (2–4 points, low C, 
positive anti-dsDNA, either or both), hematologic (1–6 
points, low White Blood Cell or platelets plus or minus 
serologic activity), serositis (2–10 points, pleuritis, peri-
carditis, either or both plus or minus serologic activity 
plus or minus hematologic activity), musculoskeletal 
(4–14 points, > 2 synovitis in 2 or more joints, plus or 
minus any other of the above domains), active nephri-
tis (4–26 points, uPCR > 0.5 with our without urine 
WBC,RBC, or casts plus or minus any of the above), 
and finally, CNS disease of SLEDAI > 20. Medication use 
and dosages were also collected at each visit: glucocorti-
coids, hydroxychloroquine (HCQ), immunosuppressants 
including azathioprine, mycophenolate mofetil (MMF), 
methotrexate, belimumab, tacrolimus.

Platelet RNA isolation and library preparation
Platelets were isolated from blood collected in tubes con-
taining 3.2% sodium citrate, after a 2  cc discard. After 
a 15  min rest, the blood was centrifuged at 200  g for 
10  min to obtain platelet rich plasma (PRP). Following 
addition of Acid citrate dextrose (ACD) to the PRP in a 
1:10 ratio and a 10 min rest, the platelets were subjected 
to centrifugation at 1000  g for 10  min. The pellet was 
resuspended in  EasySep™ Buffer (STEMCELL Technolo-
gies) and incubated with microbeads to deplete leuko-
cytes and red blood cells using  EasySep™ Human CD45 

Depletion Kit II and  EasySep™ RBC Depletion Reagent 
respectively (STEMCELL Technologies). Efficiency of 
CD45 + cell and red blood cell depletion was confirmed 
by flow cytometry at the end of the isolation protocol. 
(Additional file 1: Fig S1). Isolated platelets were lyzed in 
500 μL  QIAzol™ (Qiagen) and stored at − 80 °C until use.

RNA was extracted using Direct-zol MicroPrep Kits 
(ZYMO RESEARCH) according to manufacturer’s 
instructions. RNA quality and quantity were determined 
using an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies). Sequencing libraries were generated with Clontech 
SMART-Seq HT kit (Takara Bio) for low input mRNA 
per manufacturer’s instructions. The obtained librar-
ies were quantified, normalized, pooled, and sequenced 
using the S1 100 flow cell on NovaSeq 6000 instrument 
(Illumina).

FCγRIIA genotyping
FCγRIIA genotyping was determined in purified DNA 
samples using Applied  Biosystems™  TaqMan™ SNP 
Genotyping Assay (SNP ID: rs1801274, Assay ID: 
C___9077561_20) and  TaqMan™ Genotyping Master 
Mix (Thermo Fisher). The obtained results were analyzed 
using allelic exclusion technique on Applied  Biosystems™ 
Genotyping Analysis software.

Data preprocessing
FASTQ files from RNA-sequencing were processed using 
the Seq-N-Slide pipeline [26]. Briefly, reads quality was 
assessed using FASTQC [27], fastqscreen [28], and pic-
ard [29]. Samples were then aligned to the hg38 genome 
using STAR [30], and reads were quantified using fea-
turecounts [31].

Bioinformatic and statistical analyses
All analyses were performed in R. Differential expres-
sion analyses were all performed using DESeq2 [32]. 
All figures including heatmaps, scatterplots, boxplots, 
and upset plots were created using a combination of 
ggplot2 [33] and ComplexHeatmap [34]. The modular 
gene framework was created using Weighted Gene Co-
expression Network Analysis (WGCNA) [35]. WGCNA 
eigengene values are the first principal component for 
the expression of the module, and are conceptualized as 
the directional relative co-expression of the entire mod-
ule. Annotation of our modular gene network was per-
formed using hypergeometric Gene Set Enrichment 
Analysis (GSEA) tests using Gene Ontology (GO) terms 
from the Molecular Signatures Database (MsigDB). Gene 
Set Enrichment Analysis (GSEA) [36] for our differen-
tially expressed genes was performed using clusterpro-
filer, [37] and enriched for pathways provided by MSigDB 
[38] via the msigdbr [39] package. The Disease Activity 
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Table 1 Description of cohort

Descriptive characteristics of the SLE and control cohort. In addition, for the SLE cohort, ACR criteria, SLEDAI domains, medication usage, predominant disease 
category and progression status are also included. Percentages are based on available assessment data

Category Feature Control (N = 18) SLE (N = 51) p. value

Age mean (± sd) 42.06 (15.65) 41.14 (12.35) 0.823

Gender Female, N (%) 18 (100) 51 (100) 1

Ethnicity Hispanic/Latino, N (%) 4 (22.2) 23 (45.1) 0.071

Race Asian, N (%) 1 (5.6) 12 (23.5) 0.132

Black or African American, N (%) 6 (33.3) 12 (23.5)

White, N (%) 10 (55.6) 27 (52.9)

More than one race, N (%) 1 (5.6) 0 (0)

Genotype Homo ancestral, N (%) 4 (22.2) 12 (23.5) 0.993

Hetero variant, N (%) 8 (44.4) 22 (43.1)

Homo variant, N (%) 6 (33.3) 17 (33.3)

SLE Only

N available N (%) Dose (± sd)

Medication Prednisone, N (%), mg 51 12 (23.5) 6.88 (3.04)

Hydroxychloroquine, N (%), mg 51 41 (80.4) 351.22 (84.03)

Azathioprine, N (%), mg 51 5 (9.8) 85 (33.54)

Mycophenolate mofetil N (%), mg 51 13 (25.5) 2269.23 (753.20)

Methotrexate, N (%), mg 51 2 (3.9) 13.75 (8.84)

Benlysta, N (%), IV 51 4 (7.8) NA

SELENA SLEDAI Domains Seizure 51 0 (0)

Psychosis 51 0 (0)

Organic brain syndrome 51 0 (0)

Visual disturbance 51 0 (0)

Cranial nerve disorder 51 0 (0)

Lupus headache 51 0 (0)

Cerebrovascular accident 51 0 (0)

Vasculitis 51 0 (0)

Arthritis 51 2 (4.1)

Myositis 51 0 (0)

Hematuria 50 4 (8.0)

Proteinuria 51 13 (25.5)

Pyuria 51 3 (5.9)

Rash 51 8 (15.7)

Alopecia 51 4 (7.8)

Mucosal ulcers 51 0 (0)

Pleurisy 51 0 (0)

Pericarditis 51 0 (0)

Low complement 51 25 (49)

Increased DNA binding 49 23 (46.9)

Fever 51 0 (0)

Thrombocytopenia 50 3 (6)

Leukopenia 51 5 (9.8)

SLEDAI Total mean (± sd) 51 4.24 (4.12)

Predominant Disease Category Active lupus nephritis, N (%) 47 13 (27.7)

Active musculoskeletal disease, N (%) 47 2 (4.3)

Predominately active cutaneous disease, N (%) 47 4 (8.5)

Predominately hematologic activity, N (%) 47 7 (14.9)

Clinically inactive disease and either ds‑DNA or low 
complement N (%)

47 13 (27.7)

Clinically and serologically inactive disease, N (%) 47 8 (17)
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Progression score was derived using singscore [40]. 
Briefly, singscore calculates stable expression based score 
for single samples using a ranked expression table and an 
“upSet” for upregulated genes of interest and a “down-
Set” for downregulated genes of interest. The single score 
is the “TotalScore” which is the aggregate measure of 
expression of both the up and down gene sets.

For machine learning for prediction of SLE we used 
five different ML models: (1) Generalized Linear Model 
(GLM), (2) xgBoost, (3) SVM with a radial kernel, (4) 
Random Forest, and (5) Lasso. For each of these tests, we 
measured performance success using the Area Under the 
Curve (AUC).

All pairwise statistical tests were performed using a 
Welch’s t-test unless otherwise noted. All correlational 
tests were performed using the nonparametric Spearman 
correlation unless otherwise noted. Multiple hypothesis 
correction was performed where applicable using the 
Benjamini–Hochberg method [41].

Results
Initiation and implementation of a platelet transcriptomic 
modular framework
RNA-sequencing was performed on platelets iso-
lated from 51 subjects with SLE (100% Female, Age: 
41.4 ± 13.2 years, 26.1% Black, 18.8% Asian, 53.6% White) 
and 18 controls (100% Female, Age: 42.06 ± 15.65 years, 
33.3% Black, 5.6% Asian, 55.6% White). (Table 1, Fig. 1A). 
Reads were processed, quantified, and then further fil-
tered for significantly expressed genes, resulting in 9769 
genes for downstream analysis. (Additional file  1: Fig 
S2A). Using the top 20% of varied genes, unsupervised 
hierarchical clustering was applied to sort the samples. 
The resulting heatmap showed separation between par-
ticipants with SLE and controls. (Fig. 1B).

Next, using Weighted Gene Co-expression Network 
Analysis (WGCNA), we aimed to reduce our genes down 
to a set of co-regulated modules to explore for specific 
signals that would be consistent across our SLE popula-
tion, and to find signals with higher variance within our 
heterogenous population. The resulting modules are 13 

blocks of genes ranging in size from 38 to 2070 genes 
and are each denoted by a specific color. The eigengene 
expression values from these modules are representative 
of the relative co-expression of the entire block of genes. 
We enriched for genes across 14,998 GO (Gene Ontol-
ogy) terms [42] and selected a representative descrip-
tive term for each module based on the GSEA (Gene Set 
Enrichment Analysis) results (Additional file 2: Table S1, 
Additional file 1: Fig S2B). Reducing our module’s expres-
sion to a single eigengene value, we summarized the 
expression of each module per sample. Clustering across 
all samples using this framework yielded robust separa-
tion between participants with SLE and controls. (Addi-
tional file 1: Fig S2C).

Using this modular framework, the population was 
divided into various subgroups to evaluate global tran-
scriptomic differences in the platelets isolated from sub-
jects segregated by different clinical characteristics. This 
applied framework is summarized in Fig.  1C, where we 
divided our population along several axes to address 
the following comparisons: (1) SLE vs controls, (2) SLE 
across ranges of disease activity as measured by SLE-
DAI (3) SLE with and without proteinuria (defined using 
a standard measure of a Urine Protein: Creatinine Ratio 
(UPCR) of > 0.5), and (4) high vs low binding FcγRIIA 
genotype [19].

The platelet transcriptome is significantly altered in SLE
Initial analyses focused on differences between the overall 
SLE cohort vs control samples. Evaluation of the platelet 
transcriptome between SLE and controls identified 2330 
genes differentially expressed between groups (adjusted p 
value < 0.05, |log2FC|> 0.5, 1175 upregulated, 1155 down-
regulated, Fig.  2A, Additional file  3: Table  S2). Many of 
the differentially expressed genes were upregulated inter-
feron related (IFI27, IFITM1, MX1, RSAD2, IFIT3, OAS1) 
and other immunoregulatory genes (LGALS3BP, IL1RN, 
PARP12). Unsupervised clustering analysis using these 
differentially expressed genes was used to confirm the 
discernability of the lupus platelet transcriptome from 
the healthy one (Fig. 2B).

Fig. 1 Initiation and Implementation of a Platelet Transcriptomic Modular Framework. A Schematic of the cohort and workflow. 51 SLE samples 
and 18 control samples were collected, and patients were assessed on SLE criteria and other baseline characteristics. Platelets were extracted from 
blood samples, and RNA‑sequencing and FCGR2a genotyping was performed. B Heatmap of our RNA‑seq cohort with samples along the x‑axis 
and genes along the y‑axis. Samples are annotated along the horizontal axis for cohort, age, race, FcγRIIA genotype, and SLEDAI and predominant 
disease category for SLE patients. Clustering of samples was performed using the top 20% of varied genes, the genes in the heatmap are those that 
composed the gene modules as determined by WGCNA. C Reduction of our RNA‑seq cohort down to average eigengene values per subgroup. In 
order: The Cohort columns show the average eigengene value for patients in our Control subgroup and SLE subgroup. The SLEDAI Ranges columns 
show the average eigengene value for our SLE patients within each range of SLEDAI values (0, 1–3, ≥ 4). The SLEDAI Proteinuria columns show the 
average eigengene value for our SLE patients who have proteinuria (UPCR > 0.5) and those who do not. The FcγRIIA genotype columns show the 
average eigengene value for patients with each respective FcγRIIA genotype (HH, HR, RR). Cohort comparisons with a statistical test’s p value < 0.05 
are denoted with an asterisk. Pairwise comparisons (Cohort, Proteinuria) were performed using a t‑test and threeway comparisons (SLEDAI Ranges, 
FcγRIIA genotype) were performed using an ANOVA test

(See figure on next page.)
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GSEA was performed on the differentially expressed 
genes. There were several enriched immune related path-
ways; interferon Gamma Response and Interferon Alpha 
Response were the most enriched pathways (NES = 3.48, 

adj. p = 0.001; NES = 2.86, adj. p value = 0.001 respec-
tively). TNFa Signaling, IL6/JAK STAT3 Signaling, and 
Inflammatory Response were also all enriched in SLE 
versus controls. Notably, relevant to platelet functional 
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Fig. 2 The Platelet Transcriptome is Significantly Different in SLE Subjects vs Controls. A Volcano plot of the differential expression between SLE 
subjects and controls. Red dots are upregulated genes with adjusted p. value < 0.05, dark red dots also pass a threshold of a log2foldchange > 0.5. 
Blue dots are downregulated genes with adjusted p. value < 0.05, dark blue dots also pass a threshold of a log2foldchange < ‑0.5. B Heatmap 
demonstrating unsupervised clustering of differentially expressed genes resulting in separation of our cohort by disease status. C Gene set 
enrichment analysis for the HALLMARK MSigDB pathways using the differentially expressed genes between our SLE and control cohort. The x‑axis 
shows the normalized enrichment score (NES), and the color of the bar shows the adjusted p. value for the enrichment value. D Gene module 
scores for the Tan (interferon response) and the E Greenyellow (WNT Signaling and RNA splicing) modules across our entire cohort of patients. 
F Venn diagram of our feature selection process for genes to use in our machine learning model. We selected for genes that were differentially 
expressed (adjusted p. value < 0.05, red circle), genes with transcription correlated with SLEDAI values (p. value < 0.05, blue circle), and genes that 
belonged in either our Tan or Greenyellow modules (green circle). G ROC curves for a Random Forest model using our selected gene set [Blue line, 
AUC: 0.97 (0.92–1)] and a Random Forest model using a random equivalently sized gene set [Black line, AUC: 0.6, (0.33–0.87)]
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responses, the pathway for Coagulation was enriched in 
SLE, but more modestly than those related to interferon 
response and immune activation (NES = 1.52, adjusted p 
value = 0.047; Fig. 2C).

When analyzing the modular framework, there were 
two modules that were (1) significantly different between 
SLE and controls, and (2) significantly correlated with 
disease activity as measured by SLEDAI. Both the inter-
feron response (Tan) and the WNT Signaling and RNA 
splicing (Greenyellow) modules were significantly dif-
ferent between SLE and controls (p value = 2.67e-6) and 
significantly correlated with SLEDAI (Tan: R = 0.41, 
P = 0.003; Greenyellow: R = 0.33, P = 0.02; Fig.  1C, 
Fig. 2D, E).

To investigate the value of the platelet transcriptome 
in distinguishing participants with SLE from controls, 
we employed machine learning algorithms. The selected 
panel of genes were those that fulfilled the following cri-
teria: (1) differentially expressed between SLE and con-
trols (adjusted p value < 0.05, N = 3,291), (2) significantly 
correlated with SLEDAI (p < 0.05, |R|> 0.27, N = 1275), 
and (3) included in the interferon response (Tan) or the 
WNT Signaling and RNA splicing (Greenyellow) mod-
ule (N = 155). Thirty-one genes met all these criteria 
and were selected for our confirmatory machine learn-
ing analysis (Fig. 2F; Additional file 4: Table S3). We used 
60/40 balanced splits that were split into 10 random folds 
and followed by a fivefold cross validation. For this SLE-
specific algorithm, accuracy was 0.89. and the area under 
the curve was 0.97 (95% confidence interval 0.92 to 1.00; 
Fig. 2G). Other models are included in Additional file 1: 
Fig S3A. In contrast, a model with thirty-one randomly 
selected genes performed significantly more poorly 
(AUC: 0.6 (0.33–0.87), Fig. 2F, Additional file 1: Fig S3B).

Subjects with proteinuria have a distinct platelet 
transcriptome
While we observed a clear signature that differentiated 
participants with SLE from controls, one of the major 
challenges in SLE is clinical heterogeneity. Proteinuria 
in the context of lupus nephritis is one of the most com-
mon and severe manifestations of SLE. We therefore 
focused our analysis on those with proteinuria at the time 
of blood draw as defined by a UPCR > 0.5 on random or 
24  h collection. First, we performed differential expres-
sion analysis between SLE patients with versus without 
proteinuria. (Additional file 5: Table S4, Additional file 1: 
Fig S4A) We then compared this signature with the SLE 
overall signature derived previously in Fig. 2B. (Fig. 3A). 
Genes that were increased in SLE (vs control) and in 
those with proteinuria (compared to those without) are 
found in the upper right quadrant (N = 111, red). Genes 
that were increased in SLE but decreased in proteinuria 

are in the lower right quadrant (N = 94, orange). GSEA 
of the genes that were up in SLE regardless of proteinuria 
were enriched for pathways related to immune effector 
processes and interferon response and signaling (Fig. 3B). 
In contrast, genes that were up in SLE, but down in 
active proteinuria, were enriched for pathways related to 
regulation of coagulation and plasminogen, and TGFB1 
(Transforming Growth Factor-Beta 1) production.

Consistent findings were seen in our modular frame-
work. Figure  3D shows the differential values for each 
module when comparing SLE versus controls, and SLE 
with versus without proteinuria. As shown previously, 
when comparing transcriptomic modules between all 
our SLE participants and controls, there are many dif-
ferentially regulated modules, with some key upregulated 
modules enriched for pathways involved in platelet acti-
vation, coagulation, and interferon response. When com-
paring SLE with versus without proteinuria, two modules 
indicative of platelet activation, oxidative phosphoryla-
tion (Red) and kinase activity (Purple) are both decreased 
in lupus patients with proteinuria. (Fig. 3E, F). Moreover, 
both the oxidative phosphorylation and kinase activity 
modular expression, are negatively correlated with the 
level of proteinuria (Fig. 3G, H).

The low‑binding FcγRIIA recessive allele associates 
with a decrease in FcγRIIA signaling pathways and clinical 
activity
Accumulating data demonstrates the contributing role 
of the FcγRIIA in platelet activity, impaired vascular 
health, and disease activity in patients with SLE [20, 21]. 
The low-binding H131R variant in subjects with SLE has 
been associated with worse disease outcomes, and con-
sistently, 12 of the 13 participants with proteinuria in 
our cohort carried a low binding H131R allele. Of note, 
possession of the low binding H131R variant allele was 
observed in 39 of 51 (76%) participants with SLE and 14 
of 18 (78%) controls (fisher test p value: 0.15).

The FC Receptor activation and costimulation module 
(Salmon) was significantly downregulated in SLE versus 
controls (p value = 2.88e-4). However, there was no asso-
ciation between this module and SLEDAI (Additional 
file 1: Fig S5A, B). When our population was stratified by 
FcγRIIA genotype, a different observation was noted for 
participants with SLE than controls. SLE subjects showed 
a significant decrease in the FC Receptor activation gene 
module when they possessed one or two copies of the 
low binding R variant allele (p value = 1.17e-6 for HR vs 
HH; p value = 9.46e-8 for RR vs HH).In contrast, there 
were no significant differences in the FCR activation gene 
module based on genotype among controls. (Fig.  4A). 
Exploration of the salmon eigengene demonstrates strong 
consistency of signal for each of the individual genes as 
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Fig. 3 Lupus Subjects with Proteinuria have a distinct Transcriptome from a Generalized Lupus Signature A Scatterplot showing the signed 
‑log10(p. value) values for the differential expression of SLE vs control (x‑axis) and the differential expression of lupus patients with proteinuria vs 
lupus patients without proteinuria as defined by UPCR > 0.5. Genes in the red square are up in both SLE vs control, and proteinuria vs no proteinuria 
(N = 111), while genes in the orange square are up in SLE vs control, but down in proteinuria vs no proteinuria (N = 94). B Gene set enrichment 
analysis for genes that were up in SLE vs control and up in proteinuria vs no proteinuria. C Gene set enrichment analysis for genes that were up in 
SLE vs control and down in proteinuria vs no proteinuria. D Gene module framework with values demonstrating the difference in average module 
expression for SLE vs control, and proteinuria vs no proteinuria. Boxes annotated with a yellow star are those modules that were significantly 
different in their respective comparison. E Gene module scores for the Red (Oxidative Phosphorylation) and the E Purple (Kinase Activity) modules 
across our entire cohort of patients, annotated as controls, SLE patients with no proteinuria, or SLE patients with proteinuria. G, H are scatterplots 
comparing UPCR values vs the transcription of the Red and Purple gene modules
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well. With regards specifically to FCR activity, it is noted 
that FYN and LYN, which are key regulators in FCR sign-
aling [43], are both significantly altered by the variant 
allele in SLE patients, but not significantly so in control 
patients (Additional file 1: Fig S5C).

The FC Receptor activation and costimulation module 
(Salmon) showed a negative correlation with other mod-
ules. The FC Receptor activation (Salmon) module was 
significantly inversely correlated with the oxidative phos-
phorylation module (Red), leukocyte mediated response 
module (Brown), platelet activity and coagulation module 
(Yellow) and protein assembly and localization module 
(Blue) (Fig. 4B).

We performed differential expression in our SLE cohort 
using pairwise comparisons of the FcγRIIA genotype: 
homozygous ancestral high-binding allele (HH), het-
erozygous variant low-binding allele (HR), and homozy-
gous variant low-binding allele (RR). Consistent with 
variant dominance biology, the biggest differences in the 
platelet transcriptome were observed when comparing 
those with the RR allele vs those with the HH allele (1,135 
differentially expressed genes, p value < 0.05), followed by 
HR vs HH (493 differentially expressed genes) and finally 
RR vs HR (261 differentially expressed genes) (Fig.  4C). 
When we performed GSEA on genes that were increased 
in participants with at least one copy of the low bind-
ing R variant allele (either RR vs HH, or HR vs HH), we 
found strong enrichment for immune related pathways, 
such as leukocyte mediated response, respiratory burst, 
and RAGE Receptor Binding (adjusted p value < 0.05) 
(Fig. 4D).

Our modular framework stratified by SLE versus 
control, and by FcγRIIA genotype is noted in Fig.  4E. 
Among SLE and controls homozygous for the high-
binding ancestral allele (HH), many of the differences 
previously observed in SLE versus controls are no longer 
present. The only significantly difference between SLE 
and controls is the interferon signaling (Tan) module 
(p value =  < 0.01, Fig.  4F). In contrast, among SLE and 
controls with at least one copy of the low-binding vari-
ant allele, many differences emerge. This is exemplified 
by the platelet activity and coagulation (Yellow) and leu-
kocyte mediated response (Brown) modules. While both 
modules are not different between SLE and controls car-
rying HH for FcγRIIA (p = 0.65 for Yellow, p = 0.77 for 
Brown), there are significant differences in these modules 
between SLE and controls carrying at least one copy of 
the low binding allele (p = 2.03e-4 for Yellow, p = 1.38e-3 
for Brown) (Fig.  4G). An exploration of interaction 
between SLE diagnosis and the possession of a variant 
allele was performed using a ranked linear model that 
included an interaction term for SLE and an FCGR2a 
variant. While limited by population size to perform 

such an analysis, we see similar results with alterations in 
platelet activation pathways occurring most significantly 
in patients with both SLE and a variant allele (Additional 
file 1: Fig S5D).

These data reinforce an important synergistic effect of 
the FcγRIIA variant. While SLE patients have upregula-
tion of interferon activity regardless of FcγRIIA status, 
among individuals with the FcγRIIA low binding allele, 
a robust transcriptomic shift with upregulation in many 
inflammatory pathways, including platelet activity and 
immune activation, was observed.

A novel platelet transcriptomic score associated 
with a change in disease activity
Tracking clinical manifestations of SLE activity and pair-
ing clinically relevant disease and shifts in disease state 
to transcriptomic data may aid in the understanding 
and prediction of SLE progression. To assess whether 
the platelet transcriptome predicts SLE clinical activity 
changes in an intermediate timeframe, patients were cat-
egorized based on their dominant SLEDAI domain at the 
time of the blood draw and follow-up within 3 months if 
clinically available. (Fig. 5A).

Using the predominant disease categories defined 
within the Methods section, we classified SLE patients 
into two clinical disease categories: (1) inactive clini-
cal disease (defined by no clinical SLEDAI domain but 
could be serologically active with anti-DNA and/or low 
complements); and (2) active clinical disease (defined by 
clinical symptoms such as rash, arthritis, nephritis, or 
any other clinical SLEDAI domain). We performed dif-
ferential expression between SLE participants with active 
clinical disease (N = 26) versus inactive clinical disease 
(N = 21) at the time of blood draw. There were signifi-
cant differences in the platelet transcriptome between 
active versus inactive SLE (397 upregulated genes, 279 
downregulated genes, p value < 0.05, Fig. 5B). Differential 
analysis results were not significantly altered when drugs 
were included as covariates in the model. GSEA on these 
differentially expressed genes showed pathways consist-
ent with the defined SLE signature, with enriched path-
ways of interferon response, TNFa Signaling via NFkB, 
and inflammatory response in participants with active 
clinical disease (Fig. 5C).

Next, we created a single value representative of an SLE 
active clinical disease signature using singscore based 
on the differentially expressed genes, where we used our 
397 upregulated genes as the “upSet” and the 279 down-
regulated genes as the “downSet” [40] (Additional file 6: 
Table S5). To test the applicability of the collapsed score, 
we reapplied the singscore-developed active clinical 
disease score to our cohort. The score was significantly 
different between patients with active clinical disease 
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Fig. 5 A Novel Platelet Transcriptomic Score associated with a change in Lupus Activity A Sankey diagram showing our cohort at the initial 
timepoint by disease status, active clinical disease status, and then active clinical disease status within 3 months of follow‑up. Controls are P0, P1 
are patients that remained inactive (N = 4), P2 are patients that had clinical flares of disease (N = 2), P3 are patients that improved disease activity 
(N = 4), and P4 are patients that remained active (N = 11). B Volcano plot for the differential expression between SLE patients with active clinical 
disease vs no active clinical disease. C GSEA for the differential expression of active clinical disease vs no active clinical disease. D SLE Active Clinical 
Disease Score for our cohort, divided into controls, and patients with inactive clinical disease and active clinical disease. E Scatterplot of patients 
showing a correlation between the disease progression cohort and the SLE Active Clinical Disease Score. Blue dots are control patients (P0), purple 
dots are patients with inactive disease at point of collection (P1), purple dots with orange outlines are patients who were inactive at collection, but 
transitioned to active clinical disease within 3 months (P2), orange dots with purple outlines are patients who with active clinical disease at baseline 
and transitioned to inactive clinical disease within 3 months (P3), and solid orange dots are patients with active clinical disease at the point of 
sample collection and remained active within the 3 month follow‑up (P4)
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vs inactive clinical disease (p value < 2.30e-7; Fig.  5D). 
Notably, when the signature was applied to our control 
patients (not involved in the derivation of the signature), 
there was no significant difference between patients 
without active clinical disease at the time of blood draw 
and healthy controls. (p = 0.72; Fig. 5D).

Twenty-one SLE participants had their clinical disease 
assessed at baseline and within 3  months of follow-up. 
Among 15 SLE participants with active clinical disease at 
baseline, 11 remained active and 5 transitioned to inac-
tive (the clinical domain was no longer present). Of the 6 
SLE participants who were clinically inactive at baseline, 
4 remained inactive and 2 experienced a clinical flare and 
transitioned to active (Fig.  5A). We are limited by the 
number of patients that fit into these distinct disease pro-
gression cohorts to perform pairwise comparisons; how-
ever, we note that the SLE active clinical disease score 
was correlated with changes in disease activity. (Fig. 5E).

Discussion
The application of sequencing technology to blood and 
its components is a means of applying cutting-edge tech-
nology to help answer fundamental questions. Pathol-
ogy in SLE is complex and heterogenous, and the flaring 
of disease coupled with its complex presentation makes 
understanding its pathophysiology a significant chal-
lenge. Platelets confer important contributions to inflam-
mation and immune regulation, and their well described 
role in vascular homeostasis, means that these circulating 
cells may inform our understanding of SLE.

Beyond interferon signaling in SLE pathology
It has been known for over a decade that patients with 
SLE exhibit evidence of type I Interferon signaling as 
reflected by increased Interferon Stimulated Genes 
(ISGs) in peripheral blood monocytes and elevated lev-
els of the cytokine being produced by cells and measured 
across various tissues [44–46]. These results are mir-
rored in our platelet transcriptomics, where SLE subjects 
showed upregulation of interferon related genes (IFITM1, 
IFI27, RSAD2, IFIT3, LGALS3BP) and the most enriched 
for pathways amongst the differentially expressed genes 
were interferon gamma response and interferon alpha 
response. Furthermore, when our platelet transcriptome 
was labeled via our novel WGCNA framework, one of 
the most consistently differentially regulated gene mod-
ules was our Tan module, the module most enriched for 
interferon response.

Our transcriptomic analysis also demonstrated sig-
nificant dysregulation in other immune related path-
ways such as TNFa Signaling via NFkB, Inflammatory 
Response, and IL6/JAK-STAT3 Signaling. The modu-
lar framework, described above, allows us to analyze 

interferon signaling with a specific module (Tan), while 
also being able to explore other effects that SLE has on 
the platelet transcriptome via other pathways and mod-
ules. So, while IFN activity and response are a strong and 
consistent signal in SLE, it is clear from our analyses that 
we can parse and analyze several other immunoregula-
tory pathways, and platelet specific activation and vascu-
lar homeostatic pathways.

The changing behaviors of platelet transcriptomics 
with regard to lupus patients with proteinuria
The shifting results regarding enrichment of pathways 
involved in coagulation are of particular interest. We see 
that in the initial exploration of SLE vs controls, the coag-
ulation pathway is positively enriched in SLE. However, 
it is notable that its enrichment is less significant when 
compared to other immune pathways. This suggests a 
possible heterogeneous effect; while immune dysregula-
tion is present in all SLE patients, there are subpopula-
tions that exhibit different changes in the transcriptional 
profiles related to coagulation, which leads to the lesser 
enrichment of this pathway. This heterogeneity of dis-
ease was supported when the transcriptome of our active 
lupus was explored in patients with proteinuria. Our anal-
ysis demonstrates that genes that are highly expressed in 
SLE vs controls and increased in SLE patients with versus 
without proteinuria, are enriched for the kind of classical 
SLE pathology seen previously: interferon response sign-
aling, lymphocyte migratory signaling, and NFkB sign-
aling. But the genes enriched in SLE, yet down in lupus 
patients with proteinuria included those in coagulation 
and wound response related pathways.

Taken together with the fact that the gene modules 
enriched for oxidative phosphorylation and kinase 
activity, pathways often associated with activation, are 
downregulated in our lupus patients with proteinuria, 
an emerging picture supports that that in patients with 
proteinuria there is a decrease in many platelet tran-
scriptomic activity pathways. While pathways related 
to coagulation and platelet activity are increased in our 
SLE population, there is a surprising reversal in platelet 
activity modules in patients with proteinuria, such that 
when patients evolve to this more severe manifestation, 
there is a decrease in platelet activation pathways. It 
remains unknown if this is a compensatory change or a 
premonitory change. Due to the complexity of medica-
tion dosage and variety, it is difficult to separate out drug 
effects. Notably though, medication use was not statisti-
cally significantly different between those lupus patients 
with proteinuria and those without. Nevertheless, we 
performed differential analysis that included medication 
use as covariates, and the results showed a very similar 
signature of differential expression (correlation R value of 
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log2FC values = 0.97, data not shown). Furthermore, this 
shift has been reported clinically as well, where the type 
of chronic platelet activation that is seen in patients with 
SLE leading to platelet exhaustion [47].

The validation of omic data with phenotypic response 
creates a complete picture that may help explain SLE 
pathophysiology from molecular underpinnings to 
actionable biomechanisms. Demonstrating that the SLE 
modules decreased in lupus patients with proteinuria 
also correlated with the level of proteinuria levels sug-
gests the potential for molecular profiling to better 
predict and track the activity of disease outside of tradi-
tional lab measures. Furthermore, the fact that modular 
transcription correlated with UPCR levels below the 0.5 
level as well means that these modules may be able to 
track disease progression earlier and at subclinical levels, 
allowing for more immediate clinical action.

The implications of FcγRIIA genotype in the disease 
activity and progression of SLE
FcγRIIA, encoded by the FCGR2a gene, is a key recep-
tor for communication between platelets and the sur-
rounding immunological milieu [17]. FcγRIIA binds the 
FC portion of antibodies, which then initiates a signaling 
pathway that creates a responsive role in platelets to their 
microenvironment. FcγRIIA allelic status has been estab-
lished as a risk factor in the disease activity of lupus [48, 
49]. Previous data from our group found an association 
between the low-binding variant alleles of FcγRIIA with 
platelet activity and subclinical CVD [21]. Our current 
analysis shows that the low-binding allele is associated 
with the expected effect of lower transcription of our 
module enriched for FCR activation (salmon). Interest-
ingly, this model is inversely correlated with modules of 
platelet activation and immune response. Consistently, 
studies have observed that the variant low-binding allele 
is associated with poor clinical outcomes, activated plate-
lets, and increased immune stimulation [21]. It follows 
that the low-binding allele would lead to less FC signal-
ing cascade activity. In total, this illustrates a process of 
the low-binding allele leading to less FC signaling, which 
is then associated with increased pathway expression of 
platelet activation and immune response, which leads to 
worse disease.

Differential expression within our SLE cohort of 
patients who are homozygous ancestral (HH), heterozy-
gous (HR) and homozygous variant (RR) illustrates 
a variant dominance effect, where RR patients were 
most different from HH subjects. Gene set enrichment 
of genes that were differentially expressed in subjects 
with at least one low-binding allele (HR or HH) versus 
subjects homozygous for the high-binding allele (RR) 
revealed enrichment for immune activation pathways, 

further showing that the low-binding variant associates 
with an increase in transcription of pathways related to 
immune activation.

Based on our findings, we stratified our modular tran-
scriptomic framework by FCGR2a allelic status. The 
interferon module was increased in SLE regardless of 
FCGR2a status. However, differences in immune acti-
vation, platelet activation, and coagulation were only 
increased in SLE patients who possessed a low binding 
variant allele (HR or RR).

While this warrants further investigation, we posit two 
possible theories. The first one, which is less likely, is that 
the FC signaling cascade in platelets is in fact inhibitory, 
such that when a low-binding allele leads to less FC sign-
aling, the inhibitory effect is lost which leads to activation 
of platelets and an increase immune response. Alterna-
tively, a more likely possibility is that the low-binding 
allele is leading to less clearance of immune complexes. 
This increase in immune complex prevalence leads to 
activation of complement and platelets in their immune 
and vascular homeostatic roles. These changes are then 
reflected in in the transcriptome, and in the proceeding 
SLE sequelae in the form of worsening disease, and an 
increased inflammatory and immune activated state.

Predicting the progression of SLE disease activity
It is well appreciated that the prediction of SLE flares 
would allow for more targeted management of disease, 
potentially leading to better outcomes in SLE. SLE-
DAI, despite being a validated instrument to assess SLE 
disease activity, is a point system in which domains are 
scored whether the clinical manifestation is severe or 
mild (e.g., near cardiac tamponade from pericardi-
tis scores and simple alopecia both score as 2). To bet-
ter appreciate clinical associations, we assessed patients 
according to different manifestations which dominated 
the overall clinical phenotype. This rating system allows 
clinicians to better assess the patient-centered chief com-
plaint, as opposed to using a scoring system that does not 
consider the specific clinical implications of an individu-
al’s presentation.

When we used this delineating system, we were able 
to create a signature of disease flare that was reduced 
to a single score. Interestingly, even though con-
trols were not considered when deriving the score, 
this score was not significantly different between our 
healthy controls and SLE with inactive clinical disease. 
This would indicate that from a transcriptomic point 
of view, the signature captures genes that only change 
in the presence of clinical disease manifestations and 
are not different between SLE patients with no clini-
cal disease, and healthy non-SLE controls. For the 
purposes of tracking active clinical disease, this was 
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an intriguing preliminary finding suggesting a novel 
means of using the platelet transcriptome to capture 
SLE patients with clinical activity. Furthermore, this 
score showed a very significant difference in those that 
had active clinical disease vs those with inactive clini-
cal disease.

We acknowledge that the finding of tracking flares of 
disease is underpowered with too few patients to make 
definitive statements. Regardless, the longitudinal fol-
low-up available in our SLE cohort allowed for reassess-
ment of disease state within 3 months and was available 
for 21 patients. The majority had no changes in their 
clinical disease status, but a subset of patients had 
changes in a clinical domain being scored or not scored 
at baseline and subsequent visit. When we assigned the 
various disease states on an ordinal scale, there was a 
robust correlation, with patients who changed their dis-
ease state falling in between those who remained active 
and those who remained inactive.

Altogether, these data support the potential for a 
platelet RNA-seq based scoring metric, which may dis-
tinguish patients not only who have active clinical SLE 
phenotypes vs those without but can potentially aid in 
determining whether SLE participants will flare or not 
based on the changes of their SLE Active Clinical dis-
ease score. Future studies will need to validate these 
findings and investigate whether clinical decision mak-
ing should be modified based on this score.

Limitations of the study
There are several limitations to acknowledge. Consist-
ent with typical SLE presentation, [22] our cohort is 
exclusively female, future studies are required to assess 
if our findings are impacted by biologic sex. In addi-
tion, drug effects are always of concern in studies of 
subjects with autoimmune disease, and while medica-
tion use did not appear to confound our analyses, we 
were not powered to adequately incorporate medica-
tion use into each analysis. As far as the clinical mani-
festation of SLE, analyses were focused on the overall 
SLE signature, and lupus patients with proteinuria. 
The current cohort does not have sufficient patients 
with other manifestations such as arthritis since non-
steroidal medications were an exclusion criterion for 
individualized analyses, but further enrollment will 
allow for a similar symptom specific analysis to be per-
formed. Our final analysis where we analyzed differ-
ences between active and inactive clinical disease relied 
on nominal P values as the differences were more subtle 
than those seen when comparing SLE vs control. Lastly, 
we acknowledge the analysis with regards to patients 
changing clinical disease statement is underpowered.

Conclusion
The complex pathophysiology of SLE makes elucidat-
ing the biomolecular underpinnings a challenge. There-
fore, using cutting-edge technology such as RNA-seq 
on accessible blood derivatives such as platelets is an 
attractive avenue to gain insight into this disease. Plate-
lets are readily accessible and play key roles in vascular 
homeostasis and endothelial health, both of which con-
tribute to SLE pathophysiology.

These data support that platelet transcriptomics 
in SLE are not only significantly and widely different 
from healthy platelets, but also vary in nuanced ways 
with regards to specific disease manifestations such as 
proteinuria. Lupus patients with proteinuria, appear to 
demonstrate a paradoxical shift of their platelet tran-
scriptomics with decreases in modules associated with 
platelet activation. Low-binding variants of FcγRIIA 
synergize with SLE to create more substantial tran-
scriptomic changes, with implications of a low-binding 
FcγRIIA variant leading to less FC activation and over-
all being associated with increases in transcriptomic 
activity indicative of immune and platelet activation. 
Finally, a novel platelet transcriptome classification 
system can capture the disease state of each patient 
and can help in the effort to predict changes in disease 
activity.
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variant (RR) (purple). (C) Heatmaps of the individual genes that make up 
the Salmon gene module separated into the SLE and control cohort, and 
annotated by the FcγRIIA genotype. Annotation columns are included to 
show whether or not the individual genes are differentially expressed for 
each respective comparison. (D) Forest plot for the coefficient value of 
each term when modeling diagnosis and variant allele against eigengene 
expression. Asterisked colors indicated significant association of the 
feature with the eigengene.
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Additional file 2: Table S1. Table with the results of GO term enrichment 
for each of the gene modules output from WGCNA. Columns include the 
module/GO term combination, then the module, the number of genes in 
the module, the p .value and adjusted p. value for the enrichment test of 
the GO term within the module, the gene ratio for the enrichment test, 
the ontology database used, and then the ID of the GO term.

Additional file 3: Table S2. Table with the results of the differential 
expression analysis comparing the SLE cohort with the control cohort. 
The columns are the gene; the average expression of the gene across 
all samples; the log2foldchange between the two groups with positive 
values indicating increase in the SLE cohort; the standard error of the 
log2foldchange; the Wald statistic; and then the p. value and the adjusted 
p. value for the comparison.

Additional file 4: Table S3. The genes selected for machine learning for 
the prediction between SLE and control that filled the criteria of (1) Differ‑
entially expressed between SLE and control, (2) correlated with the SLEDAI 
values of patients, and (3) part of the greenyellow or tan module.

Additional file 5: Table S4. Table with the results of the differential 
expression analysis comparing the patients with proteinuria vs those 
without within the SLE cohort. The columns are the gene; the average 
expression of the gene across all samples; the log2foldchange between 
the two groups with positive values indicating increase in the proteinuria 
cohort; the standard error of the log2foldchange; the Wald statistic; and 
then the p. value and the adjusted p. value for the comparison.

Additional file 6: Table S5. Table with two tabs, one for the “Upset” and 
one for the “Downset” that make up the genes that go into the singscore 
algorithm to derive the SLE active clinical disease score.
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