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Comprehensive analysis of scRNA‑Seq 
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in the tumor immune microenvironment 
of bladder cancer and establishes a prognostic 
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Abstract 

Background  The prognostic management of bladder cancer (BLCA) remains a great challenge for clinicians. 
Recently, bulk RNA-seq sequencing data have been used as a prognostic marker for many cancers but do not accu-
rately detect core cellular and molecular functions in tumor cells. In the current study, bulk RNA-seq and single-cell 
RNA sequencing (scRNA-seq) data were combined to construct a prognostic model of BLCA.

Methods  BLCA scRNA-seq data were downloaded from Gene Expression Omnibus (GEO) database. Bulk RNA-seq 
data were obtained from the UCSC Xena. The R package "Seurat" was used for scRNA-seq data processing, and the 
uniform manifold approximation and projection (UMAP) were utilized for downscaling and cluster identification. The 
FindAllMarkers function was used to identify marker genes for each cluster. The limma package was used to obtain 
differentially expressed genes (DEGs) affecting overall survival (OS) in BLCA patients. Weighted gene correlation 
network analysis (WGCNA) was used to identify BLCA key modules. The intersection of marker genes of core cells and 
genes of BLCA key modules and DEGs was used to construct a prognostic model by univariate Cox and Least Abso-
lute Shrinkage and Selection Operator (LASSO) analyses. Differences in clinicopathological characteristics, immune 
microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between the high and low-risk 
groups were also investigated.

Results  scRNA-seq data were analyzed to identify 19 cell subpopulations and 7 core cell types. The ssGSEA showed 
that all 7 core cell types were significantly downregulated in tumor samples of BLCA. We identified 474 marker genes 
from the scRNA-seq dataset, 1556 DEGs from the Bulk RNA-seq dataset, and 2334 genes associated with a key module 
identified by WGCNA. After performing intersection, univariate Cox, and LASSO analysis, we obtained a prognostic 
model based on the expression levels of 3 signature genes, namely MAP1B, PCOLCE2, and ELN. The feasibility of the 
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model was validated by an internal training set and two external validation sets. Moreover, patients with high-risk 
scores are predisposed to experience poor OS, a larger prevalence of stage III-IV, a greater TMB, a higher infiltration of 
immune cells, and a lesser likelihood of responding favorably to immunotherapy.

Conclusion  By integrating scRNA-seq and bulk RNA-seq data, we constructed a novel prognostic model to predict 
the survival of BLCA patients. The risk score is a promising independent prognostic factor that is closely correlated 
with the immune microenvironment and clinicopathological characteristics.

Keywords  Bladder cancer, scRNA-seq, Bulk RNA-seq, Prognosis, Immune landscape

Introduction
Bladder cancer (BLCA), referred to as urothelial car-
cinoma, is one of the most common incident urologi-
cal malignancies with more than 90% originating in the 
uroepithelium. It is estimated that more than 550,000 
new cases are diagnosed and more than 200,000 deaths 
per year [1]. It has become the fourth and tenth most 
common malignancy among men and women, respec-
tively [2]. There are two main types of BLCA pathologi-
cally, non-muscle-invasive bladder cancer (NMIBC) and 
muscle-invasive bladder cancer (MIBC). Approximately 
75% of patients initially present with NMIBC while the 
remaining 25% are diagnosed with MIBC [3]. The evi-
dence-based guideline recommends radical cystectomy 
with pelvic lymphadenectomy as the mainstay of treat-
ment for patients with high-risk NMIBC or MIBC [4]. 
Although patients receive aggressive treatment including 
surgery, immunotherapy, chemotherapy, and radiother-
apy, the 5-year overall survival (OS) rate remains unsat-
isfactory, with a median OS of approximately 14 months 
[5]. Reasons for this poor prognosis include delay in diag-
nosis and the lack of effective therapy. But most impor-
tantly, the unsatisfactory prognosis was closely related to 
the aggressive and highly proliferative capacity of cancer 
cells, as well as the heterogeneity of disease characteris-
tics. Therefore, there is a compelling urge to uncover the 
molecular mechanisms involved in tumourigenesis and 
thereby explore novel potential molecular biomarkers, 
which are essential for the early diagnosis, targeted ther-
apy, and prognostic assessment of BLCA patients.

With the rapid development of cancer genomics in 
recent decades, bulk transcriptome sequencing (bulk 
RNA-seq) has become a major tool for transcriptomics, 
and more and more gene alteration has been identified as 
an effective treatment target for BLCA [6]. For instance, 
Xie et al. found exonic circular circPTPRA could inhibit 
cancer progression through endogenous blocking of the 
recognition of IGF2BP1 to m6A-modified RNAs [7]. In 
addition, Yang et al. indicated that exosome-derived circ-
TRPS1 could modulate the intracellular reactive oxygen 
species balance and CD8+ T cell exhaustion via the circ-
TRPS1/miR141-3p/GLS1 axis in BLCA [8]. However, in 
contrast to bulk RNA-seq or microarray experiments, 

which probe average gene expression in cell populations. 
Currently, single-cell RNA-seq (scRNA-seq) elucidates 
information about cellular transcriptomic heterogene-
ity, allowing us to access underlying gene expression 
distributions [9, 10]. Using scRNA-seq, we can develop 
personalized therapeutic strategies that are potentially 
useful in cancer diagnosis and therapy resistance during 
cancer progression [11]. Xu et al. integrative analyses of 
scRNA-seq and scATAC-seq revealed CXCL14 as a key 
regulator of lymph node metastasis in breast cancer, 
which improves our understanding of the mechanism 
of tumor metastasis [12]. Besides, Obradovic A et  al. 
demonstrated that HNCAF-0/3 could reduce TGFβ-
dependent PD-1+TIM-3+ exhaustion of CD8+ T cells, 
increase CD103+NKG2A+ resident memory phenotypes, 
and enhance the overall cytolytic profile of T cells [13]. 
Given this advantage, numerous studies have focused on 
identifying potential biomarkers for BLCA by integrating 
bulk RNA-seq and scRNA-seq analysis, which could pre-
cisely stratify and recognize patients.

In this study, we performed systematic bioinformat-
ics analyses using scRNA-seq and bulk RNA-seq data to 
construct a prognostic model of BLCA patients, with two 
external validation cohorts to validate its ability to strat-
ify risk. Meanwhile, we outline the immune infiltration 
landscape and determine how it contributes to the devel-
opment of BLCA. Moreover, we deliberated the relation-
ship between the risk model and infiltrating immune cells 
to gain a better understanding of the potential molecu-
lar immunity process during the progression of BLCA. 
Overall, our study provides a novel insight that may ben-
efit the clinical management of BLCA.

Materials and methods
Data sources and processing
Bulk RNA-seq data, clinical information, and SNP muta-
tion site data of TCGA-BLCA were downloaded from 
the TCGA database (https://​portal.​gdc.​cancer.​gov/), 
containing 19 normal tissue samples and 411 BLCA sam-
ples. Samples with incomplete survival information and 
clinical information were excluded to obtain a training 
set of 406 BLCA patients for this study. The scRNA-seq 
dataset GSE129845 of BLCA was downloaded from the 
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GEO (https://​www.​ncbi.​nlm.​nih.​gov/) database, contain-
ing scRNA-seq of paracancerous tissues from 3 BLCA 
patients, the patients information and sequencing statis-
tics were shown in Additional file 9: Table S1. GSE13507, 
containing 165 BLCA patients with complete survival 
information, was also downloaded as external data to 
validate the model feasibility. The samples were inte-
grate using anchors method in the R package "Seurat" 
[14] and core cells were obtained by filtering scRNA-seq. 
Ineligible cells include genes that can only be detected in 
3 or fewer cells and low-quality cells with less than 200 
genes detected will be excluded from subsequent analy-
sis. Gene expression of core cells was normalized using 
a linear regression model, and then the top 2000 genes 
with highly variable characteristics were screened by 
ANOVA. Principal component analysis (PCA) was per-
formed on single-cell samples, and the top 20 principal 
components (PC) were selected for subsequent analysis. 
The umap algorithm [15] was used to perform an overall 
dimensionality reduction analysis on the top 20 PC pairs 
of samples. Using the R package "singleR" package [16], 
HumanPrimaryCellAtlasData, BlueprintEncodeData, 
and ImmuneCellExpressionData were used as reference 
data for auxiliary annotation, followed by the CellMarker 
database [17] and previous studies to find marker genes 
for manual annotation of different clusters.

Screening of core cells and functional enrichment analysis 
of their marker genes
The FindAllMarkers function in the Seurat package was 
used to find marker genes for each cluster by setting the 
parameters min.pct = 0.2 and only.pos = TRUE, and the 
Wilcoxon rank sum test was used to identify DEGs in the 
process of screening marker genes. Based on the signifi-
cantly different marker genes for each cell type, ssGSEA 
[18] scores were calculated for each cell type in the TCGA 
dataset (BLCA/normal) using ssGSEA, and the differ-
ences in scores between BLCA and normal samples for 
each cell type were analyzed by Wilcoxon, and cells with 
significant differences (p < 0.05) in the control and nor-
mal groups were recorded as core cells. The marker genes 
of core cells were enriched for GO and KEGG functions 
using the "clusterProfiler" [19] in R software, respectively. 
To explain the molecular mechanism of BLCA progres-
sion, pseudo-temporal analysis was performed on each of 
the seven cells using the Monocle 2 algorithm. CellPhone 
DB v2.0 was used to explore the potential interactions 
between core cells.

Identification and functional enrichment analysis of DEGs 
in TCGA‑BLCA
Differential analysis was performed on 19 control and 
411 disease data using the limma package. p_value < 0.05 

and |Log2FC|> 1 were designated as DEGs. The heatmap 
and volcano maps of DEGs were visualized using the 
ggplot2 [20] and pheatmap packages [21], respectively. 
Subsequently, the most significant enrichment pathways 
and biological processes of DEGs were investigated using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) analyses using the R software 
"clusterProfiler" package.

WGCNA analysis
In the training set, the genes associated with BLCA are 
filtered using the R package WGCNA [22]. First, the 
goodSamplesGenes function of the R package "WGCNA" 
is used to check whether the genes of the samples need 
to be filtered and to select a suitable soft threshold. Then, 
the co-expression network was constructed by setting 
the minimum number of genes per gene module to 300 
according to the criteria of the hybrid dynamic tree-cut-
ting algorithm. Finally, Pearson correlation coefficients 
were used to analyze the association of module signature 
genes (ME) with BLCA.

Construction and validation of a prognostic model
The mark genes of core cells and BLCA-related genes and 
DEGs were taken as the intersection set, and the obtained 
genes were defined as candidate genes. The 406 samples 
in the TCGA-BLCA dataset were divided into train-
ing and validation sets in the ratio of 7:3, with 7 as the 
training set (285 cases) and 3 as the validation set (121 
cases). Univariate Cox proportional risk regression analy-
sis was performed on candidate genes in the training set 
to screen the characteristic genes associated with prog-
nosis. Variables with p-values < 0.05 were included in the 
least absolute shrinkage and selection operator (LASSO) 
regression analysis, which was performed with the R 
software "glmnet" package [23] to reduce the number of 
genes in the final risk model. The prognostic model was 
constructed according to the formula: risk score = gene 
exp1 × β1 + gene exp2 × β2 + … + gene expression n × βn 
(gene expression denotes the gene expression value and 
β denotes the corresponding LASSO regression coef-
ficient). Patients’ survival curves and risk maps were 
visualized by the R software, "survminer" and "ggrisk" 
packages. The ROC curves were plotted using the "sur-
vROC" package [24] to assess the performance of risk 
scores in predicting OS at 1, 2, 3, 4, and 5 years in BLCA 
patients. In addition, the validity of the prognostic model 
was verified by the internal validation set and external 
datasets GSE13507 and GSE32548.

Analysis of subtype clinical characteristics
Samples with multiple clinicopathological characteristics 
were classified into the following subtypes, including age 
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(> 60 and ≤ 60), sex, M stage, T stage, TME, stage, and OS 
status. Within each subtype, cancer samples were divided 
into two risk groups (high and low). The distribution of 
clinicopathological characteristics among subtypes was 
assessed using the Kruskal–Wallis test or the Wilcoxon 
rank test. To more closely understand the correlation 
between clinicopathological characteristics and survival, 
a stratified survival analysis of clinical factors was per-
formed for high and low-risk groups.

Independent prognostic analysis
Univariate analysis was used to assess the risk model and 
clinical parameters (age, T, M, N stage, state, RiskScore) 
for each predictive value, whereas multivariate Cox anal-
ysis for OS was used to identify independent risk factors. 
To predict the overall survival of BLCA. Based on the 
independent prognostic factors screened by multivariate 
Cox independent prognosis, the nomogram model was 
drawn using the "cph" function in R to visualize this pre-
diction model and to predict the likely 1, 3, and 5-year 
survival plots of patients. Calibration curves were used to 
verify the validity of the bar graphs.

GSEA enrichment analysis
GSEA enrichment analysis was performed using the clus-
terProfiler package for all genes in samples from the high 
and low-risk groups in TCGA to explore the differences 
in function and associated pathways between the high 
and low-risk groups. A set of 50 human cancer marker 
pathway genes was downloaded from the Molecular Sig-
nature Database (MSigDB) (http://​www.​gsea-​msigdb.​
org/​gsea/​index.​jsp), and GSVA enrichment analysis was 
performed on all genes from samples in the high- and 
low-risk groups and the differences in GSVA [25] scores 
between high- and low-risk samples were analyzed using 
the limma package.

Immune microenvironment analysis
To analyze the immune cell characteristics between 
different risk groups, we used the ssGSEA based on R 
package gsva to obtain 28 immune cell infiltration sta-
tuses for each sample in TCGA-BLCA. The correlation 
between risk score and immune infiltrating cells was 
analyzed by the Pearson correlation coefficient. In par-
allel, T-cell inflammatory GEP (18 inflammatory genes) 
associated with ICB response were introduced to assess 
the predictive potential of the risk score for cancer 
immunotherapy. We also performed GO enrichment 
analysis of GEPs and used Cytoscape to plot the top 4 
pathways with the highest enrichment significance with 
gene interaction network regulatory map and PPI net-
work. Finally, we also extracted the expression levels of 
four immune check loci (PD-1, PD-L1, CTLA-4, and 

TIGIT) in BLCA and assessed their expression differ-
ences in high and low-risk groups using the Wilcoxon 
test. Differences in mutations between high and low-
risk groups were analyzed using the "maftools" R pack-
age [26].

Chemotherapy drug sensitivity analysis
To further explore the potential guidance of risk scores 
for chemotherapy. In this study, the IC50 values of drugs 
were obtained in Genomics of Drug Sensitivity in Can-
cer (GDSC) and Cancer Therapeutics Response Portal 
(CTRP) using the R package oncoPredict. The correla-
tion between drug IC50 values and risk scores was ana-
lyzed by Spearman’s analysis to screen drugs. We then 
compared the differences in IC50 between the high and 
low-risk groups for drugs with absolute values of correla-
tion greater than 0.4. The results were then visualized by 
plotting box plots and lollipop plots using the R language 
ggplot2.

Results
Identification of BLCA cell subtypes
The overall schematic outline of the present study was 
shown in Additional file 1: Fig. S1. First, we filtered ineli-
gible cells and yielded 13,490 core cells for subsequent 
analysis (Fig.  1A). ANOVA of genes was performed on 
the core cells, and we found that 2000 genes were highly 
variable (Fig.  1B). PCA was performed on three single-
cell samples (Fig.  1C), and the single-cell samples were 
scattered and distributed with logical results. Mean-
while, in the PCA, we also selected 20 principal compo-
nents (PCs) with p.value < 0.05 for subsequent analysis 
(Fig. 1D). Then, the core cells were classified into 19 inde-
pendent cell clusters using the umap algorithm (Fig. 1E, 
F). The different clusters were annotated by finding 
marker genes through the " singleR " package, CellMarker 
database, and references [17], resulting in seven cell clus-
ters, namely B cells, endothelial cells, T cells, monocyte 
cell, fibroblasts, smooth muscle cells, and epithelial cells 
(Fig. 1G). The expression of important marker genes for 
each cell type was visualized by bubble plots (Fig.  1H). 
The scatter plots showed the expression of marker genes 
in different cell types (Additional file  2: Fig.  S2). Fur-
thermore, we exprlored the expression of marker genes 
(PDPN, THY1, PDGFRB, PDGFRA,and POSTN) for can-
cer-associated fibroblasts (CAFs) in different cell types, 
and found that all marker genes were highly expressed in 
fibroblasts (Additional file 3: Fig. S3). The high expression 
of each identified marker gene in a specific cell could be 
summarized, further illustrating the reliability of cell type 
determination.

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
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Identification of core cells and their marker gene 
functional enrichment analysis
By using the FindAllMarkers and Wilcoxon test, 474 
significantly different marker genes were obtained to be 
identified (Additional file  10: Table  S2). Calculating the 
ssGSEA scores of significantly different marker genes for 
each cell, we found that all seven cells were significantly 
down-regulated in BLCA, and therefore seven cells were 
considered core cells for subsequent analysis (Fig.  2A). 
The marker genes of core cells were enriched for GO and 
KEGG functions (Fig.  2B–E). We noted that, with the 
exception of smooth muscle cells, the marker genes for 
all six cell types were associated with positive regulation 
of cell activation, including lymphocytes and leukocytes 

(Fig. 2B). In addition, the marker genes of monocytes and 
T cells were associated with cytokine-cytokine recep-
tor interactions. The marker genes of B cells were con-
nected to the p53 signalling pathway. The marker genes 
of endothelial cells, epithelial cells and smooth muscle 
cells were linked to focal adhesion and ECM-receptor 
interaction (Fig. 2E). Pseudo-temporal analysis was per-
formed separately for all cells annotated to explore their 
differentiation directions using the Monocle 2 algorithm. 
The results showed that BLCA cells gradually followed 
3 differentiation directions (Fig. 3A). Epithelial cells dif-
ferentiated earlier than other cells and differentiated into 
two branches, one of which was dominated by Endothe-
lial cells and the other by smooth muscle cells, fibroblasts 

Fig. 1  Identification of 7 cell clusters with diverse annotations revealing high cellular heterogeneity in BLCA tumors based on single-cell RNA-seq 
data. A After quality control of scRNA-seq, 13,490 core cells were identified. B The variance diagram shows the variation of gene expression in all 
cells of BLCA. The red dots represent highly variable genes and the black dots represent non-variable genes. C PCA showed a clear separation of 
cells in BLCA. D PCA identified the top 20 PCs at P < 0.05. E The umap algorithm was applied to the top 20 PCs for dimensionality reduction, and 19 
cell clusters were successfully classified. F Classification of cell clusters in each sample. G All 7 cell clusters in BLCA were annotated with singleR and 
CellMarker according to the composition of marker genes. H Expression levels of marker genes for each cell cluster
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Fig. 2  Functional enrichment analysis of marker genes based on 7 key cells. A Differentially expressed cells in BLCA and control samples were 
obtained by calculating the ssGSEA score of each cluster based on the marker genes. B–E Based on the marker genes of differentially expressed 
cells, ClusterProfiler package for GO and KEGG functional enrichment
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Fig. 3  Trajectory and cell–cell communication analysis of three BLCA cell subsets with distinct differentiation patterns. A, B Trajectory analysis 
revealed three subsets of BLCA cells with distinct differentiation patterns. One of them differentiates into a branch dominated by Endothelial cells, 
and the other branch is dominated by smooth muscle cells, Fibroblasts cells. C Heatmap visualizes the number of potential ligand-receptor pairs in 
key cells. D Number and strength of interactions between key cells
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cells (Fig.  3B). Furthermore, we inferred cell–cell com-
munication networks to predict intercellular communi-
cation based on specific pathways and ligand receptors. 
The heatmap of the number of ligand-receptor pairs 
showed that Fibroblasts, T cells, monocyte cell, endothe-
lial cells, and Epithelial cells cellular communication 
occurred more frequently (Fig.  3C). In detail, the fre-
quency and intensity of interactions between endothe-
lial cells and epithelial cells, between endothelial cells 
and fibroblasts, and between endothelial cells and T cells 
were high (Fig. 3D). In addition, the interactions of B cells 
with other cells were relatively rare (Additional file  4: 
Fig. S4).

Identification and functional enrichment analysis of DEGs 
in Bulk RNA‑seq data
A total of 1556 significant DEGs were obtained, including 
708 up-regulated genes and 848 down-regulated genes 
(Fig.  4A, B). The GO analysis showed that DEGs were 
mainly enriched in the nuclear division, organelle fis-
sion, mitotic nuclear division, and other cell cycle-related 
functions (Fig.  4C–E). The KEGG enrichment results 
showed that the PI3K-Akt signaling pathway, MAPK 
signaling pathway, adherent spots, and cell cycle were the 
enriched pathways for DEGs (Fig. 4F).

Identification of BLCA‑related key modules
WGCNA was used to identify genes involved in the 
development and progression of BLCA. During the con-
struction of the co-expression network, the soft threshold 
power β was 5 when the fit index of the scale-free topol-
ogy reached 0.85 (Fig. 5A, B). MEDissThres was set to 0.2 
to merge similar modules analyzed by the dynamic shear 
tree algorithm, and after merging, a total of 10 modules 
were finally available (Fig. 5C, D). Based on the correla-
tion coefficient and P value, we selected MEbrown as the 
key module (containing 2334 genes) (Fig.  5E). The key 
module genes are detailed in Additional file 11: Table S3 
as shown in Fig. 5F, the scatter plot of the brown module 
with clinical correlation.

Construction and validation of a 3 characteristic 
gene‑based prognostic model
The intersection of marker genes, BLCA module genes, 
and DEGs of cell subtypes was demonstrated using Ven 
plots, and a total of 123 intersecting genes were taken 
and defined as candidate genes (Fig. 6A). Then, univari-
ate Cox regression analysis was performed using the 
training set in TCGA-BLCA, and 10 genes were signifi-
cantly associated with OS (Fig.  6B). Next, genes were 
screened for model construction using the LASSO algo-
rithm. The results are shown in Fig. 6C. 3 characteristic 
genes were screened at the lowest cross-validation error: 

PCOLCE2, MAP1B, and ELN. Risk score = 0.09876179 
× PCOLCE2 + 0.04635731 × MAP1B + 0.01686333 × EL
N. According to cut-off = 0.15, patients were divided into 
high- and low-risk groups (Fig.  6D). The Kaplan–Meier 
analysis showed that patients with high-risk scores had 
significantly lower OS and disease-free survival (DFS) 
than those with low-risk scores (Fig.  6E; Additional 
file 5: Fig. S5A). To further assess the validity of the risk 
model, the ROC curve for OS was calculated, and the 
AUC values at 1, 2, 3, 4, and 5  years were greater than 
0.59, indicating better efficacy of the risk model (Fig. 6F). 
We also performed functional validation of the model 
in the internal validation set and external validation set 
GSE13507 and GSE32548, and the results showed that 
the model has an accuracy (Additional file  6: Fig.  S6, 
Additional file 5: Fig. S5B). In summary, our prognostic 
model showed excellent predictive efficiency in BLCA.

Analysis of risk scores and different clinical characteristics
To analyze the correlation between the expression of risk 
scores and clinical characteristics, the differences in risk 
scores of patients were compared separately according 
to different groups of clinical characteristics. The results 
showed that risk scores were significantly different in 
N-stage, T-stage, and OS status (Fig.  7B). The heatmap 
of the risk model and clinical characteristics are shown 
in Fig.  7A. Stratified analysis of clinical characteristics 
showed that clinical stages M0, Male, Stage III-IV, T1-T2, 
age > 60, and TMB_hight were significantly different in 
survival in high and low-risk groups (Additional file  7: 
Fig. S7). Taken together, our prognostic model based on 
three characteristic genes had excellent prognostic value.

Screening of independent prognostic factors 
and construction of nomogram
To screen independent prognostic factors, clinical char-
acteristics and risk scores were subjected to univari-
ate and multivariate Cox analyses. We found RiskScore, 
and Stage as independent prognostic factors for patients 
(Fig.  8A, B). The two independent prognostic factors 
were included in the nomogram model (Fig. 8C). In addi-
tion, the calibration curve showed that the model had 
a high predictive effect (Fig.  8D). Therefore, our results 
suggested that risk score was an independent prognostic 
factor and that the nomogram had high predictive effi-
cacy for predicting OS of BLCA patients.

GSEA between high‑ and low‑risk groups
To analyze the effect of high- and low-risk subgroups 
on cancer progression, we performed the GSEA to 
identify the most significant enrichment pathways 
between the two groups. The results showed that the 
high-risk group was significantly enriched in immune 
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Fig. 4  Identification and functional enrichment analysis of DEGs between BLCA patients and controls. A Volcano plot of DEGs between BLCA and 
control in TCGA. P < 0.05 and |log2FoldChange|> 1 were identified as significant DEGs. The red dots represent upregulated genes and the blue dots 
represent downregulated genes. B Heatmap of DEGs. C–F Bubble plots of the BP, CC, MF, and KEGG pathways of DEGs
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Fig. 5  BLCA-related genes were screened by WGCNA. A, B Analysis of the scale-free index for various soft-threshold powers (β). C The minimum 
number of genes per module is 300, and 10 modules are obtained when MEDissThres is equal to 0.2. D Cluster dendrogram of the co-expression 
network modules (1-TOM). E Analysis of correlations between the modules and BLCA, p.values are shown. F Scatter plot analysis of the brown 
module
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Fig. 6  Construction of risk signature in the TCGA cohort. A Intersection of BLCA-related genes, DEGs in key cells, and DEGs in BLCA and controls. B 
Univariate cox regression analysis of OS. C LASSO regression of OS-related genes. D Kaplan–Meier curve result. E Risk survival status plot. F The AUC 
of the prediction of 1, 3, and 5-year survival rates of BLCA
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Fig. 7  Correlation analysis of risk scores with clinical characteristics. A Heatmap of risk model and clinical characteristics. B–I Relationship between 
age, sex, M stage, N stage, T stage, TMB, tumor stage, and survival status with the analysis model
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processes such as cell activation and humoral immune 
response involved in immune response (Fig. 9A). KEGG 
showed that pathways such as the chemokine signaling 
pathway, complement, and coagulation cascade were 
enriched in the high-risk group and phagosome-related 
pathways in the low-risk group (Fig. 9B). We also ana-
lyzed all genes in the high- and low-risk groups using 
GSVA. The results showed that the high expression 
group was activated in the marker entries of myogene-
sis, MYC target V2, early estrogen response, pancreatic 
β-cells, DNA repair, MYC target V1, apical junction, 
KRAS signaling pathway, peroxisome, IL6 JAK STAT3, 
and angiogenic MYC target, while the low expression 
group was activated in the marker entries of hypoxia, 
adipogenesis, heme metabolism, bile acid metabolism, 
interferon α response pathway, coagulation and other 
marker entries (Fig. 9C, D).

Evaluation of the possibility of BLCA immunotherapy
The ssGSEA was used to estimate the infiltration scores 
of 28 immune cells in different risk groups. The results 
showed that the differences in the infiltration levels of 
the 25 immune cell species were statistically significant 
except for natural. killers.cell, Monocyte, and T.helper.
cell (Fig.  10A). The Pearson correlation result dis-
played that both prognostic genes and risk score were 
significantly associated with infiltrating immune cells 
(Fig.  10B). Sixteen GEP genes (inflammatory genes) 
and four immune checkpoints were significantly differ-
ent in the high- and low-risk groups (Fig.  10C). Heat-
maps of immune cells and 16 differential GEP genes 
between high and low-risk groups are detailed in Addi-
tional file 8: Fig. S8. The interacting network of 16 dif-
ferential GEP genes and the top 4 ranked pathways (T 
cell activation, regulation of T cell activation, regula-
tion of leukocyte cell–cell adhesion, leukocyte cell–
cell adhesion) is shown in Fig.  10D, which diaplayed 

Fig. 8  The nomogram model was constructed based on Univariate and multivariate cox regression analyses. A Univariate Cox analysis of risk scores 
and clinical characteristics. B Multifactorial Cox analysis. C Construction of the nomogram model. D The calibration curve of the nomogram
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the close association between GEP genes and these 
pathways. The PPI network of differential GEP genes 
showed the linkage between each GEP gene (Fig. 10E). 
PD-1, PD-L1, CTLA-4, and TIGIT were different in 
the high—and low-risk groups (Fig.  10F). By SubMap, 
in the immunotherapy cohort (Roh cohort), ICB was 
performed in the high and low-risk groups response 
was assessed. We found that the CTLA-4 immune loci 
were sensitive in the Roh cohort (Fig. 10G). We found 

that BLCA patients were mainly dominated by mis-
sense mutations and SNPs (Fig.  11A). The mutation 
results between high and low-risk groups showed that 
most mutation types in the high and low-risk groups 
were missense mutations. The proportion of mutations 
in the high-risk group was higher than that in the low-
risk group, and the mutation load index TMB index was 
overall higher in the high-risk group than in the low-
risk group (Fig.  11B). Above all, our results suggested 

Fig. 9  Biological characteristics between high-and low-risk groups. A, B GSEA analysis of GO and KEGG between high- and low-risk groups. C, D 
GSVA analysis of all genes in the high- and low-risk groups to obtain enriched pathways

Fig. 10  Analysis of the tumor immune microenvironment in high- and low-risk groups. A Violin plot visualizing the ssGSEA scores of 28 immune 
cells between high and low-risk groups. B Correlation analysis of risk scores with significantly different immune cells. C Box plot visualizing the 
expression levels of 18 inflammation-related genes between high and low-risk groups. D Pathway network map of significantly differentially 
expressed inflammation-related genes. E PPI network of significantly differentially expressed inflammation-related genes. F Expression analysis of 
PD-1, PD-L1, CTLA-4, and TIGIT between high and low-risk groups. G Assessment of ICB response in high and low-risk groups

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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that immunotherapy has the potential for development 
in BLCA.

Drug sensitivity analysis for high‑ and low‑risk groups
From the GDSC database, we found that 12 drugs were 
negatively associated with risk scores (R < -0.4 and 
p < 0.05), and only the top 7 drugs are shown in Fig. 12A. 
In addition, we explored the targets and pathways of 12 
drugs, 5 of which had no corresponding data (Table  1). 
12 chemotherapeutic drugs were significantly differ-
ent between high and low-risk groups (Fig. 12B). In the 
CTRP database, the drugs staurosporine, CCT036477, 
XL765, TGX.221, and sunitinib had the strongest nega-
tive association with risk scores (Fig.  12C). Meanwhile, 

the AUC values of the five drugs were significantly differ-
ent in both high and low-risk groups (Fig. 12D). In con-
clusion, these drugs may be promising for the treatment 
of BLCA.

Discussion
BLCA is one of the most common malignancies world-
wide, and its incidence is on the rise in many countries. 
Despite many efforts that have been made recently 
toward the management of BLCA, the heterogeneous and 
aggressive characteristics of BLCA are still limited for 
prognostic assessment [27]. Therefore, screening novel 
biomarkers to help develop patient-specific therapies and 
improve prognosis remains critical and urgent. Distinct 

Fig. 11  Mutation landscape analysis in BLCA. A Overall description of the TCGA-BLCA patient mutation landscape. B The tumor mutational burden 
(TMB) in the high and low‐risk groups was predicted by the risk model
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Fig. 12  Screening of therapeutic agents for BLCA based on risk models. A For the GDSC database, Spearman correlation analysis was performed 
on BLCA and estimated IC50 values. With a filtering |R| greater than 0.4 and p-value less than 0.05, 12 candidate compounds were identified. 
B Sensitivity analysis of key drugs in high- and low-risk groups. C AUC values of CTRP compounds were estimated for each BLCA patient and 
Spearman analysis was performed on BLCA and AUC values. Dotted line plots visualize the 5 compounds with the highest negative correlation 
coefficients. D The AUC values estimated by the compounds were significantly lower in the high-risk group of BLCA

Table 1  The names, IDs, targets, and pathways of the 7 drugs

Drug name Drug ID Drug target Target Pathway Screening Set

BMS-754807 184 IGF1R, IR RTK signaling GDSC1

NU7441 1038 DNAPK Genome integrity GDSC1

RO-3306 1052 CDK1 Cell cycle GDSC1

JQ1 1218 BRD2, BRD3, BRD4, BRDT Chromatin other GDSC1

AZD8186 1444 PI3Kbeta, PI3Kdelta PI3K/MTOR signaling GDSC1

AZD8055 1059 MTORC1, MTORC2 PI3K/MTOR signaling GDSC1

SB216763 1025 GSK3A, GSK3B WNT signaling GDSC1
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from bulk RNA-seq focusing on the average expression 
level of genes in cells, scRNA-seq has emerged as a use-
ful tool for transcriptional stratification to define the cell 
subpopulations and realize specific biomarkers and het-
erogeneity among different cell types in various cancers, 
including BLCA [28]. Therefore, in this study, we con-
ducted a comprehensive analysis of bulk RNA-seq and 
scRNA-seq to develop a risk model that exhibited excel-
lent prognostic and predictive efficacy for immunother-
apy response in BLCA.

First, we identified 7 core cells in the scRNA-seq pro-
file containing 13,490 cells, namely: fibroblasts, B cells, 
T cells, monocyte cells, endothelial cells, smooth mus-
cle cells, and epithelial cells, in which cellular commu-
nication was highly frequent but expression levels were 
generally down-regulated in tumor samples, and pre-
cisely such heterogeneity and interaction with TME that 
is essential in tumorigenesis and therapy resistance [29]. 
The results of GO/KEGG analysis of DEGs obtained in 
TCGA were mainly enriched in the cell cycle and PI3K-
Akt signaling pathway, and MAPK signaling pathway, 
which may be contributed to the proliferation and pro-
gression of BLCA. Existing studies indicated that altera-
tions in cyclins, TP53, and Rb genes are ubiquitous in 
BLCA, particularly in MIBC with higher frequency, and 
therapy targeting against aberrant cell-cycle regulators 
may be beneficial in BLCA. Numerous studies have also 
confirmed that PI3K-Akt and MAPK signaling pathway 
activation play essential roles in the initiation and pro-
gression of BLCA [30–32]. Moreover, we recognized the 
brown module composed of 2334 genes as the key mod-
ule using WGCNA. 123 candidate genes were collected 
by taking the intersection of the above three gene sets to 
enhance the stability of signatures.

Next, the 3-gene prognostic model was established by 
univariate Cox regression analysis and LASSO algorithm, 
involving: MAP1B, PCOLCE2, and ELN, with the ROC 
curve results demonstrating that it had promising predic-
tive efficacy for prognosis and was an independent prog-
nostic factor for OS in BLCA. Contrary to other models 
[33], our signatures were the results of integrating mul-
tiple datasets and algorithms, validated by internal and 
external validation sets inconsistent with the training 
set, and showed AUC values between 0.590–0.813, sug-
gesting higher reliability and relevance, of which we also 
analyzed the relationship between the model and clinico-
pathological characteristics, and the results revealed that 
risk scores were significantly associated with patients’ 
lymph node metastasis and tumor stage, indicating that 
the model is not limited to having predictive value for OS. 
Besides, we also observed 3 signature genes related to the 
tumor microenvironment. MAP1B is one of the Micro-
tubule-associated proteins (MAPs), which is involved 

in cytoskeleton composition. It has been reported that 
MAP1B was remarkably overexpressed in BLCA tissues 
and positively correlated with tumor pathological tumor 
stage, grade, lymph node metastasis and vascular inva-
sion, knockdown of MAP1B could reverse chemoresist-
ance by interrupting the cell cycle [34]. PCOLCE2 is a 
collagen-binding protein that functions as a pivotal com-
ponent in tumor microenvironment remodeling [35], and 
a previous study also demonstrated that down-regulation 
of PCOLCE2 expression resulted in better OS [36]. ELN 
is a crucial element of the extracellular matrix that pro-
motes breast cancer progression by enhancing the activa-
tion of matrix metalloproteinases (MMPs) but is scarcely 
documented in BLCA [37]. We also considered that clini-
cal characteristics could have an impact on the prognosis 
of patients, so clinical characteristics were subjected to 
multifactorial Cox analyses, and the findings revealed the 
independent influences of Stage and risk score on the OS 
of BLCA patients, which were further constructed as a 
nomogram model, with a calibration curve verifying the 
remarkably favorable predictive ability.

Furthermore, all samples were divided into low- and 
high-risk groups according to the calculated risk score, 
and we observed that the high-risk group was mainly 
enriched in immune processes and immune-related path-
ways, thus it was hypothesized that the risk score could 
be a potential predictive indicator for BLCA patients 
undergoing immunotherapy. We approached this from 
different perspectives evaluating TMB, immune infiltra-
tion, immune checkpoints, and associated inflammatory 
genes, and concluded that the high-risk group presented 
higher TMB and significantly elevated infiltrations of 
multiple immune cells, but significantly lower expression 
of inflammatory genes and immune checkpoints than the 
low-risk group, supporting that patients with low-risk 
scores are more likely to benefit from immunotherapy.

Finally, potential druggable targets and correspond-
ing compounds for BLCA patients were identified from 
the GDSC and CTRP databases in light of developed 
prognostic models, primarily including cell cycle (stau-
rosporine and RO-3306), PI3K/mTOR pathway (XL765, 
TGX-221, AZD8186, and AZD8055) and Wnt pathway 
inhibitors (CCT036477 and SB216763), which were com-
patible with the pathway enrichment results of DEGs. 
Owing to the potency and promiscuity of these drugs, 
they have not been adopted in the clinic yet, but they will 
become quite promising antitumor drugs in the future 
with technological renovation.

Taking into utmost consideration tumor heterogeneity, 
interactions of each cell population, immune infiltration, 
TMB, and clinical characteristics, the strength of this 
work lies in the identification and construction of a novel 
prognostic model capable of accurately discriminating 
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survival outcomes and immunotherapeutic response in 
BLCA, and the findings acquired in this study provide 
direct evidence for stratified and precise treatment of 
BLCA patients. However, there are several inescapable 
limitations of this study: (1) the sample size of scRNA-seq 
data is relatively small; (2) the regulatory mechanisms of 
signature genes in BLCA remain ambiguous, and which 
is exactly what future work arising from this study should 
continue to explore.

Conclusions
By integrating scRNA-seq and bulk RNA-seq data, we 
performed multiple machine-learning methods and 
established a novel prognostic model for OS prediction 
in BLCA patients that could be applied to predict the 
survival probability of BLCA patients. Moreover, the risk 
score is a promising independent prognostic factor that 
is closely correlated with the immune microenvironment 
and clinicopathological characteristics. Overall, this 
study could be used as a reliable predictor of BLCA effi-
cacy, opening up new avenues for targeted treatment of 
BLCA in the future.
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