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Abstract 

Background  The incidence and mortality of gastric cancer ranks fifth and fourth worldwide among all malignancies, 
respectively. Accumulating evidences have revealed the close relationship between mitochondrial dysfunction and 
the initiation and progression of stomach cancer. However, rare prognostic models for mitochondrial-related gene risk 
have been built up in stomach cancer.

Methods  In current study, the expression and prognostic value of mitochondrial-related genes in stomach adenocar-
cinoma (STAD) patients were systematically analyzed to establish a mitochondrial-related risk model based on avail-
able TCGA and GEO databases. The tumor microenvironment (TME), immune cell infiltration, tumor mutation burden, 
and drug sensitivity of gastric adenocarcinoma patients were also investigated using R language, GraphPad Prism 8 
and online databases.

Results  We established a mitochondrial-related risk prognostic model including NOX4, ALDH3A2, FKBP10 and MAOA 
and validated its predictive power. This risk model indicated that the immune cell infiltration in high-risk group was 
significantly different from that in the low-risk group. Besides, the risk score was closely related to TME signature genes 
and immune checkpoint molecules, suggesting that the immunosuppressive tumor microenvironment might lead 
to poor prognosis in high-risk groups. Moreover, TIDE analysis demonstrated that combined analysis of risk score and 
immune score, or stromal score, or microsatellite status could more effectively predict the benefit of immunotherapy 
in STAD patients with different stratifications. Finally, rapamycin, PD-0325901 and dasatinib were found to be more 
effective for patients in the high-risk group, whereas AZD7762, CEP-701 and methotrexate were predicted to be more 
effective for patients in the low-risk group.

Conclusions  Our results suggest that the mitochondrial-related risk model could be a reliable prognostic biomarker 
for personalized treatment of STAD patients.
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Introduction
The incidence (accounting for 5.6% of all cancer cases) 
and mortality (accounting for 7.7% of all cancer deaths) 
of gastric cancer (GC) ranks fifth and fourth world-
wide among all malignancies, which critically threatens 
human health. It was estimated that over one million 
new cases of GC were reported worldwide in 2020 
[1]. Gastric adenocarcinomas derived from gastric 
glandular epithelial cells accounts for more than 90% 
of all GCs [2]. GC is a multifactorial disease, which is 
contributed by both environmental and genetic fac-
tors [3], such as smoking, family history, Epstein–Barr 
virus (EBV) infection, alcohol consumption, and diet 
[4]. Most GCs are diagnosed at late stage of progres-
sion due to limited premalignant indications and symp-
toms [2]. Nowadays, the application of the endoscopic 
examination largely improved the survival rate of GC 
patients, and a 30% reduction in GC mortality using 
endoscopic screening [3]. However, stomach cancer 
is still one of the most lethal malignant tumors, with 
a 5  year survival rate of around 20% [5]. Therefore, it 
is necessary to identify more reliable biomarkers for 
predicting the prognosis and exploring more potential 
therapeutic targets in GC.

Accumulating evidences indicated that mitochondria 
plays essential roles in regulation of cell growth, cell 
death, and cell metabolism during the whole process 
of tumor progression [6]. Mitochondria are involved 
in bioenergetics metabolism, such as ATP production, 
reactive oxygen species (ROS) production, apoptosis, 
and calcium homeostasis [7]. Moreover, mitochon-
drial dysfunction may contribute to the chemoresist-
ance [8]. Therefore, mitochondrial-targeting therapies 
may be applied for the treatment of GC, including ROS 
production and elimination, mitochondrial fission and 
fusion, ATP production, and apoptosis [6, 9, 10]. For 
instance, nanohybrid-induced oxidative stress triggered 
mitochondria-mediated autophagy, which inhibited cell 
growth in cancer cell [11].

Considering that mitochondrial dysfunction was 
a risk factor for the tumorigenesis of GC, identify-
ing effective mitochondrial-related biomarkers for the 
prognosis of GC patients should be an encouraging 
direction of research. Several studies have constructed 
GC prognosis-related models to predict patient sur-
vival [12–14]. However, rare studies have been applied 
for the establishment of prognostic models for GC 
associated with mitochondria.

Tumor microenvironment (TME) was mainly com-
posed of the stromal cells, immune cells and cytokines 
[15]. The components of TME affected the immune cell 
evasion or inhibition, and drug resistance in malignan-
cies. For example, immune progenitors in the complex 
microenvironment of the TME were more likely to dif-
ferentiate into M2 macrophages and  Treg cells, but not 
to play  their tumor-inhibiting functions as fully mature 
immune cells [16]. In addition, the response to immune 
checkpoint blockade (ICB) was closely related to the con-
stitution of the TME. ICB revived an effective anti-tumor 
immune response [17]. It was reported that PD-1/PD-L1 
inhibitors immunotherapy has an impact on the therapy 
of patients with advanced gastrointestinal malignancy. 
Moreover, a study reported that tumors with a higher 
tumor mutation burden (TMB), had a better immuno-
therapy response, especially with PD-1/PD-L1 block-
ade [18]. Thus, to figure out the correlation between 
the risk score and TME, we explored the TME signa-
tures, the immune cell infiltration in TME, the expres-
sion level of immune checkpoints, and the response to 
immunotherapy.

In summary, a novel mitochondrial-related risk model 
was constructed using NOX4, FKBP10, ALDH3A2, 
and MAOA gene set, which could effectively predict 
the prognosis and immunotherapy responsiveness for 
patients with STAD. In addition, we estimated the drug 
sensitivity of STAD patients to 138 drugs, including 
chemotherapy drugs, immunotherapy drugs, and tar-
geted drugs, et  al., and found that patients in high-risk 
group was more sensitive to rapamycin, PD-0325901 and 
dasatinib, whereas patients in low-risk group was more 
sensitive to AZD7762, CEP-701 and methotrexate. Taken 
together, our mitochondrial-related risk model could be a 
reliable prognostic biomarker for personalized treatment 
of STAD patients.

Methods
Data collection
RNA-seq data and microsatellite status information for 
407 STAD samples were downloaded from the TCGA 
database (https://​www.​cancer.​gov/​tcga). The clinical 
information was extracted from the UCSC Xena (http://​
xena.​ucsc.​edu) [19]. 61 samples were excluded due to 
incomplete clinical information or survival less than 
30  days. In total, 346 samples, comprising 317 tumor 
samples and 29 healthy samples, were analyzed in the 
present study. Two validation cohorts, GSE66229 and 
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GSE15459, were applied in the present study (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/). In GSE15459, 10 samples 
were excluded due to survival less than 30  days. Alto-
gether, 300 and 182 samples were analyzed in GSE66229 
and GSE15459, respectively. The list of mitochondrial-
related genes was collected from MitoCarta 3.0 database 
(https://​www.​broad​insti​tute.​org/​mitoc​arta/​mitoc​arta30-​
inven​tory-​mamma​lian-​mitoc​hondr​ial-​prote​ins-​and-​
pathw​ays) [20] and the Gene set enrichment analyses 
(GSEA, http://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp) [21, 
22] (Additional file 10: Table S1).

Identification of differentially expressed genes (DEGs)
The “limma” package of R (version 3.5.1) was applied to pro-
duce DEGs between normal and tumor samples, or between 
high-risk and low-risk groups from the training set. |Log 
(2) fold change|> 2 and adjusted P < 0.01 were the criteria 
for defining DEGs. “GdcVolcanoPlot” packages in R were 
employed to generate volcano map to visualize the DEGs, 
and a Venn plot was exploited to display the common DEGs 
in both DEGs groups and mitochondrial-related genes.

Construction and validation of prognostic 
mitochondrial‑related risk score signature
The mitochondrial-related genes were screened by univari-
ate Cox regression, Lasso regression analysis and multivari-
able Cox regression analysis to construct a novel prognostic 
gene signature. Each sample’s risk score was calculated using 
the following formula:

where expgene, i, and βi represent the expression level 
of gene, the number of signature genes, and the coeffi-
cient index, respectively. In all participated cohorts, the 
samples were divided into low-risk and high-risk groups 
based on the risk score (median cut-off value). To analyze 
the survival conditions for the prognosis signature, the 
optimized cutoff and the Kaplan–Meier (K–M) survival 
curve were conducted by R package “survival” and “sur-
vminer”. The predictive performance was presented by 
ROC curve, risk plot and concordance index (C-index). 
Detailed information for prognostic genes was obtained 
from The Human Protein Atlas (HPA, https://​www.​prote​
inatl​as.​org/) and National Center for Biotechnology 
Information (NCBI, https://​www.​ncbi.​nlm.​nih.​gov/).

Construction and valuation of nomogram
Risk score and clinical factors including age, gender, T 
stage, N stage, M stage, tumor stage, family history, H 
pylori infection, grade, reflux history, and disease types 
were analyzed using univariate Cox regression analy-
sis to screen the factors significantly related to survival 

Risk score = �expgenei ∗ βi

(P < 0.1). Then, multivariate COX regression analysis was 
applied to identify the candidate predictors significantly 
related to survival (P < 0.05). Based on this, nomograms 
were constructed using these predictors, and scores in 
nomogram model were assigned for these variables. By 
adding the scores of the predictors enrolled in nomo-
gram model, the total score of each patient was obtained. 
Finally, the patient’s survival outcome in 1, 3 and 5 years 
can be calculated using the total score and the probability 
of survival outcome. ROC curve, calibration curves and 
decision curve analysis (DCA) were applied to estimate 
the discrimination and accuracy of the nomogram model.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses
In the present study, R “clusterProfiler”, “org.Hs.eg.db”, 
“enrichplot” and “ggplot2” package (R version: 3.5.1) 
were employed to analyze the function of mitochondrial-
related DEGs, or the DEGs between high-risk and low-
risk groups. Furthermore, adjusted P < 0.05 was used to 
filter the functional candidates.

Gene set enrichment analyses (GSEA)
Curated sets v7.4 collections were obtained from the 
Molecular Signatures Database as the target sets with 
which GSEA was performed by using GSEA 4.2.1 soft-
ware. The total transcriptome of tumor samples was used 
for the GSEA, and only gene sets with P < 0.001 and FDR, 
q < 0.001 were regarded to be statistically significant.

Tumor microenvironment
Stromal scores were calculated using the ESTIMATE 
algorithm by R (version 3.5.1) package “estimate”. The 
list of TME-related biomarkers was extracted from the 
Gene set enrichment analyses (GSEA, http://​www.​gsea-​
msigdb.​org/​gsea/​index.​jsp) [21, 22] (Additional file  10: 
Table S2–S5).

Calculation of relative abundance of 22 immune cell 
subtypes
The abundance of 22 tumor-infiltrating immune cells 
(TIICs) in STAD samples was calculated using the 
CIBERSORT algorithm by R package. CIBERSORT is 
a deconvolution algorithm that can infer 22 kinds of 
TIICs and harnesses the ability to predict the relative 
abundance of each immune cell population by calculat-
ing the expression of specific marker [23]. The relative 
abundance of the TIICs between high-risk and low-risk 
groups was compared using the Wilcox text. The list of 
immune check points was referenced from a published 
study [24]. Immune score and tumor purity were also 
calculated using the ESTIMATE algorithm by R (version 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways
https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways
https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways
http://www.gsea-msigdb.org/gsea/index.jsp
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.ncbi.nlm.nih.gov/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
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3.5.1) package “estimate”. The list of immune cell signa-
tures was downloaded from TISIDB (http://​cis.​hku.​hk/​
TISIDB/​downl​oad.​php) [25].

Prediction of therapeutic sensitivity in patients 
with different risk scores
The capability of risk score in predicting the response to 
immunotherapy or 138 drugs for chemotherapies/tar-
geted therapies was explored in the present study. The 
50% inhibiting concentration (IC50) values of the 138 
drugs were calculated using the “pRRophetic” package of 
R (version 3.5.1) and the value was normally transformed. 
The detailed information of 138 drugs was acquired from 
Genomics of Drug Sensitivity in Cancer (GDSC, https://​
www.​cance​rrxge​ne.​org/). The potential response to 
immunotherapy was inferred by the tumor immune dys-
function and exclusion (TIDE, http://​tide.​dfci.​harva​rd.​
edu) score.

Mutation analysis
The somatic mutation data were downloaded from cBio-
portal database (https://​www.​cbiop​ortal.​org/) [26, 27]. 
The R (version 3.5.1) package “maftools” was then used to 
draw a waterfall plot to illustrate the mutation landscape 
in STAD patients with the high- and low-risk group and 
calculate the TMB score for each sample.

Cell culture and patient sample collection
The normal gastric epithelial cell line GES-1 and human 
gastric cancer cell lines SGC-7901 and HGC-27 were 
purchased from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). Cells were cultured 
in DMEM medium (Gibco, Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) supplemented with 10% fetal 
bovine serum (FBS, Hyclone). Cells were routinely cul-
tured in a humidified atmosphere containg 5% CO2 at 
37 ℃. A total of 10 fresh tumor and paired adjacent nor-
mal tissues from patients with STAD were collected in 
the First Affiliated Hospital of Shanxi Medical University 
(Taiyuan, Shanxi, China). All patients provided written 
informed consent, and this study was approved by the 
ethics committee of Shanxi Medical University.

RNA extraction and qRT‑PCR assays
RNAs in tissues and cell lines of STAD were extracted 
with a RNAiso Plus (Takara,Tokyo, Japan) and were 
reversely transcribed into cDNA usin PrimeScriptTM RT 
Master Mix (Takara). Quantitative real-time PCR (qRT-
PCR) was performed by TB Green ®Premix Ex TaqTM II 

(Takara). β-actin was used as reference genes. The prim-
ers were listed in Additional file 10: Table S6.

Statistical analysis
R (version 3.5.1) and the GraphPad Prism 8 software 
were applied for statistical analysis. A Student’s t-test 
was used to analyze the expression and the distribution 
of risk score, stromal score, immune score, tumor purity 
and TMB in different groups. Chi-square test is applied 
to evaluate the difference in immunotherapy response, 
status of top 5 mutant genes and clinical factors in dif-
ferent groups. The correlation was evaluated using the 
Spearman method. C-index was used to estimate the 
predictive power of age and risk score to OS. P < 0.05 was 
defined as statistically significant.

Results
Identification of DEGs related to mitochondrion 
and functional enrichment analysis in STAD
The general workflow of our current study was pre-
sented in Fig. 1. As shown in Additional file 10: Table S7, 
2381 DEGs, including 2145 protein-coding genes, were 
screened and visualized via volcano maps between 
normal and tumor groups (Fig.  2A, Additional file  10: 
Table  S8). Next, combined analysis for selected mito-
chondrial-related genes from the GSEA and 2145 DEGs 
from our study were performed to filter out 183 can-
didate mitochondrial-related DEGs in STAD (Fig.  2B, 
Additional file 10: Table S9).

GO enrichment analysis were then carried out to 
uncover important roles of mitochondrial-related DEGs 
in STAD. These DEGs potentially participated in small 
molecule catabolic process, regulation of mitochondrial 
organization, et  al. Regarding the cellular component, 
they were mainly related to mitochondrial matrix, mito-
chondrial outer membrane, et  al. In terms of molecular 
function, these DEGs were involved in tubulin binding, 
and ubiquitin-like protein ligase binding, et  al. (Addi-
tional file  1: Fig. S1A, Additional file  10: Table  S10). 
Moreover, KEGG pathway analysis was also applied 
to demonstrate important pathways being involved by 
these DEGs, such as lipid and atherosclerosis, Hepatitis B 
infection, Diabetic cardiomyopathy, and apoptosis, et al. 
(Additional file 1: Fig. S1B, Additional file 10: Table S11).

Construction and validation of a mitochondrial‑related risk 
signature
Based on above 183 mitochondrial-related DEGs, 19 
genes were further selected as potential risk factors for 
the prognosis of patients with STAD through univari-
ate Cox regression analysis (P < 0.05, Fig.  2C). The gene 

http://cis.hku.hk/TISIDB/download.php
http://cis.hku.hk/TISIDB/download.php
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://www.cbioportal.org/
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number was further narrowed down to 9 according to 
LASSO regression analysis and to 4 by multivariable Cox 
regression analysis (Fig. 2D, E). Finally, 4 mitochondrial-
related DEGs, including NOX4, FKBP10, ALDH3A2 and 
MAOA, were utilized to establish a prognostic model for 
patients with STAD (Table 1).

As shown in Fig.  2F, higher expressions of NOX4 
and FKBP10, and lower expressions of ALDH3A2 and 
MAOA were observed in tumor samples compared 
with the normal tissues, respectively. Moreover, the 

immunohistochemistry results from HPA database 
showed that FKBP10 was upregulated in gastric can-
cer tissues, while ALDH3A2 and MAOA were down-
regulated in gastric cancer tissues, when compared 
with corresponding non-cancerous tissues (Addi-
tional file  1: Fig. S1C). Further K-M analysis demon-
strated that patients with higher expression of NOX4 
(P = 0.030), FKBP10 (P = 0.040), and MAOA (P = 0.018) 
had a shorter OS than those with lower expression, 
respectively (Additional file 1: Fig. S1D). However, the 

Fig. 1  Workflow diagram. The flowchart graph of this study
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Fig. 2  Identification of DEGs related to mitochondrion and construction of prognostic risk model using TCGA-STAD cohort. A Volcano plot of 2381 
DEGs in STAD tumor and normal groups. B Venn diagram showed that the overlap of 2381 DEGs and 2030 mitochondrial genes led to 183 hub 
genes being identified. C Univariate Cox regression analysis revealed 19 genes were associated with prognosis of patients with STAD. D LASSO 
regression of the 19 OS-related genes. Cross-validation in the LASSO regression model to select the tuning parameter. The abscissa shows the 
log (λ) value, and the ordinate shows partial likelihood deviance. The red dots in the figure show partial likelihood deviations ± standard error for 
diverse tuning parameters. E Multivariable Cox regression analysis revealed 4 genes were associated with prognosis of patients with STAD. F Gene 
expressions of the 4 prognosis-related genes in TCGA-STAD. P values were showed as: ***P < 0.001

Table 1  The information of 4 prognosis-related genes

Gene symbol Gene ID Full name Location Function of the encoded protein

NOX4 50507 NADPH oxidase 4 Membrane The ROS generated by NOX4 have been implicated in numerous bio-
logical functions including signal transduction, cell differentiation and 
tumor cell growth

FKBP10 60681 FKBP prolyl isomerase 10 Mitochondria FKBP10 localizes to the endoplasmic reticulum and acts as a molecular 
chaperone. Alternatively spliced variants encoding different isoforms 
have been reported, but their biological validity has not been deter-
mined

ALDH3A2 224 Aldehyde dehydroge-
nase 3 family member 
A2

Endoplasmic reticulum Aldehyde dehydrogenase isozymes are thought to play a major role in 
the detoxification of aldehydes generated by alcohol metabolism and 
lipid peroxidation

MAOA 4128 Monoamine oxidase A Mitochondria This gene is one of two neighboring gene family members that encode 
mitochondrial enzymes which catalyze the oxidative deamination of 
amines, such as dopamine, norepinephrine, and serotonin
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patients with higher level of ALDH3A2 had a better OS 
than those with lower expression, even though it is a 
bit beyond statistically significant difference (P = 0.052, 
Additional file 1: Fig. S1D).

Then, the risk score for each patient with STAD in both 
training and validation cohorts was computed based on 
the following formula:

Patients were divided into high-risk and low-risk sub-
groups based on the median risk score. K–M curves 
showed that patients in high-risk group had worse OS 
(P = 0.0009, Fig. 3A). To assess the accuracy of prognos-
tic risk models in predicting 1-, 3-, and 5-year OS, ROC 
curves were plotted with AUC values of 0.635, 0.640, and 
0.793, respectively (Fig. 3B). The relationship between the 
risk score and the survival time, survival status, and risk 
ranking, and a heatmap of the expressions of the 4 genes 
were shown in Fig. 3C. Taken together, these results dem-
onstrated the robustness of our risk model in predicting 
the prognosis of patients with STAD.

The robustness of the prognostic risk model was fur-
ther validated in GSE66229 and GSE15459 datasets. 
In line with that of the training cohort (TCGA-STAD), 
patients in high-risk group also had worse prognosis 
in the validation cohorts (Fig.  3D, Additional file  2: Fig. 
S2A). In GSE66229 dataset, the AUC values of the ROC 
curve for 1-year, 3-year and 5-year survival were 0.620, 
0.625, and 0.601, respectively (Fig.  3E). Corresponding 
AUC values of 0.620, 0.647, and 0.657 were observed in 
GSE15459 dataset (Additional file 2: Fig. S2B). The higher 
the risk score, the worse the survival (Fig. 3F, Additional 
file 2: Fig. S2C). The heatmaps of the expressions of the 
4 genes were shown in Fig.  3F, Additional file  2: Fig. 
S2C. Consistent with the TCGA-STAD training cohort, 
the expressions of the NOX4 and FKBP10 were signifi-
cantly up-regulated, while the expressions of the MAOA 
and ALDH3A2 were significantly down-regulated in 
STAD in GSE66229 validation cohort (Additional file  2: 
Fig. S2D). Next, we systematically analyzed the relation-
ship between the risk score and clinical characteristics in 
STAD. The risk scores were remarkably higher in patients 
with H pylori infection, and cystic, mucinous and serous 
neoplasms (Additional file  3: Fig. S3). Nevertheless, 
no differences were observed in the mean of risk score 
among the groups of age, gender, T stage, N stage, M 
stage, tumor stage, family history of GC, grade, and reflux 
history (Additional file 3: Fig. S3). The clinical character-
istics of the low-risk and high-risk subgroups were then 
compared, and the difference of Gender (P = 0.006), N 
stage (P = 0.043), H pylori infection (P = 0.035), disease 

Risk score = 0.157 ∗MAOA− 0.198 ∗ ALDH3A2

+ 0.133 ∗ FKBP10 + 0.146 ∗NOX4.

type (P = 0.046) and survival status (P = 0.008) among 
the two risk subgroups reached statistical significance 
(Table 2).

Construction of nomogram
The nomogram integrated the risk score and all impor-
tant clinical features, which can be used to quantitatively 
predict the prognosis of patients and provide a refer-
ence for clinical decision making. In our study, risk score 
(P = 0.0005) and age (P = 0.020) were finally identified 
as prognostic indicators by using univariate and multi-
variate Cox regression analysis to construct nomogram 
(Table 3). As a result, a predictive nomogram integrating 
risk score (a score of 100) and age (a score of 67.5) for 
prognosis was constructed (Additional file  4: Fig. S4A). 
ROC curves showed that the AUC values of the nomo-
gram were 0.651, 0.664, and 0.749 for 1-, 3-, and 5-years 
OS, respectively (Additional file 4: Fig. S4B). The calibra-
tion curve showed that the actual survival probabilities 
at 1-, 3- and 5-year were almost in accordance with the 
survival probabilities predicted by the nomogram model 
(Additional file 4: Fig. S4C). The decision curves showed 
that the nomogram model was better than other factors 
in predicting the prognosis in STAD (Additional file  4: 
Fig. S4D).

Functional enrichment analysis of the DEGs in high‑risk 
and low‑risk groups
We further conducted functional enrichment analyses 
of the 298 DEGs in high-risk and low-risk groups (Addi-
tional file  10: Table  S12). GO enrichment analysis indi-
cated that the differential genes annotated to biological 
processes were involved in extracellular matrix (ECM) 
organization and extracellular structure organization. 
Differential genes annotated to cellular component cat-
egories were mainly enriched in collagen-containing 
ECM and collagen trimer. Differential genes annotated 
to molecular function categories were mainly enriched 
in ECM structural constituent and collagen binding 
(Fig. 4A, Additional file 10: Table S13). The top 10 path-
ways obtained by KEGG analysis were: protein digestion 
and absorption, proteoglycans in cancer, focal adhesion, 
human papillomavirus infection, PI3K-Akt signaling 
pathway, ECM-receptor interaction, cell adhesion mol-
ecules, axon guidance, cAMP signaling pathway, and 
vascular smooth muscle contraction (Fig. 4B, Additional 
file 10: Table S14). GSEA results showed that risk score 
was significantly associated with ECM glycoproteins, 
core matrisome, ECM organization in high-risk group 
(Fig. 4C). The detailed GSEA results for the high-risk and 
low-risk groups were presented in Additional file 5: Fig. 
S5.
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Fig. 3  Assessing the performance of the prognostic risk model in the training and validation cohort. A, D Kaplan–Meier curves of the OS of patients 
in the high- and low-risk groups in the TCGA-STAD training cohort (A), and GSE66229 cohort (D). B, E ROC curves for predicting 1-, 3-, and 5-year 
OS in the TCGA-STAD training cohort (B), and GSE66229 cohort (E). C, F Distribution of risk score, survival status (red dots indicate dead, blue dots 
indicate alive) and the gene expression of 4 model genes in the TCGA-STAD training cohort (C), and GSE66229 cohort (F)
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Table 2  Clinical characteristics between low- and high-risk groups

Bold indicates P value ≤ 0.05 was considered statistically significant

Variables Low risk
No. (%)

High risk
No. (%)

P value

Age (years) 0.466

  < 67 73 (45.91%) 79 (50.00%)

  ≥ 67 86 (54.09%) 79 (50.00%)

Gender 0.006
 Male 90 (56.60%) 113 (71.52%)

 Female 69 (43.40%) 45 (28.48%)

T stage 0.385

 T1/2 44 (27.67%) 37 (23.42%)

 T3/4 115 (72.33%) 121 (76.58%)

N stage 0.043
 N0/1 97 (61.01%) 84 (53.16%)

 N2/3 62 (38.99%) 69 (43.67%)

 NX 0 (0.00%) 5 (3.16%)

M stage 0.624

 M0 145 (91.19%) 141 (89.24%)

 M1 8 (5.03%) 12 (7.59%)

 MX 6 (3.77%) 5 (3.16%)

Tumor stage 0.958

 I/II 75 (47.17%) 75 (47.47%)

 III/IV 84 (52.83%) 83 (52.53%)

Family history of stomach cancer 0.205

 Yes 5 (3.14%) 10 (6.33%)

 No 122 (76.73%) 121 (76.58%)

 N/A 32 (20.13%) 27 (17.09%)

H. pylori infection 0.035
 Yes 6 (3.77%) 11 (6.96%)

 No 80 (50.31%) 49 (31.01%)

 N/A 73 (45.91%) 98 (62.03%)

Grade 0.152

 G1 3 (1.89%) 5 (3.16%)

 G2 62 (38.99%) 46 (29.11%)

 G3 92 (57.86%) 101 (63.92%)

 GX 2 (1.26%) 6 (3.80%)

Reflux history 0.988

 Yes 19 (11.95%) 16 (10.13%)

 No 86 (54.09%) 72 (45.57%)

 N/A 54 (33.96%) 70 (44.30%)

 Disease type 0.046
Adenomas and adenocarcinomas 150 (94.34%) 139 (87.97%)

 Cystic, mucinous and serous neoplasms 9 (5.66%) 19 (12.03%)

 Survival status 0.008
 Alive 105 (66.04%) 81 (51.27%)

 Dead 54 (33.96%) 77 (48.73%)
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Table 3  Univariate and multivariate Cox regression analysis of various prognostic parameters in STAD patients

Bold indicates P value ≤ 0.05 was considered statistically significant

Variables Patient
(N = 317)

Univariate analysis Multivariate analysis

HR [95% CI] P value HR [95% CI] P value

Age

  < 67 152 1 1

  ≥ 67 165 2.093[1.412, 3.103]  < 0.001 1.514[1.068, 2.146] 0.020

Gender

 Male 203 1

 Female 114 1.254 [0.851, 1.849] 0.253

T stage

 T1 13 1

 T2 68 1.642[0.347, 7.763] 0.532

 T3 151 1.861[0.338, 10.249] 0.475

 T4 85 1.611[0.283, 9.160] 0.591

N stage

 N0 98 1

 N1 83 1.453[0.729, 2.895] 0.288

 N2 65 1.040[0.426, 2.537] 0.932

 N3 66 1.658[0.691, 3.977] 0.257

 NX 5 1.732[0.213, 14.072] 0.607

M stage

 M0 286 1

 M1 20 1.095[0.441, 2.717] 0.845

 MX 11 1.125[0.381, 3.323] 0.832

Tumor stage

 I 44 1

 II 106 0.988[0.364, 2.679] 0.981

 III 135 1.203[0.318, 4.550] 0.785

 IV 32 2.785[0.652, 11.898] 0.167

Family history of stomach cancer

 Yes 15 1

 No 243 0.946[0.541, 1.655] 0.845

 N/A 59 0.833[0.316, 2.196] 0.712

H. pylori infection

 Yes 17 1

 No 129 0.983[0.583, 1.657] 0.949

 N/A 171 0.576[0.214, 1.550] 0.275

Grade

 G1 8 1

 G2 108 2.529[0.322,19.847] 0.377

 G3 193 3.226[0.418, 24.870] 0.261

 GX 8 4.065[0.378, 43.697] 0.247

Reflux history

 Yes 35 1

 No 158 0.972[0.567, 1.665] 0.917

 N/A 124 0.561[0.231, 1.364] 0.202

Disease type

 Adenomas and adenocarcinomas 289 1

 Cystic, mucinous and serous  Neoplasms 28 0.615[0.301, 1.256] 0.182

Risk

 High 158 1 1

 Low 159 0.525[0.354, 0.780] 0.001 0.538[0.379, 0.765]  < 0.001
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Mitochondrial‑related risk score was associated with TME 
signatures in STAD
Given the TME-associated signal pathway was enriched 
through functional enrichment analyses, we explored the 
relationship between the risk score and the TME signa-
tures. As shown in Fig.  5A, risk score was highly posi-
tively correlated with stromal score in STAD, and stromal 
score was higher in high-risk group compared to that 
in the low-risk group. We further investigated the rela-
tionship between risk score and TME components. Our 
results indicated that risk score had a significant and 
positive correlation with the expressions of the major-
ity of carcinoma associated fibroblast (CAF) signatures 
(Fig. 5B), as well as ECM-collagen and matrisome signa-
tures (Fig. 5C, D). Taken together, these results suggested 
a close relationship between mitochondrial-related risk 
score and TME signatures in STAD.

Mitochondrial‑related risk score was associated 
with immune signatures and immunotherapy responses 
in STAD
The tumor immune microenvironment was closely 
related with the therapeutic effects and prognosis of 
patients with malignant tumor. It is reasonable to check 
the relationship between the risk score and the immune 
cell infiltration in STAD. The contents of naive B cells, 
regulatory T cell (Tregs), M0 macrophage, and M2 mac-
rophage were remarkably higher in the high-risk group. 
In contrast, CD8+ T cells and resting CD4+ T cells were 
higher in low-risk group (Fig.  6A, Additional file  6: Fig. 
S6A, B). Consistent with the above results, risk score was 
positively correlated with the expressions of the majority 
signatures of M2 macrophage, while negatively correlated 
with the expressions of the majority signatures of acti-
vated CD8+ T cell (Fig. 6B). The correlations between the 

Fig. 4  Enrichment analysis in high-risk group and the low-risk group. A Circle map. Bands with different colors in the right half circle symbolized 6 
significant GO pathways, including biological process (BP), cellular component (CC), and molecular function (MF). The 6 pathways were enriched by 
genes listed in the left half circle. B Circle map. Bands with different colors in the right half circle symbolized top 10 significant KEGG pathways. The 
10 top pathways were enriched by genes listed in the left half circle. C GSEA recognized different gene sets in the high-risk groups



Page 12 of 24Chang et al. Journal of Translational Medicine          (2023) 21:191 

risk score and the signatures of other immune cells were 
presented in Additional file 8: Fig. S8. Consistent with the 
previous studies [28], the ESTIMATE results showed that 
the patients in high-risk had higher immune score, and 
significantly lower tumor purity (P = 0.370), than those in 
the low-risk groups (Fig. 6C, D). Due to the positive cor-
relation between the risk score, and matrisome and CAF 
signatures, as well as the negative correlation between 
the risk score and activated CD8+ T cells signatures, we 
speculated activated CD8+ T cells signatures was nega-
tively correlated with the matrisome and CAF signatures. 
Interestingly, our results showed that the expression of 
activated CD8+ T cell signatures were negatively corre-
lated with both matrisome and CAF signatures (Addi-
tional file  6: Fig. S6C). Taken together, these results 
strongly suggested the tumor immunosuppressive micro-
environment might contributed to the worse prognosis of 
the patients with STAD in high-risk group, which needs 
to be validated in further study.

Nowadays, immune checkpoint inhibitors were stud-
ied and well applied in cancer immunotherapy. In the 

present study. Our results indicated that 43 immune 
checkpoints were considerably modulated in high-
risk group (Fig. 6E). In addition, risk score was signifi-
cantly positively correlated with the expression level 
of 7 immune checkpoints, including CD200, NRP1, 
TNFSF4, B7-H3, TNFSF18, LAIR1 and OX40 (r > 0.2, 
Additional file 6: Fig. S6D). Currently, the inhibitors for 
PD-1 and CTLA-4 are research hotspots in the treat-
ment of advanced STAD. As shown in Fig.  6C, the 
expressions of PD-1, PD-L1 and CTLA-4 were signifi-
cantly down-regulated in the high-risk group. Consist-
ently, risk score was significantly negatively correlated 
with the expressions of PD1, PD-L1 and CTLA-4, 
respectively (Additional file 6: Fig. S6D).

Given the above results, we further used the TIDE 
algorithm to evaluate the ability of risk score in pre-
dicting the responses to immunotherapy in STAD. Our 
results showed that risk score had a significantly posi-
tive correlation with TIDE score (Additional file  7: Fig. 
S7), indicating that patients in low-risk group received 
better response to immunotherapy. The immunotherapy 

Fig. 5  Risk score was associated with TME signatures in STAD. A Association between stromal score and risk score and its distribution in the 
low- and high-risk groups. B Correlation analysis for risk score and the expressions of carcinoma associated fibroblast (CAF) up and down signatures. 
C Correlation analysis for risk score and the expressions of ECM and collagen signatures. D Correlation analysis for risk score and the expressions of 
matrisome signatures. P values were showed as: ***P < 0.001
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response rate in high-risk group (32.28%) was sig-
nificantly lower than that in low-risk group (66.67%) 
(Fig. 7A).

Next, PRJEB25780 cohort (PD-L1 inhibitor treatment 
for 45 patients with advanced gastric cancer [29]) was 
applied to validate whether the mitochondrial-related 
risk signature could accurately predict the responses 
to immunotherapy for patients with STAD. Consistent 
with the prediction results by TIDE, the immunother-
apy respond rate in high-risk group (13.04%) was sig-
nificantly lower than that in low-risk group (40.91%) in 
PRJEB25780 validation cohort (Fig. 7B).

As shown in Fig. 7C, the immunotherapy response rate 
in the low-immune subgroup (34.59%) was remarkably 
lower than that in the high-immune subgroup (64.56%). 
Interestingly, the immunotherapy response rate in low-
risk group (45.56%) was remarkably higher than that 
in high-risk group (20.29%) in the subgroup with low-
immune score. Moreover, the immunotherapy response 

rate in low-risk group (94.20%) was significantly higher 
than that in high-risk group (41.57%) in the subgroup 
with high-immune score, strongly suggesting that com-
bined risk score and immune score was a robust indica-
tor to predict the responses to immunotherapy in STAD 
(Fig.  7D). In addition, the immunotherapy response 
rate in the high stromal group (37.97%) was signifi-
cantly lower than that in the low stromal group (61.01%) 
(Fig. 7E). In the low stromal subgroup, the immunother-
apy response rates were 65.35% and 53.45% in low risk 
and high risk subgroup, respectively, which were similar 
to the low-stromal group (61.01%), indicating combined 
risk score and stromal score was not better than stromal 
score alone in predicting the response to immunotherapy 
in STAD patients with low-stromal score. However, the 
immunotherapy response rate in the low-risk + high-
stromal group (68.97%) was significantly higher than 
that in high-stromal group (37.97%), whereas the immu-
notherapy response rate in the high-risk + high-stromal 

Fig. 6  The different immune profiles between the low- and high-risk groups in the TCGA-STAD dataset. Two risk groups were divided based on 
the median risk score. A CIBERSORT analysis. B Correlation between risk score and the expressions of activated CD8+ T cell and M2 macrophages 
signatures. C, D ESTIMATE algorithm. E Expression variation of immune checkpoint. P values were showed as: ns not significant; *P < 0.05; **P < 0.01; 
***P < 0.001
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group (20.00%) was significantly lower than that in the 
high-stromal group (37.97%), strongly suggesting that 
combined risk score and stromal score can more accu-
rately predict response to immunotherapy in STAD 
patients with high-stromal score (Fig. 7F).

The phenotype for microsatellite instability–high (MSI-
H) is a distinct tumor subclass that is highly susceptible 
to immunotherapy. Consistent with the previous stud-
ies [30], the immunotherapy response rate MSI-H sub-
group (72.73%) was remarkably higher than that in the 
MSS subgroup (46.30%) and MSI-L subgroup (36.96%) 
(all P = 0.0005, Fig.  7G). Furthermore, our results also 
showed that the immunotherapy response rate in low-
risk group (65.35%) was remarkably higher than that in 

high-risk group (29.57%) in the subgroup with MSS. The 
immunotherapy response rate in low-risk group (57.89%) 
was also significantly higher than that in high-risk group 
(22.22%) in the subgroup with MSI-L. The above results 
strongly suggested that combination of risk-score and 
MSS/MSI-L can be used as a robust indicator to predict 
the response to immunotherapy in STAD (Fig. 7H).

Mutation status of STAD patients in high‑risk and low‑risk 
groups
Progressive accumulation of mutations throughout life 
can lead to cancer. Genome sequencing has revolution-
ized our understanding of somatic mutation in cancer, 
providing a detailed view of the mutational processes and 

Fig. 7  Risk score is a potential biomarker to predict benefits from immune therapies in STAD. A TIDE predicted the proportion of patients with 
response to immunotherapy in low-risk and high-risk groups. B The proportion of patients with response to immunotherapy in low-risk and 
high-risk groups in the PRJEB25780 immunotherapy cohort (45 patients with advanced gastric cancer who had received PD-L1 inhibitor treatment). 
C TIDE predicted the proportion of patients with response to immunotherapy in low-immune score and high-immune score groups. D TIDE 
predicted the proportion of patients of four groups based on the risk score and immune score with response to immunotherapy. E TIDE predicted 
the proportion of patients with response to immunotherapy in low-stromal score and high-stromal score groups. F TIDE predicted the proportion 
of patients of four groups based on the risk score and immune score with response to immunotherapy. G TIDE predicted the proportion of patients 
with response to immunotherapy in MSS, MSI-L and MSI-H groups. H TIDE predicted the proportion of patients of six groups based on the risk score 
and microsatellite status with response to immunotherapy. MSS, Microsatellite stability; MSI-L, Microsatellite Instability-Low; MSI-H, Microsatellite 
Instability-High. P values were showed as: ns not significant; ***P < 0.001
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genes that drive cancer [31]. Therefore, we mapped the 
mutation landscape of STAD in both the high risk and 
low risk groups, and analyzed the relationship between 
risk score and mutation profile. As shown in Fig. 8A, the 
top 20 high-frequency mutated genes in high-risk and 
low-risk group were presented. TP53, TTN, MUC16, 
LRP1B, SYNE1, CSMD3, FAT4, OBSCN, ARID1A, FLG, 
CSMD1, DNAH5, SPTA1, PCLO and RYR2 were the 
common high-frequency mutation genes in both groups. 
In top 5 mutant genes, the mutation rates of TTN and 
MUC16 were significantly decreased in high-risk group 
(Fig. 8B).

Besides, accumulating evidences supported that TMB 
functioned as a potentially predictive biomarker for mul-
tiple applications, including the biomarker for response 
to immunotherapy in malignancies [32–36]. Our data 
showed that TMB in high-risk group was significantly 
lower than that in low-risk group, and the risk score had 
a significant negative correlation with TMB in STAD 
(Fig.  8C, D). Interestingly, the higher TMB tended to 
have a better OS compared with the lower TMB, but 

without a statistically significant difference (P = 0.153, 
Fig. 8E). Moreover, low-risk group tended to have a bet-
ter OS compared with high-risk group in high TMB sub-
group. The similar results were obtained in the low TMB 
subgroup, but without a statistically significant difference 
(P = 0.099, Fig. 8E). Taken together, these results strongly 
suggested that combination of risk score and TMB might 
be a valuable biomarker for predicting the prognosis for 
STAD patients (Fig. 8E).

Risk score predicts therapeutic benefits in STAD
To find the potency of risk score as an index for predict-
ing the response to drugs (including chemotherapy, tar-
geted therapy, and immunotherapy) in STAD, we inferred 
the IC50 value of the 138 drugs in TCGA-STAD patients. 
We found that patients in high-risk group might be more 
sensitive to rapamycin, PD-0325901, dasatinib, et  al., 
whereas patients in low-risk group might be more sen-
sitive to AZD7762, CEP-701, methotrexate, et al., which 
could provide a reliable reference for clinical treatment 
(Fig.  9). Detailed information on the top 10 sensitive 

Fig. 8  Mutation status in the high- and the low-risk groups in STAD. A The top 20 genes according to mutation frequency in low and high-risk 
groups, respectively. B Mutation rate of the top five mutant genes in high-risk and low-risk groups. C Relationship between the risk score and TMB. 
D Correlation between risk score and TMB score in STAD. E Kaplan–Meier curves of the OS of patients in the high- and low-TMB groups in the 
TCGA-STAD training cohort. P values were showed as: ns not significant; *P < 0.05; ***P < 0.001
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drugs for the high-risk and low-risk subgroup was illus-
trated in Tables 4 and 5.

Experimental verification of hub gene expression in STAD
To verify the expressions of hub genes in STAD sam-
ples, qRT-PCR was conducted on 10 pairs of STAD 
tumor and paired adjacent normal tissues. As shown in 
Fig. 10A, the expressions of NOX4 and FKBP10 were sig-
nificantly higher in STAD tumor tissues than those in the 
paired adjacent normal tissues, respectively (all P < 0.05). 
The expressions of ALDH3A2 and MAOA were signifi-
cantly lower in STAD tumor tissues than those in the 
paired adjacent normal tissues, respectively (all P < 0.05, 
Fig.  10A). We also verified the expressions of the four 
hub genes in a human normal gastric epithelial cell line 
GES-1 and human gastric cancer cell lines through qRT-
PCR. Our results showed that the expressions of NOX4 
and FKBP10 were significantly higher than in the normal 
gastric epithelial cell line GSE-1 (all P < 0.05, Fig.  10B), 
while the expressions of ALDH3A2 and MAOA were 
significantly lower than in the normal gastric epithelial 
cell line GSE-1 (all P < 0.05, Fig. 10B). These results sup-
ported our hypothesis and provide solid evidence for the 

rationality of choosing these four genes for prognostic 
model construction (see Fig. 11).

Discussion
GC remains a frequent cancer worldwide with high inci-
dence and mortality globally [1]. Effective biomarkers are 
still missing even though 3 biomarkers (HER2, MSI-H 
and PD-L1) have been proven to predict the responses of 
targeted therapy in GC [37]. Therefore, identifying more 
effective biomarkers for targeted therapy and prognosis 
prediction is highly demand. Mitochondria were impor-
tant pharmacological targets due to their critical roles in 
cell proliferation and death. The mitochondrial energy 
metabolisms are now known to be reprogrammed to 
meet the challenges of high energy demand, with bet-
ter use of available fuels for malignant cell growth and 
migration [38]. Thus, mitochondria play a vital and mul-
tifunctional role in tumor occurrence and development, 
and targeting mitochondria provides therapeutic oppor-
tunities [39]. A growing body of research showed that 
mitochondrial-related genes can be used as biomarkers 
for the diagnosis and treatment of malignancies.

NOX4 has been identified as a biomarker and thera-
peutic target for a variety of human cancers. NOX4 was 

Fig. 9  Risk score predicts drug therapeutic benefits in STAD. Proportion of normalized IC50 value of the 60 drugs between the low-risk and 
high-risk groups. P values were showed as: ns not significant; *P < 0.05; **P < 0.01; ***P < 0.001
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upregulated in pancreatic cancer and was involved in 
the development of pancreatic cancer by promoting cell 
proliferation, regulating cell metabolism, and mediating 
angiogenesis, suggesting NOX4 was a potential thera-
peutic target for pancreatic cancer [40]. Up-regulation of 
NOX4 predicted worse prognosis and accelerated tumor 
growth in colorectal carcinoma [41]. Moreover, it has 
been shown that NOX4 recruited M2-macrophages via 
ROS/PI3K signaling pathway-dependent cytokines pro-
duction, thus contributing to the cell division in NSCLC 
[42]. Consistent with the previous studies, NOX4 in our 
model was significantly up-regulated in STAD, and high 
level of NOX4 was associated with worse prognosis in 
patients with STAD.

It has been reported that a cancer-specific molecu-
lar mechanism for NSCLC was related with FKBP10-
dependent protein translation. The expression of FKBP10 
was positive in cancer lesions [43]. Li et al. reported that 
FKBP10 silencing decreased the expression of integrin 
αV and integrin α6, and P-AKT, suggesting that FKBP10 
might promote metastasis [44]. FKBP10 was up-regu-
lated in GC tissues and might be a reliable therapeutic 
target in GC [45]. Consistent with the above studies, our 
results showed that the high expression of FKBP10 was 
related with high risk, and predicated poor prognosis 
of STAD patients. Consistent with the previous studies, 

FKBP10 in our model was significantly up-regulated in 
STAD, and high level of FKBP10 was associated with 
worse prognosis in patients with STAD.

It has been shown that ALDH3A2 was overexpressed 
in low-grade GC compared with high-grade GC, and 
patients with low expression of ALDH3A2 had worse OS 
than those with high ALDH3A2 expression. ALDH3A2 
was reported as a reliable biomarker for the immuno-
therapy, as well as an independent predictor for the 
prognosis of GC [46]. In renal clear cell carcinoma, low 
level of ALDH3A2 was related with shorter survival [47]. 
Consistently, ALDH3A2 was significantly down-regu-
lated in STAD. However, ALDH3A2 couldn’t effectively 
predict the prognosis for patients with STAD, and this 
inconsistent effects of ALDH3A2 on prognosis may be 
caused by the different inclusion and exclusion criteria 
across different study, which needs more comprehensive 
investigation.

MAOA exerted different biological effects in different 
tumors. MAOA was found to be involved in mitochon-
drial dysfunction, and promoted malignant growth and 
metastasis in gastric cancer [48]. MAOA promoted pros-
tate cancer progression by increasing cell growth and 
cancer stem cells, which suggested that MAOA might 
be a potential therapeutic target for the treatment of 
prostate cancer [49]. In the present study, MAOA was 

Table 4  Detailed information of the top 10 sensitivity drugs in high-risk groups

Drug name Introduction Drug target Drug target pathway

Rapamycin Drugs that selectively target mTORC1 are expected to impair cancer 
metabolism and are considered promising anti-cancer therapies

MTORC1 PI3K/MTOR signaling

PD.0325901 Mirdametinib (PD-0325901) is an oral, non-ATP-competitive, highly 
selective, and potent small-molecule inhibitor of MEK1 and MEK2

MEK1, MEK2 ERK MAPK signaling

Dasatinib Dasatinib is an orally available short-acting dual ABL/SRC tyrosine 
kinase inhibitor (TKI). It potently inhibits BCR-ABL and SRC family 
kinases (SRC, LCK, YES, FYN), but also c-KIT, PDGFR-a and PDGFR-b, and 
ephrin receptor kinase

ABL, SRC, Ephrins, PDGFR, KIT RTK signaling, kinases

MG-132 The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-
l-leucyl-l-leucyl-l-leucine) induces the apoptosis of cells by a different 
intermediary pathway. Although the pathway of induction of apopto-
sis is different, it plays a crucial role in anti-tumor treatment

Proteasome, CAPN1 Protein stability and degradation

Cytarabine Cytarabine (molecular formula: C9H13N3O5) interferes with DNA 
synthesis, acting on DNA/RNA polymerase (and other nucleotide 
reductase enzymes), reducing cell ability to replicate

Antimetabolite Other

A-443654 A-443654, a specific Akt inhibitor, interferes with mitotic progression 
and bipolar spindle formation. A-443654 induces G2/M accumulation, 
defects in centrosome separation, and formation of either monopolar 
arrays or disorganized spindles

AKT1, AKT2, AKT3 PI3K/MTOR signaling

AZ628 AZ628 is a hydrophobic Raf-kinase inhibitor currently in clinical trial of 
various cancer

BRAF ERK MAPK signaling

WH-4–023 WH-4-023 is a LCK inhibitors SRC, LCK Other, kinases

Mitomycin.C Mitomycin C (MMC) is an alkylating agent with extraordinary ability to 
crosslink DNA, preventing DNA synthesis

DNA crosslinker DNA replication

TW.37 TW-37 is a novel, potent and non-peptide Bcl-2 small-molecule inhibi-
tor

BCL2, BCL-XL, MCL1 Apoptosis regulation
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Table 5  Detailed information of the top 10 sensitivity drugs in low-risk groups

Drug name Introduction Drug target Drug target pathway

AZD7762 AZD7762 is a checkpoint kinase 1 (Chk 1) inhibitor, which 
has been reported to sensitize many tumor cells to DNA 
damage

CHEK1, CHEK2 Cell cycle

CEP-701 CEP‐701 is an inhibitor of tyrosine kinase. Treatment with 
CCEP-701 modulates various signalling pathways and leads 
to cell growth arrest and programmed cell death in several 
tumour types

FLT3, JAK2, NTRK1, NTRK2, NTRK3 Other, kinases

Methotrexate Methotrexate (MTX) is a commonly used antimetabolite, 
which inhibits folate and DNA synthesis to be effective in 
the treatment of various malignancies

Antimetabolite DNA replication

MS-275 MS-275, a selective class I inhibitor of histone deacetylase 
(HDAC), exerts anti-tumor activity in various cancer types, 
including multiple myeloma (MM)

HDAC1, HDAC3 Chromatin histone acetylation

Shikonin Many studies have demonstrated that shikonin exerts 
strong anticancer effects on various types of cancer by 
inhibiting cell proliferation and migration, inducing apopto-
sis, autophagy, and necroptosis

Not defined Other

Gefitinib Gefitinib is an orally active, selective epidermal growth fac-
tor receptor-tyrosine kinase inhibitor

EGFR EGFR signaling

BIBW2992 BIBW2992 is an irreversible blocker of the ErbB family, 
acting at the tyrosine kinases of these proteins. Further 
investigations for the treatment of many other tumors with 
BIBW2992, e.g., HNSCC and breast cancer, are ongoing

ERBB2, EGFR EGFR signaling

Sunitinib Sunitinib is a tyrosine kinase inhibitor indicated for the 
treatment of gastrointestinal stromal tumor, advanced renal 
cell carcinoma, and pancreatic neuroendocrine tumors

PDGFR, KIT, VEGFR, FLT3, RET, CSF1R RTK signaling

S-Trityl-L-cysteine S-Trityl-L-cysteine (STLC) is a well-recognized lead com-
pound known for its anticancer activity owing to its potent 
inhibitory effect on human mitotic kinesin Eg5

KIF11 Mitosis

Bortezomib Bortezomib (BTZ) is the first proteasome inhibitor approved 
by the Food and Drug Administration. It can bind to the 
amino acid residues of the 26S proteasome, thereby caus-
ing the death of tumor cells

Proteasome Protein stability and degradation

Fig. 10  Experimental verification of 4 genes expression in STAD. A Expression of 4 genes in 10 paired STAD tissues and normal tissues was 
evaluated by qRT-PCR. B Expression of 4 genes in a human normal gastric epithelial cell line GSE-1 and human gastric cancer cell lines through 
qRT-PCR
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Fig. 11  Graph summarization. The work summary graph of this study
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significantly down-regulated in STAD. However, the high 
level of MAOA was associated with worse prognosis in 
patients with STAD, which need to be validated in more 
samples in further study.

Currently, many biomarkers were applied for prog-
nostic prediction of GC, such as NOX4, FKBP10 and 
ALDH3A2, but most of them are studied for a single bio-
marker [44–46, 50]. Increasing evidences indicated that 
prognostic model constructed by multi-genes as a prog-
nostic index was more comprehensive and effective than 
single gene in kinds of malignancies. For instance, Nie 
et al. constructed a GC prognosis model based on meta-
bolic signature, which were mainly related to the dys-
regulation of the metabolic microenvironment [51]. Wu 
et  al. constructed a immune-related prognostic model 
[52]. As the dysfunction and dysregulation of mitochon-
dria have been associated with cancer, we constructed a 
STAD prognostic model based on mitochondrial-related 
genes, which could effectively predict the prognosis for 
patients with STAD.

The DEGs between the high-risk and low-risk groups 
were mainly enriched to the extracellular matrix (ECM) 
and focal adhesion pathway. ECM accumulation was a 
classical characteristic feature of tumors, and a higher 
ECM content predicted a poorer prognosis in a broad 
range of cancer types [53]. The TME is a composition of 
cancer cells, non-cancerous stromal cells, soluble growth 
factors, cytokines, proteases, and ECM, which provides 
essential signals for tumor survival, growth, and acquisi-
tion of invasiveness, while hindering antitumor immunity 
[24, 54, 55]. Fibroblasts constitute one of the most vital 
cells in the stroma and turn into cancer-associated fibro-
blasts (CAFs) in TME. CAFs not only play active roles in 
tumorigenesis and progression both by soluble factors 
and direct cell-to-cell contact, but also sculpt TME by 
suppressing anti-tumor immune responses or by recruit-
ing immunosuppressive cells [54]. Matrisome defined as 
the compendium of genes encoding core ECM proteins, 
or structural component of the ECM [53]. Consistently, 
our results indicated that risk score was positively cor-
related with the CAF signature, ECM signature, and 
Matrisome signatures. Moreover, risk score had a posi-
tive correlation with stromal score and a negative cor-
relation with tumor purity, which could be on behalf of 
higher infiltration degrees of stromal cells in the TME of 
the high-risk group.

The immune cells play essential roles in TME. The 
success of cancer immunotherapy relies on the compre-
hensive understanding of the tumor microenvironment 
and immune evasion mechanisms in which the tumor, 
stroma, and infiltrating immune cells coordinated in a 

complex network. The main benefit of immunotherapy 
is to generate memory CD8+ T cells for sustained pro-
tection against metastasis and preventing recurrence of 
the disease [56]. Active immune cells could enter into the 
tumor parenchyma and perform their anti-tumor func-
tion [55]. Therefore, the ultimate goal of immunotherapy 
is to convert an immunodorminant TME into an immu-
nostimulatory TME, which allows the immune system to 
clear tumor lesions [56]. Treg cells are involved in tumor 
progression by inhibiting antitumor immunity. High Treg 
cell infiltration in the TME was involved in unfavorable 
prognosis in patients with various types of cancer [53]. 
M2-polarized macrophages, commonly deemed tumor-
associated macrophages (TAMs), were contributors to 
many pro-tumorigenic outcomes in cancer [57]. Mac-
rophage type 2 (M2) cells, and Tregs cells could make 
immunologic barriers against CD8+ T cell‐mediated anti-
tumor immune responses [58]. Our results indicated that 
naive B cells, regulatory T cell (Tregs), M0 macrophage 
and M2 macrophage were significantly enriched in high-
risk group, whereas CD8+ T cells and resting CD4+ T 
cells were remarkably enriched in low-risk group. Taken 
together, these results suggested that high-risk group was 
suffused with immunosuppressive cells such as Tregs, M2 
macrophages, producing the immunosuppressive micro-
environment to hamper CD8+ T cells-mediated eradica-
tion for tumor cells.

Monoclonal antibodies against immunological check-
point molecules provided a vast breakthrough in cancer 
therapeutics. For instance, PD-1/PD-L1 and CTLA-4 
inhibitors showed promising therapeutic outcomes [59]. 
In our study, high-risk group had  a considerably lower 
rate of immunotherapy response than that in the low-
risk group, which was consistent with the expression 
levels of PD-1/PD-L1 and CTLA-4 in the high-risk and 
low-risk groups. Interestingly, combination of risk score 
and immune score, or stromal score can more accu-
rately predict the responsiveness to immunotherapy 
of patients with STAD. These findings further demon-
strated the effectiveness of the risk score as a biomarker 
in predicating the response to immunotherapy. The TMB 
was associated with the formation of neoantigens which 
activated antitumor immunity, which was a reliable bio-
marker to predict the response to PD-L1 therapy [60]. In 
our study, the TMB in high-risk group was lower than 
that in low-risk group, which strongly suggested that the 
lower response rate to immunotherapy in high-risk group 
might be due to the lower TMB.

In addition, risk score might be helpful in screening the 
therapeutics drugs for patients with STAD. For instance, 
an independent study showed that high-risk STAD 
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patients showed higher sensitivity to the chemotherapy 
agents, including rapamycin [61]. Another study found 
that methotrexate is suitable to inhibit the function of 
Early B-cell factors (EBFs) in gastric cancer [62]. In the 
present study, rapamycin, PD-0325901 and dasatinib 
were found to be more effective for patients in the high-
risk group, whereas AZD7762, CEP-701 and methotrex-
ate were predicted to be more effective for patients in the 
low-risk group. However, the toxicities of the screened 
drugs was uncertain. For instance, due to the unpredict-
able cardiac toxicity, the development of AZD7762 was 
not going forward in patients with advanced solid tumors 
[63]. 5-fluorouracil, doxorubicin, high-dose methotrexate 
(FAMTX) schedule was reported to be active in advanced 
gastric cancer, and the main toxicity was myelosup-
pression [64]. Oxidative stress is a component of many 
diseases, including cancer. Although numerous small 
molecule drugs evaluated as antioxidants have exhibited 
potential therapeutic ability in preclinical studies, results 
from clinical trial was disappointed. A greater under-
standing of the pharmacological mechanisms through 
which anti oxidative drug act might provide a rational 
usage would lead to greater therapeutic success in malig-
nancies [65, 66].

Our research has some unique advantages. First, the 
combination of multigene has robust predictive capabil-
ity for cancer prognosis than single genes. An integrated 
mitochondria-related gene prognostic risk model would 
play more vital roles in the diagnosis and prognosis of 
STAD patients. Second, the results of the study provide 
us with a more accessible method to determine whether 
patients belong to the high- or low-risk group, which is 
simple and feasible. In addition, we evaluated its predic-
tive value, chemotherapy efficacy, immunotherapy effi-
cacy and immune cell infiltration for patients with STAD, 
which could provide individualized management and 
treatment for STAD patients.

Limitations
Although our findings in this study have important 
clinical consequences, there are still some limitations. 
Firstly, this is a retrospective study, and an independent 
prospective cohort is needed to verify the risk model 
constructed in this study. Secondly, this study heavily 
relied on datasets and computational predictions while 
validation component is poor. More experimental stud-
ies are needed to validate in further studies. Finally, 
the carcinogenic effects of the prognostic genes in the 
model and the mechanisms of interaction between 
prognostic genes and mitochondrial dysfunction in 
STAD are mainly unknown and need to be further 
explored. Based on above information, our future direc-
tion will focus on three aspects: (1) Applying mouse 

model to verify our current hypothesis; (2) Collecting 
gastric cancer cases and clinical information to vali-
date the risk score model, and compare it with the gold 
standard of clinical diagnosis, and ensure that the risk 
model constructed in the present study can be applica-
ble for clinical practice; (3) To screen more novel genes 
associated with mitochondria in more datasets.

Conclusions
We established a STAD patient risk score model includ-
ing NOX4, FKBP10, ALDH3A2, and MAOA. Function-
ally, the risk score was highly correlated to the TME and 
immune cell infiltration of STAD patients. Combined 
analysis for risk score and stromal score, or immune 
score, or MSS/MSI can predict the response to immu-
notherapy more accurately than single index in STAD. 
Regarding drug sensitivity, patients in high-risk group 
was more sensitive to rapamycin, PD-0325901 and dasat-
inib, whereas patients in low-risk group was more sen-
sitive to AZD7762, CEP-701 and methotrexate. Taken 
together, our mitochondrial-related risk model could be a 
reliable prognostic biomarker for personalized treatment 
of STAD patients.
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