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Abstract 

Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain 
is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive 
physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been 
commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced 
photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review 
addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, 
disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nano‑
particles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive 
improvement.

Keywords Cognitive, Near‑infrared light, Photobiomodulation, Nanoparticles, Photothermal

Introduction
Cognition is an advanced neurological function by which 
the brain acts in acquiring knowledge and understand-
ing through thought, experience and senses. Cognitive 

dysfunction may occur due to various pathological or 
disease conditions and may impair learning and memory, 
accompanied by possible aphasia, apraxia, agnosia or dys-
lexia. Due to its refractory nature and harmfulness, the 
social impact of cognitive dysfunction is high [1]. Thus, 
research into the pathogenesis or risk factors for cogni-
tive dysfunction in neurological diseases or conditions is 
urgently needed. More importantly, techniques and strat-
egies that delay or prevent the onset and progression of 
cognitive impairment are urgently needed [2, 3].

Cognitive dysfunction is associated with regional 
abnormalities in different brain areas. Abnormalities 
such as neuroinflammation and impairments in neu-
ral network connectivity occur in many neurological 
diseases, including following surgery [4–9]. Although 
conventional treatments to improve regional blood 
supply were undertaken, such as medications or, in 
certain cases, craniotomies in patients with carotid 
artery stenosis, the effects or outcomes were unsat-
isfactory because of the unavoidable side effects of 
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medication as well as the invasive trauma due to sur-
gery. It has been suggested that developing nonphar-
macological or noninvasive strategies to address 
cognitive disorders may offer better clinical outcomes 
for patients. Among these, conventional magnetic or 
electromagnetic fields, or light therapy to improve 
regional brain function, have been observed as alterna-
tive clinical treatments [10, 14].

Non-invasive techniques have unique advantages in 
the treatment of brain diseases due to the complex-
ity of the cranial structure. Indeed, transcranial elec-
trical stimulation (TES) and transcranial magnetic 
stimulation (TMS) have been used clinically and have 
achieved considerable curative effects [11, 12]. How-
ever, these techniques still have limited therapeu-
tic efficacy because they lack targeted treatment for 
certain types of diseases and are not without com-
plications, such as epilepsy [13]. To avoid adverse 
consequences, light therapy is now emerging as a new 
alternative treatment.

Photobiomodulation utilizes the photon energy of 
light to regulate the physiological functions of humans 
or animals [14]. Near-infrared (NIR) laser (780–
1100  nm), which can effectively penetrate organs, 
including brain, has been studied for this application 
[15, 16]. Due to the complex structure of the brain 
and the diversity of disease conditions, NIR laser with 
different wavelengths, energy densities (expressed 
as J/cm2) and irradiance (expressed as mW/cm2) was 
selected for use. The most common are infrared bands 
around 800  nm and 1000  nm. However, in order to 
achieve better target on neural activity of the specific 
brain region and to obtain the maximum benefits, 
the frequency and irradiation time were varied at the 
experimental level. The energy generated from the 
absorption of photons by cellular mitochondria modu-
lates the microenvironments of organisms to provide 
the capacity to treat disease or disease conditions. 
Moreover, the photothermal conversion effect trig-
gered by photothermal nanomaterials endows pho-
tobiomodulation with accurate and effective features 
[17].

This review focuses on NIR-based photobiomodula-
tion (Fig. 1), including direct photobiomodulation and 
indirect photobiomodulation mediated by photosen-
sitive nanoparticles, in improving cognitive function 
affected by various neurological diseases at the pre-
clinical and clinical levels. This review discusses the 
underlying mechanisms of how photobiomodulation 
modulates neurons and neural networks and addresses 
the advantages, disadvantages, and potential applica-
tions of photobiomodulation alone or in combination 
with photosensitive nanomaterials.

NIR Light Triggered Photobiomodulation
Photobiomodulation was formerly known as a low-
level light therapy [18]. This therapy utilizes nonion-
izing light sources, such as lasers, light emitting diodes 
(LEDs) or broadband light, to generate ultraviolet, vis-
ible, and infrared light for therapeutic applications. The 
medical benefits of this low-level laser therapy were first 
proposed by Dr. Endre Mester in 1967. The studies by 
Zivin et al. verified that when a shaved scalp was irradi-
ated with NIR laser (808  nm), the penetration depth of 
the cerebral cortex reached 20  mm [19]. Moreover, the 
light scattering effect of NIR laser is weak; it can pen-
etrate deeper into the living tissue and does less harm 
to the organism [20–22]. Owing to these advantages, 
NIR-based photobiomodulation has been widely applied 
to alleviate pain or inflammation, modulate immune 
function, promote wound healing and promote tissue 
regeneration. By benefiting from these functions, photo-
biomodulation has been studied and applied in the field 
of neurotrauma, neurodegeneration and neuropsychiat-
ric disorders [23–25].

Transcranial photobiomodulation is a general type of 
photobiomodulation in which light penetrates the skull 
into the brain matter to provide an effect [26]. During this 
process, light passes through a series of layers, includ-
ing the scalp, periosteum, cranium and meninges, and 
induces neurobiological changes in turn [27, 28]. In the 
field of cognition-related disorders, studies have shown 
that transcranial photobiomodulation improves execu-
tive performance, memory, attention and other cognitive 
abilities, indicating that transcranial photobiomodulation 
is a potential therapy for the neurorehabilitation of cog-
nitive function [29].

Intranasal photobiomodulation is another type of pho-
tobiomodulation that is an alternative to transcranial 
photobiomodulation because it overcomes some limita-
tions of transcranial photobiomodulation and provides 
effective irradiation into certain brain regions, such as 
the ventral frontal lobe, ventral preorbital cortex and 
hippocampus [14, 30]. Intranasal photobiomodulation 
improves cerebral function due to its therapeutic mecha-
nisms obtained from photothermal conversion, which 
modulates haemodynamic rheology, blood viscosity and 
coagulation function in regions where light radiation has 
been applied. Repeated intranasal photobiomodulation 
has been reported to potentially improve cognitive func-
tion [31, 32].

Integrating nanomaterials with photobiomodulation 
is another advanced type of photobiomodulation. The 
advantage of nanomaterial-integrated photobiomodu-
lation is increased accuracy in treating brain region-
related diseases. The combination of nanodrug-carrying 
particles and NIR laser is a forward-looking step in the 
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development of photobiomodulation. Using the targeted 
drug-carrying ability and biocompatibility of nanoma-
terials, combined with the optical stimulation of an NIR 
laser, localized and timely release of nanodrugs in the 
brain can be achieved. This is of great benefit in visual-
izing the precise brain area/region that is being targeted 
and saves healthy brain tissue from suffering additional 
damage. Therefore, nanomaterial-integrated photobio-
modulation has enormous potential for cognition-related 
diseases such as depression and Alzheimer’s and Par-
kinson’s diseases involving specific encephalic regions 
[33–35, 127]. Compared with transcranial photobio-
modulation, intranasal photobiomodulation or even drug 

treatment, nanomaterial-integrated photobiomodula-
tion may have more advantages for treating cognitive 
dysfunction; however, nanomaterials have not yet been 
deemed suitable for clinical use.

The effectiveness of photobiomodulation is significantly 
correlated with short-term cognitive improvement, but 
the long-term benefit of photobiomodulation is limited 
[36]. Indeed, a single dose of photobiomodulation was 
reported to improve short-term cognitive function [37]. 
In addition, the therapeutic effect of photobiomodulation 
was time-dependent: A study showed that the use of NIR 
laser (1064  nm, 250 mW/cm.2, 8  min) once a week for 
a total of 5  weeks can improve the behavioral cognitive 

Fig. 1 A summary of photobiomodulation approaches for the cognitive improvement. The photobiomodulation approaches for the cognitive 
improvement can be classified as the direct photobiomodulation, including transcranial or intranasal photobiomodulation, or and the indirect 
photobiomodulation, in conjunction with photosensitive nanomaterials. Both photobiomodulations modulate approaches are mainly based on 
the four pathological mechanisms to intervene in the physiological condition of cognitive function, including: mitochondrial function, calcium 
ion concentration, reactive oxygen species and neural networks. and Intervention consequently improves cognitive impairment related to various 
neurological diseases related cognitive impairment
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processing of middle-aged and elderly subjects at a risk 
of cognitive decline. Although the duration of efficacy 
of photobiomodulation and its relapse are unclear, the 
extremely low adverse reactions and very promising out-
comes in reducing the impact of cognitive decline were 
noted [38].

Cerebral regulatory mechanisms 
of photobiomodulation
Photobiomodulation triggers neuroprotective mecha-
nisms through a cascade of intracellular and molecular 
modulations, including increasing cerebral blood flow 
(CBF), balancing cellular metabolism and preventing 
neurodegeneration [39]. Red and NIR light were reported 
to alter intracellular molecules and neural network con-
nections through the various mechanisms described 
above and below (Fig. 2) [40–43].

Modulation of intracellular molecules
Cytochrome C oxidase
The main mechanism of light action on cells is to induce 
cytochrome C oxidase (CCO) located in the mitochon-
drial inner membrane, which is responsible for catalysing 
the transformation of oxygen into water for the produc-
tion of adenosine triphosphate (ATP) [44, 45]. Biologi-
cal tissues naturally contain chromophores that can be 
excited by light energy, and CCO is considered to be 
another major chromophore, alongside haemoglobin and 
myoglobin. CCO can be excited by light ranging in wave-
length from 600 to 900 nm, which is why blue or green 
light was not selected for photobiomodulation despite 

these colours having the ability to promote cell growth 
[46]. Cells absorb optical energy, causing the redox state 
of CCO to change from a ground state to an excited state, 
which then activates the mitochondrial electron trans-
port chain [40]. Elevated proton gradients on both sides 
of the mitochondrial membranes increase membrane 
potentials [47], and subsequently generate ATP and reac-
tive oxygen species (ROS) required for normal cellular 
respiration, [48, 49] and enhance cell energy consump-
tion [50]. Subsequently, downstream signalling pathways 
were activated to protect neurons, to promote neuronal 
proliferation and to form new synapses for better mem-
ory formation [49, 51].

Intracellular calcium ions (Ca.2+)
Visible-NIR light has also been reported to increase the 
permeability of neurons to calcium ions  (Ca2+) and main-
tain neuronal  Ca2+ intra- and extracellular balance [52, 
53]. Both the entry of exogenous  Ca2+ into cells and the 
release of endogenous  Ca2+ from the endoplasmic retic-
ulum of neurons is due to the activation of N-methyl-
D-aspartate receptors (NMDRs) once membranes are 
depolarized by irradiation with 650 nm and 808 nm light. 
 Ca2+ is involved in the regulation of neurotransmitter 
release, synaptic plasticity, and activity-dependent tran-
scription under normal physiological conditions, but 
over-influx of calcium may also cause cytotoxicity [41]. 
Low-intensity NIR irradiation (e.g., 850  nm laser radia-
tion) has been reported to increase intracellular  Ca2+ 
levels and protect against the effects of intracellular cal-
cium overload and endoplasmic reticulum stress in vitro 

Fig. 2 Biological mechanisms of near‑infrared (NIR) light irradiating brain. They include cerebral functional states after intracellularly and 
intercellularly regulatory mechanisms have been applied and when neurons are irradiated by NIR light. Intracellular changes include cytochrome C 
oxidase, N‑methyl‑D‑aspartic acid receptor and reactive oxygen species mediated mechanism whilst extracellular changes are enhanced neuronal 
transmission and connections
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[54]; all these ultimately protect cells from the destruc-
tive effect of high  Ca2+ levels, promote the excretion of 
intracellular calcium ions, and prevent excitatory toxicity 
(810 nm laser radiation) [55].

ROS
NIR irradiation generates ROS, and then modulates the 
metabolic activity of neurons by altering lipid metabo-
lism [49]. During the neuronal metabolism, the accom-
panying synthetic lipid droplets (LDS) mitigated the 
harmful effects of ROS through enveloping and coating 
mechanisms [56, 57]. Additionally, photobiomodulation 
can balance the intracellular ROS levels in a steady state 
through reducing the increased intracellular ROS levels 
in stressed neurons but increasing ROS levels in normal 
unstressed neurons due to low level laser triggered mito-
chondrial membrane potential changes [58]. A previous 
study also showed that after 808 nm laser irradiation, the 
average lipid as well as LDS levels of rat cortical neurons 
were increased significantly mediated by ROS, indicat-
ing a strong correlation between ROS induced by photo-
biomodulation and LDS formation in neurons. This also 
means that the lipid metabolism of neuronal cells can be 
manipulated through NIR laser to treat cognitive distur-
bances [49].

Neuronal networks
Transcranial photobiomodulation has an inhibitory 
effect on rodent brains because light irradiation reduces 
the increased excitatory neurotransmitters in the hip-
pocampus and cortex [59]. This suggests that transcranial 
photobiomodulation is an effective intervention strategy 
for excitatory/inhibitory neurons as well as the entire 
excitatory/inhibitory neural network. Recently, a pre-
liminary study on the regulatory effects of 40 Hz pulsed 
NIR laser on brain oscillations demonstrated that a single 
session of transcranial photobiomodulation significantly 
increases the power of electroencephalogram (EEG) 
faster oscillatory frequencies of alpha, beta and gamma 
waves and reduces the power of the slower frequencies 
of delta and theta waves in subjects at rest [43]. It is sug-
gested that infrared light can maintain the stability of the 
brain neural network [26, 60]. Transcranial photobio-
modulation with an 808 nm pulsed NIR laser (transcra-
nial: 100 mW/cm2; intranasal: 25 mW/cm2: 40  Hz for 
20 min) was recently reported to reduce neuronal dam-
age in the prefrontal cortex and γ-aminobutyrinergic 
(GABAergic) neurons in the hippocampus, protect the 
integrity of the perihippocampal inhibitory network 
composed of parvalbumin-positive neurons, and main-
tain the normal hippocampal γ band rhythm [43]. As an 
energy wave, light can affect the functional connectivity 
of neural networks by affecting the function and state of 

certain neurons, such as inhibitory neurons, resulting in 
the remodelling of oscillatory frequencies in large-scale 
neural networks [39].

Photobiomodulation promoting cognition
The potential applications of photobiomodulation have 
been explored in many disorders, ranging from neu-
rotrauma and neurodegeneration to neuropsychiatric 
disorders. Photobiomodulation can modulate human/
animal brain function and is a new potential treatment 
strategy for neurological diseases.

Transcranial photobiomodulation
Transcranial photobiomodulation has been studied in 
different animal models and humans as an economical 
and safe therapy for cognitive dysfunction [44, 61].

Modulation in healthy human brain
Several studies have reported that transcranial photo-
biomodulation enhances cognitive function by regu-
lating the electrical activity of the healthy human brain 
(Table  1). The manifestations of cognitive function, 
including sleep quality and emotional state, can be 
explored using EEG patterns. In particular, memory and 
attention were significantly improved after application of 
photobiomodulation to the human brain. In addition to 
the molecular mechanisms mentioned above, the effect 
of transcranial photobiomodulation on brain tissue is 
also related to improvements in CBF [62]. Transcranial 
photobiomodulation applied to the prefrontal cortex not 
only can activate CCO but can also improve cerebral oxy-
genation and increase blood oxygen content and CBF, all 
of which are necessary for the high-level energy demands 
needed to maintain normal cognitive function [63].

Modulation in cognitive dysfunction
Compared with the photoregulation of normal human 
cognitive function, the use of transcranial photobiomod-
ulation to treat brain diseases is still limited. However, 
in recent years, transcranial photobiomodulation has 
shown potential for promising applications in the treat-
ment of cognitive impairment in traumatic brain injury 
(TBI) and Alzheimer’s disease (AD).

Alzheimer’s disease The onset of AD in patients is often 
accompanied by symptoms of cognitive impairment. Early 
studies found that red lasers emitted from an arterial duct 
can irradiate the brain, improve CBF in AD patients and 
lead to significantly lower dementia scores [64]. Later, 
researchers found that photobiomodulation can also 
affect cellular signalling pathways or neuronal network 
oscillations, which are more closely related to the patho-
physiology of cognitive dysfunction [43]. Recently, amy-
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loid-beta protein (Aβ), the most important pathological 
brain indicator in the brains of AD patients, has become a 
target for transcranial photobiomodulation therapy. Pho-
tobiomodulation was found to accelerate Aβ degradation 
while reducing Aβ accumulation and microglial prolifera-
tion, subsequently improving cognitive impairment [34, 
65, 66]. Recently, transcranial photobiomodulation was 
applied to AD patients, and their cognition was improved 
[67]. Studies and trials on transcranial photobiomodula-
tion in the treatment of AD are summarized in Table 2. 
These studies may lay a foundation for the use of tran-
scranial photobiomodulation in treating AD in the future.

Traumatic brain injury Compared with AD, there are 
more cases that have used transcranial photobiomodula-
tion treatments in cases of TBI in the past, but the studies 
regarding cognitive impairment were mainly animal stud-
ies (Table 3), likely due to the following reasons: (1) The 
animal models are, in essence, acute TBI models, while 
clinical TBI patients are usually chronic, and the mecha-
nisms behind cognitive impairment are different [77]. (2) 
Furthermore, light decays exponentially when it passes 
through the skull and brain tissue. Studies have shown 
that NIR laser may not penetrate the human brain deeper 
than 20 mm from the cortical surface, [78] while the loca-
tion of TBI brain damage is usually deeper; hence, the 
effect of transcranial photobiomodulation in treating TBI 
is not as effective as that of AD.

At the molecular level, transcranial photobiomodula-
tion conducted in the treatment of cognitive impairment 
in TBI animal models decreased inflammation and neu-
ronal death, increased neurotrophic factor expression in 
the hippocampus and neural progenitor cell prolifera-
tion, and overexpressed protruding proteins. In terms of 
brain function, the effects included reductions in lesion 
size, improvements in cognitive function and reduc-
tions in anxious behaviour. Clinically, transcranial pho-
tobiomodulation was applied to patients with TBI to 
improve symptoms, such as relief of headache symptoms, 
enhancement of sleep quality, and improvement of cogni-
tive and emotional state [73].

Other applications
Transcranial photobiomodulation has been considered 
to treat other cognitive impairment-related brain dis-
eases [79]. A few studies reported that transcranial pho-
tobiomodulation was used to treat Parkinson’s disease 
(PD), the positive effects of which were related to irra-
diating tyrosine hydroxylase positive (TH +) neurons 
in the substantia nigra pars compacta (SNc) to improve 
disabling dyskinesias [80–83]. In a recent prospective 
proof-of-concept study, the cognitive performance of PD 
patients was improved after both 12 weeks and 1 year of 

treatment with a device that combined transcranial pho-
tobiomodulation and abdominal photobiomodulation 
[81]. Moreover, a study of transcranial photobiomodula-
tion for autism spectrum disorder (ASD) in children and 
adolescents aged 5–17  years found that low-level laser 
therapy reduced irritability and other symptoms and 
the behaviours associated with ASD, with these posi-
tive changes maintained and augmented over time [84]. 
Because of its high safety, few side effects and low cost, 
transcranial photobiomodulation is a potential therapy 
for other disease conditions, such as depression or pain-
related cognitive dysfunction, but warrants further study.

Photosensitive nanoparticles in photobiomodulation
Because of its high safety, few side effects and low cost, 
transcranial photobiomodulation is a potential therapy 
for other disease conditions, such as depression or pain-
related cognitive dysfunction, but warrants further study 
[85].

The common method in combination is to use 
10–100  nm nanoparticles constructed by biocompat-
ible materials as carriers to carry the drug to increase 
the amount of drug targeted at tissue or cells and greatly 
improve the pharmacological bioavailability locally [86]. 
Nanodrug delivery systems need to have the follow-
ing basic characteristics: in addition to being nontoxic, 
harmless and degradable, drugs must be able to be selec-
tively transported across the blood brain barrier (BBB) 
after administration and have the ability to evade the 
immune system in vivo. Drug transport must be targeted 
to release sufficient amounts of drugs to specific brain 
regions [87].

Currently, more advanced nanodrug delivery sys-
tems, known as “intelligent” nanoparticles, are emerg-
ing on the basis of incorporating materials science. The 
modified nanoparticles respond to some stimuli due to 
enhancements of special materials to achieve spatially 
or temporally controllable release. The types of stimuli 
can be physical, chemical or biological [88]. Chemical 
and biological stimuli are generally internal, for exam-
ple, the effects of different biomolecules, pH values, and 
redox reactions in organelles within cells, while physical 
stimuli are generally external, including external mag-
netic fields, electric fields, temperature and illumination 
[89]. In contrast to traditional administration, nanoma-
terials improved drug release and minimized the drug 
dose required to be effective. The outstanding advan-
tage of modified nanoparticles is that the spatiotemporal 
mechanism of drug release is manually controlled, which 
is more practical and convenient for more effectively 
achieving the desired effect [90].

Among various “intelligent” nanodrugs, photosensi-
tive nanoreagents have attracted the most attention due 
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to their photothermal conversion effects and unique ways 
of realizing on-demand drug delivery [91]. Compared 
with other wavelengths of light, NIR laser is not easily 
absorbed by interfering chromophores and penetrates 
more deeply without causing tissue damage. Therefore, 
NIR laser has unique advantages in terms of noninvasive 
tissue penetration to achieve drug delivery, and thus, the 
combination of NIR laser with photosensitive nanoparti-
cles may provide hope for the future [92, 93]. NIR laser 
with wavelengths of 700–1000 nm is usually selected to 
combine with different types of nanocarriers for drug 
delivery [94]. Because using a single type of nanometre 
material makes it difficult to meet the multiple needs of 
drug delivery and NIR light response, researchers are 
currently working on nanoparticles made of composite 
nanomaterials, which can not only maintain the desired 
levels of drugs in the nanoparticles but can also ensure 
that the drugs are not destroyed by an immune response. 
The most important feature is that they have good tem-
poral and spatial controllability because of NIR irradia-
tion. Based on these requirements, a variety of composite 
nanoparticles have been developed, among which photo-
sensitive materials show physical or chemical transforma-
tion upon exposure to NIR radiation. Then, the original 
structures of the nanoparticles are destroyed, and the 
loaded drug is released. The emergence of these photo-
sensitive nanoparticles may provide new approaches for 
treating neurological diseases.

Common NIR response nanomaterials that can be used 
in brain diseases consist of gold, carbon, and semicon-
ductor polymers [95–97]. These materials can be used 
to construct nanoparticles by themselves or participate 
in the construction of nanocarriers as components. The 
resulting composite nanoparticles have the ability to 
transport drugs and produce photothermal conversion 
under NIR irradiation, thus improving related nanod-
rug delivery systems (Fig.  3). The following provides an 
overview of the applications of NIR-photosensitive nano-
particles in brain diseases in terms of the material types 
triggered by NIR laser [98–103].

Gold‑based nanomaterials
In recent years, gold (Au) materials have become promi-
nent in the field of nanomaterial research because of 
their high biocompatibility, easy synthesis and possibility 
of surface modification [95]. The advantage of Au is its 
ability to generate localized surface plasmon resonance 
(LSPR) under NIR irradiation, which is manifested as the 
collective oscillation/excitation of surface electrons, thus 
utilizing the absorption of light energy and photothermal 
conversion [104]. The good photothermal properties and 
BBB penetrability mean that Au is an excellent carrier for 

NIR-responsive drug delivery and for use in brain disease 
treatments [88, 105].

Au nanomaterials Gold nanomaterials with different 
structures can be obtained by adjusting the preparation 
process, including gold spheres, gold nanorods (AuNRs), 
gold nanoparticles (AuNPs) and gold nanostars (AuNSs). 
Among these, AuNRs, AuNPs and AuNSs are common 
pure gold-based nanoscale structures, and they have dif-
ferent advantages in interventions involving brain neu-
rons. The direction of electron oscillation in AuNRs is a 
combination of transverse and longitudinal oscillations, 
which has higher NIR laser absorption than AuNPs and 
AuNSs. Shan et al. reported the NIR laser absorption prop-
erties of AuNRs loaded with single chain variable frag-
ment (scFv) 12B4 and thermophilic acylpeptide hydrolase 
(APH) ST0779 as a smart theranostic complex (GNRs-
APH-scFv, GAS), which possesses both rapid detection 
of Aβ aggregates and NIR light photothermal treatment 
that effectively disassembles Aβ aggregates and inhibits 
Aβ-mediated toxicity [106]. Moreover, researchers also 
coated both ends of AuNRs with  CeO2 nanoparticles and 
introduced photocatalysis and photothermal therapy in 
the NIR laser into the AD treatment (Fig. 4A). The pho-
tothermal effect significantly improved the permeability 
of the BBB and overcame the shortcomings of traditional 
anti-AD drugs. To further improve the therapeutic effi-
ciency, Aβ-targeted inhibitory peptides (KLVFF) were 
modified on the middle surface of AuNRs (K-CAC). The 
behavioural data showed that K-CAC improved the cog-
nitive function of AD mice by degrading Aβ protein depo-
sition and scavenging ROS [107].

However, AuNPs and AuNSs have advantages that 
AuNRs do not have, such as smaller sizes, higher preci-
sions of neuronal regulation and shorter synthesis times. 
Additionally, AuNSs, which have excellent biocompat-
ibility, can also be directly attached to the membranes of 
neurons to regulate their activity [108]. In this context, 
Li et al. recently reported that gold-based photosensitive 
nanomaterials can be produced by coating gold nano-
particles with polydopamine and anti-TRPV1 antibodies 
(Au@PDA-PEG-Ab) (Fig.  5A). To verify the photother-
mal effect on neurons, Au@PDA-PEG-Ab particles were 
cocultured with TRPV1 receptor-enriched HT-22 cells 
and then irradiated by NIR-II laser in  vitro. The results 
showed that TRPV1 receptor-enriched HT-22 cells had a 
significant influx of  Ca2+, while this was not seen in SH-
SY5Y cells that lacked TRPV1 receptors. In vivo experi-
ments further demonstrated that Au@PDA-PEG-Ab 
specifically excited pyramidal neurons of the hippocam-
pus (5 mm deep in the brain parenchyma) when applied 
to rats [109]. These data indicate that gold-based pho-
tothermal nanomaterials may have specific regulatory 



Page 11 of 21Pan et al. Journal of Translational Medicine          (2023) 21:135  

effects on neurons enriched with TRPV1 receptors in the 
brain.

Au composite nanomaterials In addition to the above-
mentioned nano preparations prepared with pure gold 
materials, Au can also be used as a photothermal mate-
rial in the preparation of composite nanoparticles, and 
then loaded drugs or designed drugs can be released at 
scheduled times and positions under NIR radiation con-
trol. A common structural pattern of composite nano-
particles contains gold (Fig. 4B). Liposomes are the most 
successful nanocarriers used clinically [110], but the bio-

availability of internally loaded drugs in liposomes is not 
ideal. The photothermal conversion effect of gold can 
change the microenvironment, destroy the stability of 
liposomes, and release internal drugs on demand. There-
fore, the concept of developing nanoparticles combined 
with gold and liposomes (AuNP-liposomes) has attracted 
much attention [88, 111, 112]. To maintain the stability of 
liposome morphology, the sizes of metal particles should 
not be more than 6.5 nm [113]. AuNPs can be bound to 
liposomes by different methods, such as reverse evapo-
ration (REV), thin film hydration (TFH), interdigitation-
fusion, and lipid vesicle metallization. AuNP-liposomes 

Fig. 3 Photosensitive nanoparticles in combination with NIR laser for brain diseases. The photosensitive nanoparticles include gold‑based 
nanoparticles (from left to right are gold nanoparticles, gold nanorod and gold nanostar, gold‑based liposomes and mesoporous silica 
nanoparticles with gold cores), carbon‑based nanomaterials (from left to right are carbon nanotubes, graphene oxide and graphene quantum 
dots) and polymer semiconductor materials (from left to right are common semiconductor polymer nanoparticle, semiconductor polymer 
nanoparticle coated by red blood cell membrane, semiconductor polymer nanoparticle coated by photothermal materials such as phenyl 
di‑n‑pentylphosphinate)
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induce enhanced permeability of the liposome membrane 
based on NIR irradiation and Au photothermal conver-
sion ability [114]. Under irradiation, the heat caused by 
electron exchange in gold was absorbed by liposomes, 
resulting in membrane collapse or induced phase trans-
formation of the lipid bilayer, and the loaded drug flowed 

out completely during the drug delivery process [115]. 
As early as 2008, researchers discovered the controlled 
release effect of an NIR pulsed laser on liposomes coated 
with gold nanohollow shells [116]. In 2016, the release 
of the model drug (PTX) from liposomes coated with 
AuNPs and AuNSs was performed by laser excitation at 

Fig. 4 Scheme of photothermal gold nanoparticles and related application example. A Scheme of gold nanorod treating Alzheimer’s disease. 
AuNRs can bind with  CeO2 and Aβ‑targeted inhibitory peptides to target Aβ fibrils through photocatalysis and photothermal effect, which was 
used in multi‑modal therapy of Alzheimer’s disease [107]. Copyright 2022, American Chemical Society and its reproduced permission granted. 
B Structural pattern diagram of nanoparticles containing a photothermal material (gold). Composite nanoparticles modified with protective 
molecules can flow through the bloodstream and cross the blood–brain barrier. Under NIR laser irradiation, gold particles undergo photothermal 
conversion, and the heat can be generated to dissolve the heat‑sensitive materials used to construct the vehicle, so that the drugs can be released 
to act on neurons
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NIR wavelengths [117]. With regard to brain-targeted 
drug delivery, a recent study published in 2020 reported 
a type of transferrin (Tf) receptor-targeted, gold-based 
therapeutic liposome containing docetaxel (DCX) and 
glutathione-reduced gold nanoparticles (AuGSH) for 

brain-targeted drug delivery and imaging. The liposome 
provided a higher drug loading rate and co-encapsulated 
DCX for simultaneous targeted therapy [118].

These findings indicate that drugs, such as water-solu-
ble medicines that are unable to permeate the BBB, can 

Fig. 5 The examples of polymer‑associated nanoparticles that affect neurons and ion channels’ activities. A Scheme of preparation of 
antibody‑conjugated gold nanoparticles (Au@PDA‑PEG‑Ab) and mechanisms of nanoparticle‑mediated NIR‑II laser neural stimulation [109]. 
Copyright 2022, Springer Nature and its reproduced permission granted. B Schematic illustration of PDA‑nanoparticles‑mediated photothermal 
stimulation of neurons. PDA nanoparticles (PDA NPs) localized on the neuron modulate the neural activity through photothermal conversion of NIR 
light [128]. Copyright 2021, Wiley–VCH GmbH and its reproduced permission granted. C Schematic illustration of the preparation of nanoparticle 
(NPS‑F) and the activation of Kv7.4 channel under NIR irradiation. The mechanism of reducing the excitability of ventral tegmental area dopamine 
neurons is also reported [126]. Copyright 2021, John Wiley and Sons and its reproduced permission granted
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be loaded on different carriers, which can be composed 
of a single substance or compound. A composite nano-
carrier has multiple properties based on different sub-
stances, thus contributing to nanodrug delivery platforms 
with different targets. If combined with NIR laser, these 
nanoparticles not only enhance the drug targeting abil-
ity but also improve the controlled release and bioavail-
ability of the loaded drugs. Composite nanocarriers are 
of great significance for treating brain diseases because 
most drugs cannot pass the BBB, such as memantine, 
which improves cognitive function. Hence, the combina-
tion of NIR laser with nanocarriers helps drugs to pass 
the BBB while ensuring the release of drugs in assigned 
brain regions to maximize drug utilization and minimize 
drug toxicity.

Polymer semiconductor materials
Compared with biotoxic metal Au nanomaterials, semi-
conductor polymer nanoparticles (SPNs) have the advan-
tages of a π-π electron delocalization framework, high 
extinction coefficient and excellent photothermal con-
version efficiency and are more suitable as phototherapy 
agents for treating brain diseases [119, 120]. SPNs are 
nanoparticles that have been developed for photobio-
modulation over the years [121, 122]. The advantages of 
semiconductor polymer materials are as follows: (1) com-
pletely organic, inert and nontoxic in vivo, showing ideal 
biocompatibility for organisms [123]; (2) flexible synthe-
sis and convenient preparation [124], and (3) good pho-
tostability and excellent photothermal properties [125].

SPN combined with NIR laser has been found to 
regulate neuronal activity (Fig.  5B). Singamaneni et  al. 
demonstrated that polydopamine nanoparticles are bio-
compatible and biodegradable photothermal sensors that 
can suppress the spike rate of neurons in animals under 
NIR laser irradiation with different power densities. The 
data showed that when the power density was 3 mW/
mm2, the spike rate of neurons decreased by 39%. When 
the laser power density was increased to 6 mW/mm2, the 
spike rate decreased to 98%, suggesting that neuronal 
activity was almost completely shut down under such 
irradiation conditions. Similarly, NIR irradiation at dif-
ferent times also inhibited the spike rates of neurons to 
different degrees [126]. Furthermore, a new nanoconduc-
tor called MINDS (Macromolecular Infrared Nanotrans-
ducer for Deep brain Stimulation) was designed and 
reported to efficiently convert optical energy into ther-
mal energy, thus making TRPV1 expression in deep brain 
neurons more sensitive to NIR laser irradiation. This can 
effectively avoid neuronal damage caused by stimulating 
TRPV1 proteins in deep brain regions with a strong NIR 
laser. It was reported that MINDS, located in the 5 mm 
deep region of the brain, produced much higher local 

temperatures than under NIR light passing through the 
scalp than the superficial brain region. Locally enhancing 
the response of neurons to NIR radiation may improve 
the efficiency of neural regulation within the safe power 
range of NIR radiation. As an extension of traditional 
photobiomodulation, SPN combined with NIR laser-
activated neurons located in the deep brain led to the 
discovery of a new neural regulation pattern in animal 
experiments [127].

Recently, SPNs have been applied in the research of 
brain cognition-related diseases. Li et  al. made a break-
through in the treatment of depression-related cognitive 
disease with NIR photosensitive nanodrug delivery sys-
tems. Phenyl di-n-pentylphosphinate (PDPP) is a conju-
gated polymer that is a semiconductor polymer material. 
Using PDPP, DPPC, DSPE-PEG-NH2 and fasudil as raw 
materials, they prepared composite nanoparticles (NPs-
F) by nanoprecipitation. Under NIR irradiation, the nan-
oparticles completed photothermal conversion in  vivo, 
releasing fasudil and specifically activating Kv7.4 potas-
sium channels. Electrophysiological studies showed that 
the firing frequency of dopaminergic neurons in the ven-
tral tegmental area decreased significantly after treat-
ment, suggesting that PDPP nanoparticles with excellent 
photothermal properties may be a future approach for 
the clinical treatment of depression (Fig. 5C) [128]. NIR 
laser pulses can instantaneously transport SPNs across 
the vascular barrier and accumulate in the designated 
sites due to the photoacoustic effects of the nanomaterial, 
as reported in the latest studies. They showed that after 
scanning the skulls for 10 min with an 840 nm laser pulse 
(50 mJ/cm2, 10 min), the accumulations of nanoparticles 
in the brains of mice increased significantly. This was 
the first time that nonfunctional NIR responsive nano-
materials could be accumulated through photoacoustic 
induction to target specific tissue sites with micron-scale 
precision, showing high efficiency and precision [129]. In 
the field of photoacoustic transformation, it was found 
that 1000–1350 nm NIR laser (21 mJ/cm2, ten 3-ns laser 
pulses at 1,030 nm over a 3-ms duration) can activate a 
new SPN with ultrasonic properties, which could target 
the primary motor cortex of C57BL/6 mice and change 
the local field potential and electromyography signals 
[130]. Although there are few reports of SPNs in the 
treatment of neurocognitive diseases, SPN combined 
with NIR laser may have a promising future as a photo-
therapy agent for treating brain disease owing to its high 
compatibility, flexibility and degradability.

Carbon‑based nanomaterials
Carbon-based nanomaterials (CBNs) are attractive nano-
materials because of their structural diversity as well as 
unique photothermal properties. Various allotropes of 
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carbon have been extensively studied for biomedical 
applications, such as carbon nanotubes (CNTs), gra-
phene oxide (GO) and graphene quantum dots (GQDs) 
[131].

GO In the field of neuroscience research, graphene is 
favoured for three applications. One is to use its electrical 
conductivity to promote the growth and differentiation 
of neurons. Akhavan’s team prepared reduced graphene 
oxide nanomeshes (rGONMs) and applied them together 
with near-infrared lasers in experiments for human neu-
ral stem cell (hNSC) differentiation. During the experi-
ments, hNSCs treated with an NIR laser and rGONMs 
differentiated more efficiently than those treated with 
graphene alone due to the stimulatory effects of the low-
energy photoexcited electrons injected from the rGONM 
semiconductors into the cells [132]. Another applica-
tion is to use the photothermal conversion effect of gra-
phene materials to directly target neural lesions within 
the BBB. In a study of the treatment of AD, GO modified 
with thioflavin-S (ThS) was locally and remotely heated 
and decomposed amyloid protein aggregates under NIR 
laser irradiation, suggesting that modified GO may be a 
promising candidate for the photothermal treatment of 
AD [133].

Moreover, graphene is an ideal candidate for drug 
delivery because of its enriched surface that is easily 
functionalized and coupled with different drugs, high 

chemical purity and free π electrons [134–136]. Other-
wise, the oxidation and functionalization of graphene 
changes its photoelectric properties and increases its 
absorbance of visible and NIR light, which is condu-
cive to photothermal drug delivery by NIR radiation 
[137, 138]. In addition, graphene can also be com-
bined with other nanomaterials to make the nanopar-
ticles more sensitive to the photothermal response of 
NIR light, resulting in more precise delivery of loaded 
drugs (Fig.  6A). A previous study demonstrated that 
PEG-functionalized GO can cause the loaded puera-
rin release from GO nanocarriers. Behavioural data 
showed that after the application of Lf-GO-Pue, the 
motor ability of the PD model mice (induced by MPTP 
drug injection) was improved, and the related symp-
toms were relieved. Puerarin-loaded lactoferrin func-
tionalized graphene sheets (Lf-GO-Pue), which have 
been developed, have the potential to be a targeted drug 
delivery system for the combination of PD drug therapy 
and photothermal therapy (Fig.  6B) [139]. In addition 
to being used as drug transport carriers, graphene can 
also be used as a plasmid transfection carrier. Plasmid 
DNA can be loaded with neurotensin (NT)-conjugated 
polyethylenimine (PEI)-modified reduced GO nano-
particles. With the aid of NIR lasers (808  nm, 0.3 W/
cm2, 30  min), membrane permeability was enhanced, 
and the intracellular degradation of nanoparticles was 
reduced, which enhanced the ability of the plasmid to 

Fig. 6 Treatment of cognitive dysfunction with carbon materials. A Scheme of drug release loaded on graphene sheet under NIR laser irradiation. 
B Schematic illustration of the nanocarrier (Lf‑GO‑Pue) for drug delivery to brain and across the blood brain barrier using NIR laser [139]. Copyright 
2021, Royal Society of Chemistry and its reproduced permission granted
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target neurons and realized a high gene transfection 
rate of neurons [140]. In summary, these applications 
of graphene form the forefront of new research in the 
field of neurodegenerative diseases and neurotherapeu-
tics [141].

CNT and  GQD The excellent conductivity of CNT/
GQD combined with photothermal neural regulation 
may bring additional neural stimulation effects that 
are different from semiconductor polymer materials. 
NIR-responsive drug delivery and release of CNTs have 
been reported to be used in brain cancer therapy due 
to their biocompatibility and photothermal properties 
as well as their ability to penetrate the BBB [142, 143]. 
Furthermore, GQD refers to a single layer to several lay-
ers (3–10 layers) of zero-dimensional graphene sheets 
with transverse sizes less than 100  nm [144]. In addi-
tion to the related properties of graphene materials, 
GQDs also have the advantages of a single atomic layer, 
small lateral sizes, oxygen-rich surfaces and fluores-
cence characteristics [145], which make them suitable 
for loading therapeutic drugs or tracking drug release 
pathways [146–148]. However, the application of CNT/
GQD-triggered photobiomodulation in neurocognitive 
diseases remains unknown, but due to their excellent 
biocompatibility and photothermal properties, CNT/
GQD combined with NIR laser for photobiomodula-
tion will have great potential applications in this field of 
research (Additional file 1).

Limitations
Unfortunately, the penetration depth of NIR laser is 
restricted to the cerebral cortex or superficial brain areas, 
so it fails to modulate deep brain lesions, such as in the 
thalamus, which are closely associated with emotional 
disorders. Another disadvantage of NIR laser neuro-
modulation is the accidental overheating of brain tissue, 
which may cause inherent injury and inhibit neural activ-
ity, producing side effects in addition to normal regula-
tion. Similarly, NIR laser, as a relatively safe physical 
therapy, is suitable for patients with cerebral ischemic 
diseases (such as ischemic stroke and neonatal hypoxic-
ischemic brain injury) and less used for hemorrhagic 
stroke to avoid adverse consequences [149, 150]. Other 
studies have shown that high-power near-infrared light 
may cause retinal damage, and it is necessary to calcu-
late the damage threshold temperatures and the maxi-
mum permissible exposure dose and time according to 
the individual situation [151, 152]. Besides, the applica-
tion of nanoparticles also has some disadvantages. The 
biotoxicity of nanomedicine is related to the biological 
metabolism of nanoparticles leading to hepatotoxicity or 

nephrotoxicity, their applications are limited in animal 
experimental models only.

Future prospective
Owing to effectiveness, direct and accurate on-site 
action, non-pharmacologically based therapies such as 
the strategies that we reviewed and presented herein are 
very innovative and promising for disease treatments. 
Indeed, photobiomodulation has been clinically used 
as an alternative method for treating brain diseases and 
can be classified as 1) transcranial photobiomodulation, 
which directly irradiates the head with red light or NIR 
laser and 2) an NIR-nanodelivery platform combined 
with photosensitive nanoparticles. Experimental data 
showed that these two strategies have good therapeu-
tic effects in animals or even in human, and thus, pho-
tobiomodulation may become a novel breakthrough 
therapy with great potential for the treatment of cogni-
tive impairment in conditions such as AD, PD and TBI. 
NIR drug delivery systems are commonly used in treat-
ing brain tumours but are very rarely applied for brain 
neuronal diseases. Although drug delivery systems using 
nanoparticles to treat cognitive disorders have been 
developed, most of them simply take advantage of the 
capacity of drug loading and slow release of nanoparti-
cles. If the drugs can be loaded on nanoparticles contain-
ing NIR-responsive materials, the drugs can successfully 
escape the immune system and cross the BBB while still 
being released in targeted brain regions by artificial oper-
ation. At the same time, drug side effects can be avoided, 
and drug bioavailability can be improved. By maximizing 
drug bioavailability, the corresponding symptoms of cog-
nitive impairment may be better improved, and the drug 
effects can be maintained for a longer period of time. 
However, as discussed above, the biocompatibility of 
nanoparticles is a big challenge and is an obstacle for its 
clinical use but fear assure is that biomaterials are being 
developed very fast and this gives a big hope towards 
clinical applications.

Conclusion
Cognitive function is an advanced neurological func-
tion, which refers to the ability of our brains to form 
judgement and conclusions from information provided. 
As a common manifestation of brain diseases, cognitive 
dysfunction has a causal relationship with pathological 
changes in neurons and neural networks. To improve 
cognitive function, direct intervention in targeted ence-
phalic regions or lesion sites may be the  most effective 
therapeutic strategy. Compared with traditional systemic 
administrations of drugs, photobiomodulation is a novel 
and noninvasive physical therapy that utilizes the energy 
or photothermal effects of light. Photobiomodulation 
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attracts much attention due to its benefits, ranging from 
safety, flexibility and operability. However, the combined 
therapy of photosensitive nanoparticles and lasers, which 
can accurately regulate neural activity and improve 
cognitive function, is a new direction in drug delivery 
development. Presently, it is far from clinical use, but 
undoubtedly, ongoing further research will make these 
strategies to be clinically available in the foreseeable 
future.
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