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Abstract 

Background  Kidney cancer undergoes a dramatic metabolic shift and has demonstrated responsiveness to immu-
notherapeutic intervention. However, metabolic classification and the associations between metabolic alterations and 
immune infiltration in Renal cell carcinoma still remain elucidative.

Methods  Unsupervised consensus clustering was conducted on the TCGA cohorts for metabolic classification. GESA, 
mRNAsi, prognosis, clinical features, mutation load, immune infiltration and differentially expressed gene differences 
among different clusters were compared. The prognosis model and nomograms were constructed based on meta-
bolic gene signatures and verified using external ICGC datasets. Immunohistochemical results from Human Protein 
Atlas database and Tongji hospital were used to validate gene expression levels in normal tissues and tumor samples. 
CCK8, apoptosis analysis, qPCR, subcutaneously implanted murine models and flowcytometry analysis were applied 
to investigate the roles of ACAA2 in tumor progression and anti-tumor immunity.

Results  Renal cell carcinoma was classified into 3 metabolic subclusters and the subcluster with low metabolic 
profiles displayed the poorest prognosis, highest invasiveness and AJCC grade, enhanced immune infiltration but 
suppressive immunophenotypes. ACAA2, ACAT1, ASRGL1, AKR1B10, ABCC2, ANGPTL4 were identified to construct the 
6 gene-signature prognosis model and verified both internally and externally with ICGC cohorts. ACAA2 was demon-
strated as a tumor suppressor and was associated with higher immune infiltration and elevated PD-1 expression of 
CD8+ T cells.

Conclusions  Our research proposed a new metabolic classification method for RCC and revealed intrinsic associa-
tions between metabolic phenotypes and immune profiles. The identified gene signatures might serve as key factors 
bridging tumor metabolism and tumor immunity and warrant further in-depth investigations.
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Introduction
Metabolic reprogramming of cancer cells is required for 
tumor genesis and development. Cancer cells autono-
mously alter their fluxes through a variety of metabolic 
pathways to meet increased bioenergy and biosynthesis 
requirements and to alleviate oxidative stress required for 
cancer cell proliferation and survival [1]. Metabolic phe-
notypes are frequently defined as an array of intracellular 
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metabolic fluxes supported by the metabolic networks 
that connect gene–protein–metabolic reactions [2]. 
Investigations of cancer metabolic phenotypes are receiv-
ing growing concerns as it potentially represents a prom-
ising therapeutic target. However, awareness that the 
metabolic phenotype of cancer cells is heterogeneous 
among varieties of cancers is increasing [3, 4]. In non-
small cell lung cancer (NSCLC), cell growth rates do not 
indispensably rely on the average Lac/Glc ratio, suggest-
ing the Warburg effect is therefore not a universal fea-
ture in NSCLC [5]. In hepatocellular carcinoma (HCC), 
hypermetabolic subclusters displayed low α-fetoprotein 
(AFP) expression, and good prognosis while subclusters 
with intermediate metabolic activity displayed high AFP 
expression level and bad prognosis [6].

Renal cell carcinoma is characterized by disrupted 
hypoxia-inducible factor (HIF) signaling and perturbed 
cellular metabolism [7]. Different genetic mutations 
caused distinct metabolic-oriented variations and his-
tological classifications of RCC [8]. A well-known meta-
bolic hallmark of clear cell renal cell carcinoma (ccRCC) 
is an aberrant accumulation of lipid and glycogen [9], 
which has been reported recently as a secondary and dis-
pensable consequence of active HIF-1α signaling and dis-
ruption of glycogen synthesis did not affect tumor growth 
in murine models [10]. Lipid metabolic reprogramming, 
however, is believed to get involved in a series of micro 
and macro-level life activities including cellular energy 
homeostasis, biofilm synthesis, lipid signal transduction, 
and phenotypic transformation in RCC [11].

It remains unclear whether different clinical stages and 
outcomes are driven by specific metabolic phenotypes 
of RCC. Aggressive types of RCC demonstrated distinct 
metabolic patterns including downregulation of the TCA 
cycle and decreased AMPK and PTEN protein levels [12]. 
Men also observed a positive association between tumor 
progression and metastasis and increased metabolites in 
glutathione and cysteine/methionine metabolism path-
ways in glutathione and cysteine/methionine metabo-
lism pathways in ccRCC [13]. In addition, reprogrammed 
metabolism-induced cellular genome and epigenetic 
alterations of tumor cells as well as reconstruction of the 
TME are also accompanied by extensive remodeling of 
the immune microenvironment [14].

Although kidney cancer is frequently referred to as a 
kind of “hot tumor” [15], which means abundant lym-
phocyte infiltration and susceptibility to immunotherapy, 
the relatively unique and complex immune microen-
vironment of RCC did pose challenges for treatment 
options and prognosis evaluation. For example, CD8+ 
cytotoxic T lymphocytes are highly infiltrated in major 
renal masses but correlate with poorer prognosis [16], 
conflicting with the recognized knowledge that higher 

proportions of CD8+ T cells prolong patients’ survival. 
Potential causes include unrecognized tumor-associated 
antigens [17], T cell exhaustion or anergy [18], metabolic 
dysregulation of T cells [19] and depleted PBRM1 muta-
tions [20]. However, whether RCC could be classified 
into several metabolic subclusters and the associations 
between metabolic phenotypes and immune characteris-
tics as well as prognosis remains unknown up to date. In 
this study, we sought to objectively classify RCC into dis-
tinct metabolic phenotypes and to investigate the clinical 
and immunological implications, which could inspire the 
development of new therapeutic solutions to RCC.

Materials and methods
Data collection and processing
Patients’ RNA sequencing data, mutation data and cor-
responding clinical follow-up information were down-
loaded from the publicly available Cancer Genome 
Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov). 
For external validation, the data were downloaded from 
International Cancer Genome Consortium (ICGC) data-
base (https://​dcc.​icgc.​org/). The downloaded 882 kidney 
tumor sample count files were loaded into the DESeq2 
R package for normalization and differential expression 
analysis.

Metabolic genes sources
Metabolism-related pathways were from the GSEA 
Molecular Signatures Database v7.4 (http://​www.​gsea-​
msigdb.​org/​gsea/​msigdb/​index.​jsp). 2590 metabolic 
genes from 75 metabolic pathways were selected for fur-
ther analysis.

Consensus clustering analysis
The ssGSEA scores of every single sample were assessed 
using the R package GSVA based on the metabolic data-
set expression profiles. Then, unsupervised clustering 
was conducted based on the ssGSEA scores using the R 
package ConsensusClusterPlus to group kidney cancer 
into different metabolic subclusters (50 iterations and 
80% resampling rate Pearson correlation).

Gene‑set enrichment analysis
Gene expression data was input into GSEA4.10 soft-
ware (Gene set database: c2.cp.kegg.v7.4.symbols.
gmt) to obtain normalized enrichment scores, P values 
and FDR-q values. |NES|> 1, NOM p-val < 0.05, FDR 
q-val < 0.25 were set as the cut off values.

Cancer stem cell index evaluation
As described by Malta et  al. [21], the mRNA stemness 
index (mRNAsi) of each sample was computed using 
one-class logistic regression machine learning (OCLR) 

https://portal.gdc.cancer.gov
https://dcc.icgc.org/
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp


Page 3 of 17Li et al. Journal of Translational Medicine          (2023) 21:146 	

machine-learning algorithm. Then, the mRNAsi for dif-
ferent KIRC metabolic subclusters were calculated.

Differential expression analysis and multiscale embedded 
gene co‑expression network analysis (MEGENA)
Differential expression analysis was conducted using 
R package limma with the cut-off |log2foldchange|> 1, 
padj < 0.05. MEGENA was constructed according to the 
following steps: (1) correlation assessment by computing 
Pearson correlation coefficients; (2) construction of fast 
planar filtered network (PFN) with cut-off FDR < 0.05; (3) 
multi-scale clustering analysis (MCA).

Prognostic model construction and validation
The TCGA patients were randomly separated into the 
training set and test set (7:3 ratio) and the ICGC cohorts 
were treated as external validation datasets. In the train-
ing set and test set, whether the candidate genes of can-
cer are related to the survival of patients is assessed, key 
genes are selected, and a risk model is constructed based 
on the formula: Risk score = h0(t)*exp(β1X1 + β2X2 + … 
+ βnXn). The risk model is verified in the verification set.

Immunotherapy and chemotherapy analysis
Spearman’s correlation was employed to analyze the 
correlation between tumor immune cell infiltration and 
prognostic risk score. 198 GDSC (Genomics of Drug Sen-
sitivity in Cancer) drugs for kidney cancer were chosen 
for analyzing the AUC values in high- or low-risk groups. 
Lower values of AUC are associated with a higher sensi-
tivity to certain chemotherapy and vice versa.

Renal cancer cell lines and transfection
Murine renal cancer cell lines Renca were purchased 
from Procell Life Science&Technology (Wuhan, China). 
Transfection of ACAA2-V101 plasmids was performed 
using Lipo3000 (Invitrogen, Carlsbad, CA, USA) follow-
ing recommended protocol.

Cell proliferation assay and apoptosis assay
Cell proliferation assay and apoptosis assay were per-
formed as previously described [22]. In short, Renca cells 
after transfection with ACAA2-V101 and control V101 
plasmids were examined for proliferation and apoptosis 
using corresponding kits.

Human samples
Resected human renal cell carcinoma tissues were 
obtained from patients at the Tongji Hospital (Wuhan). 
Ethical permission was granted by the Clinical Trial Eth-
ics Committee of Tongji Hospital (Wuhan). All patients 
provided written informed consent to participate in the 
study.

Animals
Balb/c mice, 6 to 8 weeks old, were purchased from Cya-
gen Corporations. These animals were maintained in the 
Animal Facilities of Tongji hospital experimental ani-
mal center under pathogen-free conditions. All studies 
involving mice were approved by the Animal Care and 
Use Committee of Tongji Hospital.

Statistics
All the data were statistically analyzed using Stata ver-
sion 12.1(Stata Corp.) and R software (version 3.5.2). 
P-value < 0.05 was considered statistically significant.

Results
Classification of renal cell carcinoma based on 3 metabolic 
phenotypes
Based on the gene expression levels included in 76 KEGG 
metabolism-related pathways in 882 RCC patients of 
TCGA, we scored single-sample gene set enrichment 
analysis (ssGSEA) and made consensus clustering analy-
sis on the scores (Fig.  1A–C). Consequentially, we clas-
sified these patients into 3 clusters with low (Cluster 1), 
medium (Cluster 2) and high (Cluster 3) metabolic phe-
notypes (Fig.  1D, E). Specifically, Cluster 1 exhibits a 
hypometabolism pattern in multiple metabolic pathways 
including fatty acid metabolism, glyoxylate metabolism 
and glycine degradation, metabolism of lipids compared 
to both Cluster 2 and Cluster 3 (Fig.  1E and Additional 
file 1: Figure S1), while Cluster 2 was enriched mainly in 
cancer and cytokines pathways compared to Cluster 3 
(Additional file 1: Figure S1).

RCC patients with low metabolic phenotypes experienced 
worse prognosis and higher invasiveness
To gain a better comprehensive understanding of other 
characteristics of the 3 subtypes of RCC, we first analyzed 
the mutation burden for patients in different subtypes. In 
general, Cluster 3 displayed the highest mutation burden 
and altered faction genome frequencies while Cluster 1 
does the opposite (Fig. 2A–E). Specifically, Cluster 2 dis-
played high frequencies of VHL and PBRM1 mutation 
(Fig. 2B). The mutation sites in Cluster 1 were relatively 
focused (Fig.  2A) while randomly distributed in Cluster 
3 (Fig. 2C).

Next, we compared among the three clusters the 
mRNAsi, an index quantifying the levels of cancer stem 
cells in tumors, and found higher mRNAsi of Cluster 
1 (Fig.  3A), implying worse prognosis, more aggres-
sive phenotype and metastasis of this cluster in RCC. 
Moreover, patients in Cluster 1 experienced the high-
est pathologic AJCC grade and clinical pM and pT 
grade (Fig.  3B), further supporting defining Cluster 1 
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as a “Highly invasive” subcluster. Although no signifi-
cant survival disadvantage of disease-free survival was 
shown for Cluster 1 (Fig.  3C), men did observe this 
trend and significant survival discrepancies in over-
all survival among the three clusters (Fig.  3D). Col-
lectively, our results reveal low metabolic phenotypes 
reversely correlate with tumor grade and patient out-
come in RCC.

Low metabolic tumor patterns drive enhanced immune 
infiltration and immunosuppressive phenotypes in RCC​
In order to investigate the immune characteristics of 
these three clusters, we used both Estimate and ssGSEA 
algorithms to analyze the differential immune infil-
tration and expression of immune-associated genes. 
Counterintuitively, Cluster 1 had maximum immune 
scores and stromal scores while Cluster 3 had minimum 

Fig. 1  RCC was classified into 3 metabolic subclusters. A Consensus clustering cumulative distribution function (CDF) curves. B Consensus 
clustering matrix. C Delta area under CDF curves. D t-Distributed Stochastic Neighbor Embedding (tSNE) plots of 3 clusters of RCC. E Heatmaps of 3 
metabolic subclusters of RCC based on ssGSEA scores
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Fig. 2  Mutation burden of 3 metabolic subclusters in RCC. A Waterfall map illustrating somatic mutation in Cluster 1 and B Cluster 2 and C Cluster 
3. D Scores of Fraction Genome Altered and E mutation counts in 3 metabolic clusters
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scores (Fig.  4A, C). Specifically, aDCs, macrophages, 
NK CD56dim cells, Tems, Th1 cells, Th2 cells and Tregs 
showed significantly higher infiltrating proportions in 
Cluster 1 compared to the other 2 subclusters (Fig.  4B, 
C). Analogously, it has been reported in earlier integrated 
proteogenomic results that higher CD8+ T cell infiltra-
tion correlates with poorer prognosis in RCC [23], but 
the underlying mechanisms still remain unclear. Despite 
that, one observation is noteworthy in our results how-
ever, the proportions of tumor-infiltrating macrophages, 
Th2 cells and Tregs both showed a significant proportion 
advantage in Cluster 1 with the poorest prognosis com-
pared to those in Cluster 2 or Cluster 3, implying that 
Cluster 1 could exist as a bilateral immune-infiltration 
high and immune inhibiting subcluster. To further vali-
date our hypothesis, we analyzed immuno-related gene 
expression and unsurprisingly found MHC-I-associ-
ated genes were highly expressed in Cluster 1 (Fig. 4D), 
which were positively correlated with immune infiltra-
tion in usual cases [24]. Considering the fact that the 
MHC–peptide complex-mediated first signal, as well as 
the co-stimulatory second signal, were both required for 
the activation of anti-tumor immunity, we next explored 

the expression levels of co-stimulatory/inhibitory mole-
cules. Although the inhibitory ligands and co-stimulatory 
receptors did not show apparent differences in Cluster 1 
compared to those in Cluster 2, co-inhibitory receptors of 
tumor-infiltrating immune cells were significantly highly 
expressed in Cluster 1 compared to those in Cluster 2 or 
Cluster 3, including BTLA, CTLA4, IL2RA, PDCD1 and 
so on (Fig. 4E, F), suggesting the existence of infiltration 
high but immune-suppressive tumor microenvironment 
in RCC.

Prognosis model construction based on the intersection 
of DEGs and MEGENA modules
To further explore the differences among the metabolic 
subclusters of RCC and identify critical metabolic genes 
capable of predicting patients’ prognosis, we first con-
ducted differential expression analysis for the three clus-
ters and identified 1054 differentially expressed genes 
(Fig. 5A). Then, we identified 243 co-expression modules 
in the metabolic gene network of RCC using the hierar-
chical clustering method MEGENA (Fig.  5B and Addi-
tional file 2: Table S1). By taking the intersection of these 

Fig. 3  Cluster 1 with low metabolic phenotypes displayed the highest invasiveness and poorest prognosis. A mRNAsi scores of 3 subclusters in 
RCC. B Heatmaps illustrating clinical characteristics including age, gender, AJCC stage, ISUP stage, and pTNM stage in 3 subclusters. C Disease-free 
survival and D Overall survival in 3 subclusters
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Fig. 4  Cluster 1 with low metabolic phenotypes displayed a high-infiltrating but suppressive immune microenvironment. A Immunesocres, 
Estimatescores, and Stromalscores of 3 subclusters. B Percentage abundance of 22 types of tumor-infiltrating immune cells in 3 subclusters of 
RCC. C Heatmaps showing immune cell abundance, ESTIMATE, immune and stromal scores of 3 subclusters based on the ssGSEA and ESTIMATE 
algorithms. D Expression of MHC-I molecules in 3 subclusters. E, F Expression of co-stimulatory and co-inhibitory molecules in 3 subclusters
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two results, we obtained 25 candidate metabolic genes as 
potential OS predictors (Fig. 5C).

All the 873 RCC samples of TCGA were randomly 
assigned at a 7:3 ratio to a training set (611 samples) 
and a test set (262 samples), and 222 samples of ICGC 
were used as the external validation dataset. To effec-
tively screen these genes, univariate Cox proportional 
hazards regression analysis was employed with a cut-off 
P value < 0.05 and nine prognosis-associated genes were 
obtained (Fig. 6A). For further filtering, lasso regression 

analysis was applied (Fig.  6B, C), identifying 6 genes 
for prognosis model construction: ACAA2, ACAT1, 
ASRGL1, AKR1B10, ABCC2 and ANGPTL4.

Next, we used these 6 genes to construct the progno-
sis model for RCC patients based on the following for-
mula: Risk score = h0(t)*exp (β1X1 + β2X2 + … + βnXn). 
According to the median risk score, patients were 
divided into high‐ and low‐risk groups in the training 
set, test set and validation set respectively. In the train-
ing set, AKR1B10, ABCC2 and ANGPTL4 showed high 

Fig. 5  Intersections of DEGs in 3 subclusters and MEGENA of metabolic modules in RCC. A Heatmaps of differentially expressed genes (DEGs) in 3 
subclusters. B Representative illustration of hierarchical clustering modules of metabolic genes in RCC. C Venn diagram showing the intersection 
results of DEGs hub genes and MEGENA genes

(See figure on next page.)
Fig. 6  Construction of 6-gene signature prognosis model. A Forest plot of Univariate COX analysis. B, C Coefficient estimates and cross-validation 
error of the Lasso regression results. D Risk curve, survival scatter plot analysis and heat maps of expression profiles of 6 metabolic genes of patients 
with high- and low-risk in the training set of the 6-gene signature prognosis model. E mRNA expression levels of the 6 metabolic genes in 3 
subclusters. F Kaplan–Meier curve shows the overall survival of high- and low-risk RCC patients. G Time-dependent receiver operating characteristic 
(ROC) curve analysis exhibits the prognostic performance of the 6-gene-signature-based prognostic model in predicting 1 ~ 5-year survival times of 
the training group
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Fig. 6  (See legend on previous page.)
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expression in the high-risk group (HR > 1) while ACAA2, 
ACAT1 and ASRGL1 showed high expression in the low-
risk group (HR < 1) (Fig. 6D). Consistent with our previ-
ous results, the protective factors ACAA2, ACAT1 and 
ASRGL1 showed low expression in Cluster 1, the low-
metabolic subcluster with the worst prognosis in RCC 
(Fig. 6E). KM survival curve was plotted to appraise the 
discrepancy of survival between the high- and low-risk 
group (Fig.  6F). For the prediction of OS, the 1–5-year 
AUC values of the ROC curve were all no lower than 
0.7, indicating a good survival prediction performance 
(Fig. 6G).

Finally, we performed a similar analysis in the test set 
and the external validation set and both yielded the same 
conclusion for the 6 genes (Fig. 7A–F). Importantly, the 
1–5-year AUC values of the ROC curve were all higher 
than 0.6 (Fig.  7C, F), demonstrating the widespread 
application potential of this prognosis model.

Nomogram establishment based on the multivariable Cox 
regression model
We included clinicopathological features such as age, 
gender, pathologic TNM and pathologic stage, as well as 
risk score as independent prognostic factors in univariate 
Cox analysis and found P values lower than 0.05 for risk 
score, pathologic TN, pathologic stage and age (Fig.  8A 
and Additional file 3: Table S2). According to the results 
of univariate analysis, we put these indicators into the 
multivariate Cox model (Fig. 8B). Then, the nomograms 
and 1–5 year calibration curves were constructed based 
on the independent prognostic factors with P less than 
0.05 identified by the multivariable Cox model (Fig. 8C, 
D). The ultimate predictors of the nomograms included 
risk score, pathologic T, pathologic stage and age, and the 
C index was 0.8051, indicating that the nomogram pre-
diction model had good discrimination ability.

High‑risk scores correlate with elevated inhibitory immune 
checkpoints
Since the patients with high-risk scores had poorer sur-
vival and we observed in the previous Cluster 1 that 
higher expression levels of inhibitory immune check-
point molecules were positively correlated with poorer 
survival, we continued to investigate their expression in 

high- and low-risk groups. Consistently, the expression of 
immune checkpoint molecules including LAG3, TIGIT, 
CTLA4, PDCD1 and HAVCR2 were all highly expressed 
in the high-risk group compared to those in the low-
risk group (Fig.  9A, B). We also investigated potential 
chemo‐sensitive drugs for the high-risk group and found 
26 drugs with negative correlation coefficients, including 
Olaparib, Axitinib, Cisplatin and Ruxolitinib (Fig.  9C), 
suggesting the promising anti-tumor effects of a single 
drug or combination treatment with ICBs for high-risk 
patients of RCC.

Diagnostic value assessment for the prognostic model
Based on the 6 biomarkers in the prognostic model, we 
wondered about their capacity in distinguishing RCC 
patients from control normal samples in TCGA. Using 
tSNE analysis for the expression levels of the six biomark-
ers, we found cancer patients were well distinguished 
from normal patients (Fig. 10A). What’s more, the AUC 
value of the ROC curve for the logistic regression model 
was 0.856, indicating an excellent diagnostic power 
(Fig. 10B). As for independent predictors, the AUC value 
of ACAA2, ACAT1 and ANGPTL4 were 0.7045, 0.7816 
and 0.7665, respectively (Fig.  10C). Using IHC data 
from the Protein atlas database, we observed strong or 
moderate staining for ACAA2, ACAT1, ASRGL1, and 
AKR1B10, weak staining for ANGPTL4 and ABCC2 in 
normal kidney tissues and opposite staining results in 
kidney tumor samples(Fig. 10D). Moreover, we collected 
20 RCC tumor samples and 20 adjacent normal samples 
and observed 75% weak intensity in tumor samples and 
90% strong or moderate intensity in normal samples for 
ACAA2 expression using immunohistochemical analysis 
(Fig. 10E), revealing its potential anti-tumor role in RCC.

ACAA2 overexpression delays tumor growth and increases 
tumor immune infiltration
To further investigate the potential roles of ACAA2 in 
renal cell carcinoma, we constructed the ACAA2-V101 
plasmids and transfected them into renca cells. Sur-
prisingly, the cells transfected with ACAA2-V101 plas-
mids showed significant growth inhibition compared 
to those transfected with control vehicle plasmids 
(Fig.  11A), while no difference in apoptotic changes 

Fig. 7  Risk score analysis of the 6-metabolic-gene-signature related prognostic model in the test group and ICGC cohort. A Risk curve, survival 
scatter plot analysis and heat maps of expression profiles of 6 metabolic genes of patients with high- and low-risk in the testing set of the 6-gene 
signature prognosis model. B Kaplan–Meier curve shows the overall survival of high- and low-risk RCC patients in the testing set. C Time-dependent 
(ROC) curve analysis exhibits the prognostic performance of the 6-gene-signature-based prognostic model in predicting 1 ~ 5-year survival times 
of the testing set. D Risk curve, survival scatter plot analysis and heat maps of expression profiles of 6 metabolic genes of patients with high- and 
low-risk of the 6-gene-signature prognosis model in the ICGC RCC cohort. E Kaplan–Meier curve shows the overall survival of high- and low-risk 
RCC patients in the ICGC RCC cohort. F Time-dependent ROC curve analysis exhibits the prognostic performance of the 6-gene-signature-based 
prognostic model in predicting 1 ~ 5-year survival times of the ICGC RCC cohort

(See figure on next page.)
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was observed (Fig.  11B). Next, we conducted qPCR 
analysis on 786O cells transfected with ACAA2-V101 
plasmids and found upregulation of MHC-I associated 

genes like B2M, NLRC5, TAP1 and TAP2 (Fig.  11C). 
In subcutaneously implanted Balb/c murine model, 
the ACAA2-Overexpression group showed significant 

Fig. 7  (See legend on previous page.)
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tumor growth delay compared to the vehicle group 
(Fig.  11D). Moreover, tumor-infiltrating CD8+ T cells 
and PD-1 positive CD8+ T cells proportions were 
higher in the ACAA2-Overexpression group (Fig. 11E, 
F), implying that ACAA2 might serve as a promising 
immunotherapeutic target in RCC.

Discussion
The currently widely accepted classification method of 
RCC is based on the heterogeneous histopathologic char-
acteristics of RCC. However, different subtypes of RCC 
also share some commonalities including high infiltrat-
ing but inhibitory immune microenvironment, acquired 

Fig. 8  The nomogram based on the 6 metabolic genes for predicting the 1-year, 3-year and 5-year OS of RCC patients. A Forest plot of risk scores 
and clinical features based on univariate Cox regression analysis. B Forest plot of significant factors based on multivariate Cox regression analysis. C 
Calibration curves for nomograms predicting 1-year, 3-year and 5-year OS of RCC patients. D Nomograms predicting 1-year, 3-year and 5-year OS of 
RCC patients
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metabolic disorders like aberrant glycolysis, intermediate 
mutation load and so on [25]. Our research thus grouped 
kidney cancer and classified them into 3 metabolic sub-
clusters based on unsupervised clustering, attempting to 
provide new insights into the diagnosis and treatment for 
RCC.

In our findings, kidney cancer was classified into high-, 
medium- and low-metabolic subclusters and the subclus-
ter with low metabolic phenotypes displayed the poorest 
prognosis, strongest tumor stemness and aggressiveness, 
intermediate mutation load and highest immune infiltra-
tion. For the counter-intuitive results of high infiltration 
and poor prognosis in RCC, one plausible explanation 
is that memory T cells are retained in a quiescent or 
exhausted state. It has been reported that high expres-
sion profiling of the inhibitory receptors LAG-3, TIM-3, 
and TIGIT in renal cell carcinoma refers to malignancy 
and decreased survival [26, 27]. Other factors poten-
tially contributing to the inhibitory tumor microenviron-
ment include increased Tregs, neutrophil and monocyte 
infiltration [14]. In addition, newly published research 

indicated that elevated expression of the type 2 T helper 
cell signature also promoted maintenance of the suppres-
sive immune microenvironment and was correlated with 
poorer survival in ccRCC, pRCC and chRCC [8].

In order to identify critical genes contributing to the 
formation of distinct metabolic patterns in RCC, we 
took the intersection of the DEGs among the three clus-
ters and MEGENA results of significantly clustering 
metabolic genes in RCC. After strict screening, 6 meta-
bolic genes were identified: ACAA2, ACAT1, ASRGL1, 
AKR1B10, ABCC2 and ANGPTL4. Based on these meta-
bolic gene signatures, we constructed a prognosis model 
and verified the predicting capacity both internally and 
externally using the ICGC RCC database. Moreover, we 
further included clinical factors with significant prognos-
tic values and successfully constructed a nomogram with 
a C index of 0.8015, indicating a relatively good discrimi-
native ability.

In our prognosis model, 3 genes including AKR1B10, 
ASRGL1 and ABCC2 showed relatively poorer pre-
dictive power by a single gene. AKR1B10 encodes a 

Fig. 9  High-risk patients showed high expression of immune-checkpoint molecules and sensitivity to chemotherapies. A Correlation of risk scores 
and expression of immune-check points molecules. B Expression of immune-checkpoint molecules in low- and high-risk patients. C Sensitivity to 
chemotherapies of low- and high-risk patients. Low AUC values indicate higher sensitivity to chemotherapies
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member of the aldo–keto reductase (AKR) 1B subfam-
ily and exerts variable or even opposing roles in dif-
ferent tumor contexts [28, 29]. ASRGL1 encodes the 
enzyme that catalyzes the hydrolysis of l -asparagine 
to l-aspartic acid and ammonia and plays a protec-
tive role in endometrial carcinoma [30]. ABCC2, ATP 
Binding Cassette Subfamily C Member 2, acts as a key 

transporter in support of cell energy transition and 
proliferation and was identified as a pro-oncogenic 
factor in colorectal cancer [31]. The other 3 genes in 
the prognosis model associated with lipid metabo-
lism regulation displayed the diagnostic potential to 
discriminate between normal and kidney tumor tis-
sues: ACAT1, ANGPTL4 and ACAA2. ACAT1 is a key 

Fig. 10  Investigations of diagnostic values of 6 metabolic genes. A t-SNE clustering results of the 6 metabolic genes in distinguishing RCC tumor 
and normal samples. B ROC curve for the 6-gene signature logistic regression model. C ROC curve for the independent 6 metabolic genes. D IHC 
results indicating expression of ACAA2, ACAT1 and ANGPTL4 in RCC tumor samples and normal samples from the Human Protein Atlas database. E 
Representative (left) and statistical analysis (right) of IHC results indicating expression of ACAA2 in RCC tumor (n = 20) and normal tissues (n = 20) 
from Tongji hospital
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cholesterol esterification enzyme mediating an aero-
bic process breaking down fatty acids into acetyl-CoA 
[32]. Pharmacological inhibition or genetic ablation 
caused an increase in the plasma membrane choles-
terol level of CD8+ T cells and thus led to potentiated 
effector function and enhanced proliferation [33]. In 
tumor cells, however, ACAT1 is "hijacked" to regulate 
pyruvate dehydrogenase complex (PDC) and support 
the Warburg effect in human cancer [34]. ANGPTL4 
encodes a glycosylated, secreted protein containing 
a C-terminal fibrinogen domain, which functions as a 
serum hormone regulating glucose homeostasis and 

lipid metabolism [35]. The ANGPTL4/NOX4 axis is 
critical for tumor cell extravasation and metastatic 
seeding of tumor cells in dyslipidemia-associated can-
cer like kidney cancer [36], head and neck squamous 
cell carcinoma [37] and so on. ACAA2 (Acetyl-CoA 
Acyltransferase 2) catalyzes the last step of the mito-
chondrial beta-oxidation pathway, and little is known 
about its roles in tumor genesis and metastasis. The lat-
est research indicated knockdown of ACAA2 increased 
the proliferation of multiple human HCC cell lines 
in  vitro and accelerated the formation of xenograft 
tumors in nude mice [38]. Our results revealed the 

Fig. 11  ACAA2 overexpression inhibits tumor growth in vitro and in vivo and positively correlates with CD8+ T cell immune infiltration. A CCK8 
results showing Renca cell proliferation after transfection with control and ACAA2-V101 plasmids. B Representative and statistical results showing 
the apoptotic changes of Renca cells after transfection with control and ACAA2-V101 plasmids for 48 h. C qPCR results of gene expression changes 
of Renca cells after transfection with control and ACAA2-V101 plasmids for 48 h. D Tumor volumes of Balb/c murine models subcutaneously 
transplanted with Renca cells after transfection with control and ACAA2-V101 plasmids. E Representative and statistical results showing tumor 
infiltrating CD8+ T cells in the vehicle group and ACAA2-Overexpression group. F PD-1 expression of CD8+ T cells in the vehicle group and 
ACAA2-Overexpression group
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tumor-suppressing role of ACAA2 both in  vitro and 
in vivo in RCC. Furthermore, this anti-tumor effect was 
also associated with enhanced tumor immune infiltra-
tion and might be a promising target in combination 
with anti-PD-1 therapy.

Conclusions
In conclusion, we developed a novel metabolic classifica-
tion method of RCC and fully explored the immunologi-
cal and clinical characteristics of the three sub-clusters. 
Furthermore, we identified and validated the tumor-
inhibiting roles of ACAA2, which facilitates the develop-
ment of diagnosis and treatment for RCC patients.
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