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Abstract 

Background Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas 
(GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, 
we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM 
patients treated with standard therapy in identifying PsP cases.

Methods Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concur-
rent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. 
Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were 
available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant 
features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 con-
secutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). 
The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression 
computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP 
values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP 
value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concord-
ance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) 
was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying 
PsP and TP+ mixed tumor.

Results Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases 
(21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/
mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/
mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from 
TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and 
TP + mixed tumor.

Conclusions Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.
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Background
Glioblastoma (GBM) is a treatment-resistant and highly 
infiltrative primary brain neoplasm holding a devastating 
prognosis  [1, 2]. Despite being treated with multimodal 
first-line treatment comprising of maximal safe surgical 
resection followed by concurrent chemo-radiotherapy 
(CCRT) along with adjuvant temozolomide (TMZ)  [3, 
4], the vast majority of patients (~ 80%) present a new 
contrasting-enhancing lesion in the radiation field within 
6 months after the completion of CCRT [5–7]. This new 
lesion could be either true tumor growth, also known 
as tumor progression (TP), or predominant treatment 
effect, also known as pseudoprogression (PsP), which 
is mediated by TMZ induced increased vascular leaki-
ness and intense immune response. The incidence of 
PsP ranges from 28 to 66% in GBM patients undergoing 
CCRT [8, 9].

The PsP lesions spontaneously subside or stabilize 
without a change in therapy, thus reflecting an effective 
outcome of CCRT [10, 11]. These PsP patients are usu-
ally surveilled with short-interval follow‐up magnetic 
resonance imaging (MRI) scans every 4–6  weeks and 
are treated with adjuvant TMZ. On the other hand, TP 
patients receive a second-line treatment, including repeat 
surgery and/or alternative therapies such as electric field 
therapy, immunotherapy,  or anti-vascular therapy for 
potential benefits [12–14]. Thus, identifying patients 
with PsP is essential to avoid unwarranted repeat surgery, 
financial burden, and risky therapies. Confirming PsP is 
also valuable in preventing patients from being excluded 
from potentially effective experimental trials.

Conventional neuroimaging findings are often ambigu-
ous in identifying PsP and present a significant diagnos-
tic challenge [15, 16]. Therefore, there is a pressing need 
for the development of reliable, objective, and quanti-
tative biomarkers for assessing treatment response in 
GBM patients. Using diffusion tensor imaging (DTI) 
and dynamic susceptibility contrast (DSC)-perfusion 
weighted imaging (PWI), some studies have reported 
sensitivities and specificities in the range of 62 -91% in 
distinguishing PsP from TP [17–22]. The variable degrees 
of success in these reports may be attributed to the fact 
that DTI and DSC-PWI were used independently in 
several of those studies, and imaging parameters were 
not integrated together to obtain a reliable discrimina-
tory accuracy. On the other hand, multivariate regres-
sion analysis based prediction models are powerful tools 
that are frequently used in clinical practice to predict 
clinical outcomes [23]. Using a multiparametric ana-
lytical approach, we have previously developed a predic-
tion model by combining the unique strengths of DTI 
and DSC-PWI derived parameters in differentiating PsP 

and TP with an accuracy of 91% in GBM patients who 
received surgery and CCRT [22].

To determine predictive power and prove its general-
izability for broader applications in new populations of 
GBM patients across different clinical sites, it is essential 
to test the robustness of multiparametric based predic-
tion model in evaluating treatment response. With this 
objective in mind, we sought to validate the findings of 
our previously established model [22] in a new, inde-
pendent cohort of GBM patients treated with standard of 
care in identifying PsP in the present study.

Materials and methods
Patient population
This study was approved by the institutional review 
board and was compliant with the Health Insurance Port-
ability and Accountability Act. The inclusion criteria for 
enrollment in the present study were that all patients had: 
(i) histologically confirmed diagnosis of GBM; (ii) treated 
with standard of care, i.e. surgery and CCRT, (iii) exhib-
ited new enhancing lesion in the radiation field on fol-
low-up MRI within 6 months after completion of CCRT, 
(iv) had the availability of anatomical and physiological 
neuroimaging data (DTI and DSC-PWI). Based upon the 
inclusion criteria, a cohort of 56 patients (25 females/31 
males; mean age: 61.2 ± 9.4  years) was recruited in the 
present study.

These patients were grouped into two categories: PsP 
(n = 19) and TP + mixed tumor (n = 37). Patients in 
whom tumor specimen was available from repeat sur-
gery/biopsy, malignant features on histopathology were 
used to identify PsP (< 25% malignant features; n = 16) 
and TP + mixed tumor (> 25% malignant features; n = 34) 
[24, 25]. In the case of non-availability of tissue speci-
mens,  ≥2 consecutive follow-up standard-of-care MRI 
scans using mRANO criteria [26] were used to determine 
the status of PsP (n = 3) or TP + mixed tumor (n = 3). 
The final diagnosis for each patient as PsP or TP + mixed 
tumor was established by a consensus opinion at a weekly 
multidisciplinary neuro‐oncology conference.

Data acquisition
All Patients underwent MRI on a 3  T Tim Trio whole 
body MR scanner (Siemens, Erlangen, Germany) 
equipped with a 12-channel phased array head coil. 
The anatomical imaging protocol included axial 3D-T1-
weighted magnetization-prepared rapid acquisition 
of gradient echo (MPRAGE) imaging and an axial 
T2-FLAIR imaging using standard parameters. The 
postcontrast T1-weighted images were acquired with 
the same parameters as the precontrast acquisition after 
administration of standard dose (0.14  mmol/Kg) of 
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gadobenate dimeglumine (MultiHance, Bracco Imaging, 
Milano, Italy) intravenous contrast agent using a power 
injector (Medrad, Idianola, PA).

Diffusion tensor imaging
Axial DTI data were acquired using 30 noncollinear/
noncoplanar directions with a single-shot spin-echo, 
echo-planar read-out sequence with parallel imaging 
by using generalized autocalibrating partially parallel 
acquisition (GRAPPA) and acceleration factor of 2. The 
sequence parameters were as follows: repetition time 
(TR) / echo time (TE) = 5000/86  ms, number of excita-
tions (NEX) = 3, field of view (FOV) = 22 ×  22cm2, matrix 
size = 128 × 128, in-plane resolution = 1.72 × 1.72  mm2; 
slice thickness = 3  mm; b = 0, 1000  s/mm2; number of 
slices = 40; acquisition time 8 min.

Dynamic susceptibility contrast‑perfusion weighted 
imaging
For axial DSC-PWI, a bolus of gadobenate dimeglumine 
(Multi-Hance; Bracco Diagnostics, Princeton, New Jer-
sey) was injected with a preloading dose of 0.07  mmol/
kg, to reduce the effect of contrast agent leakage on CBV 
measurements. A T2*-weighted gradient-echo EPI was 
used during the second 0.07 mmol /kg bolus of contrast 
agent for the DSC-PWI. The injection rate was 5  ml/s 
for all patients and was immediately followed by a flush 
of saline (total of 20 ml at the same rate). The sequence 
parameters were as follows: TR/TE = 2000/45  ms; 
FOV = 22 × 22  cm2; matrix size = 128 × 128; in-plane res-
olution = 1.72 × 1.72  mm2; slice thickness = 3 mm; band-
width = 1346  Hz/pixel; flip angle = 90°; EPI factor = 128; 
echo spacing = 0.83; acquisition time 3  min and 10  s. 
Forty-five sequential measurements were acquired for 
each section.

Image processing and data analysis
The motion and eddy current correction algorithms were 
applied to raw DTI data using in-house developed algo-
rithm (IDL; ITT Visual Information Solutions, Boulder, 
Colorado). Pixel-wise mean diffusivity (MD), fractional 
anisotropy (FA), coefficient of linear anisotropy (CL), pla-
nar anisotropy (CP), and spherical anisotropy (CS) maps 
were computed by using the methods reported previ-
ously [27, 28]. Leakage-corrected cerebral blood volume 
(CBV) maps were generated by performing gamma-var-
iate curve fitting from DSC-PWI data using NordicICE 
software (NordicNeuroLab, Bergen, Norway).

The DTI derived maps, CBV maps, and T2-FLAIR 
images were resliced and co-registered to post-contrast 
T1-weighted images. A semiautomatic approach was 
used to segment the contrast-enhancing regions of each 
lesion by using a signal intensity-based thresholding 

method [27, 28]. The median values of DTI metrics (MD, 
FA, CL, CP, and CS) from the enhancing regions were 
computed. The CBV values from the enhancing regions 
were normalized by corresponding values from contralat-
eral normal white matter regions to obtain relative CBV 
(rCBV). The top 90th percentile rCBV values were also 
measured from the enhancing regions and were reported 
as  rCBVmax.

Radiographic response assessment using mRANO criteria
Those patients in whom repeat surgery or biopsy 
was not possible, a well-established mRANO criteria 
[26]  were used to determine the final diagnosis of PsP 
and TP + mixed response by a board-certified neuroradi-
ologist (SM). The tumor size was determined as the sum 
of the products of diameters (SPD) on the post-contrast 
T1 images. As the mRANO working group has suggested 
that radiological response at the initial presentation 
should persist for at least 4 weeks on follow-up imaging 
before it can be considered as PsP or TP, tumor size was 
measured again at the follow-up scan [26].

Response assessment using histological/
immunohistochemical analysis
Tumor specimens were originally cut, mounted, and 
stained with hematoxylin-eosin (H & E). Immunohis-
tochemistry for Ki-67 and p53 was performed by using 
a Bond III automated system (Leica Biosystems, Buffalo 
Grove, Illinois). The entire submitted material for each 
case was examined by a board-certified neuropatholo-
gist  (MPN), who was blinded to the results of the MR 
imaging studies. The slides were examined to determine 
the relative degree of recurrent glioma and treatment-
related changes by standard methods. The proliferative 
index of Ki-67 for each case was calculated as a percent-
age of positive tumor cells, avoiding areas of inflamma-
tory infiltrates [29].

Validation of multiparametric MRI based prediction model
In our previous study [22], GBM patients presenting 
with new enhancing lesions within 6  months of com-
pleting CCRT were classified into two groups, TP group 
(malignant features > 75%), and PsP + mixed tumor [PsP 
(malignant features < 25%) combined with mixed tumors 
(malignant features = 25–75%)], based on histopathologi-
cal findings from tumor specimens obtained from repeat 
surgery. Significantly elevated FA, CP, CL, and  rCBVmax 
values were observed in TP compared to those with 
PsP + mixed tumor from contrast-enhancing regions of 
neoplasms with variable sensitivities (62–71%) and spe-
cificities (75–90%) of individual parameters. However, 
the best prediction model in differentiating TP from 
PsP + mixed response was obtained when FA, CL, and 
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 rCBVmax were incorporated into the multivariate logistic 
regression analyses. The receiver operative characteristic 
(ROC) curve revealed an accuracy of 91% in distinguish-
ing TP from PsP + mixed tumor. In the present study, a 
combination of these three parameters (FA, CL, and 
 rCBVmax) was used to compute the predictive probabili-
ties (PP) of TP for each lesion using the following regres-
sion equation:

 where β0 = −  16.17, β1 = 194.01, β2 = −  285.65, and 
β3 = 1.21.

As the recent evidence [24, 25] has suggested that the 
presence of malignant features of less than 25% within 
the tumor specimens from repeat surgery after the 
completion of CCRT in GBMs does not usually alter 
the clinical management of these patients, and these 
patients are continued on adjuvant TMZ treatment, 
patients were classified into two modified groups. PsP 
group (malignant features < 25%) and TP + mixed tumor 
(malignant features > 25%). In the next step, the PP val-
ues were used to characterize each enhancing lesion as 
PsP or TP + mixed tumor. The lesions were considered as 
PsP if the PP was < 50% and TP + mixed tumor if the PP 
was ≥ 50%. The step-wise process of utilizing multipara-
metric MRI based prediction model in determining PsP 
and TP + mixed tumors is presented as a flow chart in 
Fig. 1.

Statistical analysis
Kolmogorov-Smirnov tests were used to determine 
the nature of data distribution. As the data showed a 
departure from Gaussian distribution, non-parametric 
Mann-Whitney U tests were performed to assess dif-
ferences in the median values of FA, CL, and  rCBVmax 
between TP + mixed response and PsP groups as 
determined by histopathology/mRANO criteria. A 
probability (p) value of less than 0.05 was considered 
significant.

We sought to ascertain the number of cases correctly 
classified as PsP or TP + mixed tumor using multipar-
ametric MRI-based prediction model using histopa-
thology/mRANO criteria as ground truth in the final 
diagnosis of PsP and TP + mixed tumor. Pearson test 
was used to determine the concordance correlation 
coefficient between PP values and histopathology/
mRANO criteria to ascertain the robustness of our 
prediction model. The area under the ROC curve 
(AUC) was used as a quantitative measure for assess-
ing the discriminatory accuracy of prediction model in 
identifying PsP and TP + mixed response. Additionally, 
a leave-one-out cross-validation analysis was applied 

f (FA,CL, rCBVmax)

= 1÷ 1+ exp (−(β0 + β1FA+ β2CL+ β3rCBVmax)),

to estimate model’s potential to predict outcomes in a 
new independent data set. All statistical analyses were 
performed using a statistical package, SPSS for Win-
dows (v. 18.0; Chicago, IL).

Results
Representative anatomical images, DTI derived paramet-
ric maps (FA, CL), and CBV maps each from a patient 
with TP + mixed tumor and PsP are shown in Figs. 2 and 
3, respectively. Figure 4 demonstrates the histogram dis-
tributions of parameters (FA, CL and rCBV) encompass-
ing the entire volume of contrast-enhancing lesions from 
two patients shown in Figs. 2 and 3. The distributions of 
FA, CL, and  rCBVmax values from contrast-enhancing 
lesions of all patients are shown as box-and-whisker plots 
(Fig. 5). Significantly higher FA (mean ± standard devia-
tion = 0.14 ± 0.03 vs. 0.11 ± 0.02, p < 0.01); CL (0.05 ± 0.03 
vs. 0.04 ± 0.01, p = 0.04) and  rCBVmax (4.09 ± 1.85 vs. 
2.49 ± 0.97, p < 0.01) values were observed in TP + mixed 
tumors than in PsP patients.   

While characterizing each lesion as PsP or TP + mixed 
tumors, our prediction model correctly predicted PsP 
in 95% (18/19) and TP + mixed tumor in 57% of cases 
(21/37) with an overall concordance rate of 70% (39/56) 
with the final diagnosis as determined by histopathol-
ogy/mRANO criteria. Additionally, a significant con-
cordant correlation coefficient between PP values and 
histopathology/mRANO criteria (r = 0.56; p < 0.001) was 
observed. As shown in Fig. 6, PP values were significantly 
higher in TP + mixed tumors (mean = 61.3 ± 39.1%) 
than in PsP cases (mean = 15.1 ± 22.2%) with a p-value 
of  < 0.01.

Fig. 1 The step-wise process of utilizing multiparametric MRI based 
prediction model in determining PsP and TP+mixed tumors
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The ROC analyses revealed an accuracy of 75.7% in dis-
tinguishing PsP from TP + mixed tumors (Fig. 7). Leave-
one-out cross-validation test revealed that 73.2% of cases 
were correctly classified as PsP and TP + mixed tumors.

Discussion
Conducting a validation study is essential for providing 
a realistic estimate of predictive power of a previously 
developed model derived from one data set that would 
occur when applied to a new sample [30]. In the present 
study, we validated our previously developed multipara-
metric MRI-based prediction model [22] in identify-
ing PsP in a new, independent cohort of GBM patients 
treated with CCRT and presenting with a contrast 
enhancing lesion within 6  months following treatment. 
A significant concordant correlation coefficient was 
observed between multiparametric MRI derived PP val-
ues and histopathology/mRANO criteria for determin-
ing the final diagnosis of PsP and TP + mixed tumor. Our 
multiparametric MRI-based prediction model correctly 
classified enhancing lesions as PsP or TP + mixed tumor 
in 70% of the new cases. We believe that this is a very 
promising finding given the fact that GBMs are extremely 
heterogeneous neoplasms in nature, both phenotypically 
and genotypically, and this intratumoral heterogeneity 

increases even further in the posttreatment settings [31, 
32].

An important finding was that 95% of PsP cases were 
correctly classified by our prediction model. The inci-
dence of PsP ranges from 28 to 66% in GBM patients 
undergoing CCRT [33]. Accurate stratification of PsP 
cases may be helpful in preventing these patients from 
getting unnecessary aggressive neuro-interventional pro-
cedures such as repeat surgery or biopsy. Moreover, PsP 
patients are more responsive to TMZ treatment and tend 
to have better clinical outcomes than TP patients. There-
fore, PsP patients are clinically managed with continua-
tion of adjuvant TMZ and closely monitored with short 
interval follow-up MRI scans [5].

The combination of spatial and temporal tumor hetero-
geneities present within GBMs can cause local variations 
in the physiological features such as cellularity, vascularity, 
and metabolic activities, which are reflected by mismatch in 
the findings from diverse neuroimaging parameters. There-
fore, the usage of a single imaging modality or parameter 
may not always be appropriate in characterizing GBMs with 
high accuracy  [11]. In such situations, integrated analyti-
cal approach of combining of DTI and DSC-PWI sensitive 
parameters may allow more reliable assessment of tumor 
biology and microenvironment. Indeed, the multiparametric 

Fig. 2 A 61-year-old male patient with glioblastoma, status post gross total resection and chemoradiation. A Post-contrast T1-weighted image 
shows a heterogeneously enhancing lesion at the site of previously resected glioblastoma, which had increased from prior scans. B T2-FLAIR image 
demonstrates hyperintense signal abnormality surrounding the lesion. C DSC-PWI shows elevated rCBV from the posterior enhancing region of 
the tumor (white arrows). Overall the constellation of these conventional and advanced imaging findings was concerning for true progression. 
Multiparametric MRI based prediction model comprising  rCBVmax, FA D, and CL E revealed a diagnosis of TP+mixed tumor  (rCBVmax = 7.93, 
FA = 0.15, CL = 0.05), suggesting a significant component of recurrent tumor (PP = 84%). F The hematoxylin and eosin stained sections demonstrate 
hypercellular tissue representative of tumor with hyperchromatic irregular nuclei, and minimal treatment-related changes
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MRI approach has shown great potential in differentiat-
ing necrotic GBMs from brain abscesses [28], identification 
of histologic grades of gliomas  [34], differential diagno-
sis of brain neoplasms [35, 36], discrimination of recurrent 
tumors from radiation necrosis [37], investigation of tumor 
invasion [38], prognostication [39], and evaluation of treat-
ment response to immunotherapy  [40]  and targeted ther-
apy [41] in GBM patients.

Using multiparametric data analytical method, we 
used a combination of three parameters (FA, CL, and 
 rCBVmax) in developing a classification model for distin-
guishing PsP + mixed tumor from TP in GBM patients in 
our previous study [22]. The ROC analysis revealed a high 
discriminatory accuracy of 91%. When PP values derived 
from a combination of FA, CL, and  rCBVmax were used 
in identifying PsP from a new cohort of GBM patients in 
the present study, a moderate discriminatory accuracy of 
75.7% was observed using the ROC analysis. The possible 
explanation for this decrease in the validity of our predic-
tion model in the new data set might be due to the use of 
different categorization of patients [PsP and TP + mixed 
tumor in the present study vs. TP and PsP + mixed tumor 
in our previous study [22]]. The rationale for regroup-
ing the patients lies in the fact that patients showing 
mixed tumor (25–75% malignant features) are subjected 

to repeat surgery and/or to alternate therapies such as 
tumor treating fields or immunotherapy in a similar 
manner as those with TP (> 75% malignant features) in 
the usual clinical practice [24, 25]. Therefore, keeping 
best clinical practice in mind and for appropriate treat-
ment stratification, clustering of patients showing mixed 
tumor to those with TP in the same group seems more 
appropriate.

Our findings should be treated with caution as our 
multiparametric MRI based prediction model achieved 
a moderate discriminatory accuracy (75.7%) in differen-
tiating PsP from TP + mixed tumor. We believe that our 
prediction model can be further improved by combined 
analysis of DTI and DSC-PWI data both from contrast 
enhancing and peritumoral regions of neoplasms along 
with incorporation of molecular information such as 
MGMT promoter methylation and/or isocitrate dehy-
drogenase (IDH) mutational status into the multivariate 
regression analysis in the future studies.

In conclusion, our multiparametric MRI based predic-
tion model allows quantitative, and objective evaluation of 
treatment response in GBM patients. Our results indicate 
that this prediction model may be helpful in identifying PsP 
cases. Recognizing patients with PsP is critical for prognosti-
cation and for guiding clinical decision making.

Fig. 3 A 63-year-old male patient with glioblastoma, status post gross total resection and chemoradiation. A Post-contrast T1-weighted image 
shows a heterogeneously enhancing lesion at site of previously resected glioblastoma which had increased from prior scans. B T2-FLAIR images 
demonstrate associated hyperintense signal abnormality surrounding the lesion. C DSC-PWI shows mildly elevated rCBV from the enhancing region 
of the tumor. Overall constellation of these conventional and advanced imaging findings was concerning for true progression. Multiparametric 
MRI based prediction model comprising  rCBVmax with FA D and CL E revealed a diagnosis of PsP  (rCBVmax = 2.61, FA = 0.13, CL = 0.05), suggesting 
a significant component of treatment-related changes (PP = 19%). F The hematoxylin and eosin stained sections show infarct, abundant 
macrophages, and hyalinized vessels, indicative of treatment-related changes
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Fig. 4 Histograms showing the frequency distributions of parameters (FA, CL and rCBV) from entire volume of contrast-enhancing regions of 
neoplasms from two patients shown in Figs. 2 and 3. Please note the presence of greater peak height positions (PHP), histogram widths (HW) and 
maximum pixel values (MV) of these parameters in TP than in PsP

Fig. 5 Box‐and‐whisker plots demonstrating the distribution of diffusion (FA and CL) and perfusion  (rCBVmax) parameters from contrast enhancing 
regions of neoplasms in TP+mixed tumor (gray), and PsP (white) patients. The solid line inside each box represents the median value, while the 
edges represent the 25th and 75th percentiles. The straight line (bars) on each box indicates the range of data distribution. Circles represent outliers 
(values 1.5 box length from the 75th/25th percentiles)
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