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Abstract 

Background  Identifying candidates responsive to treatment is important in lupus nephritis (LN) at the renal flare 
(RF) because an effective treatment can lower the risk of progression to end-stage kidney disease. However, machine 
learning (ML)-based models that address this issue are lacking.

Methods  Transcriptomic profiles based on DNA microarray data were extracted from the GSE32591 and GSE112943 
datasets. Comprehensive bioinformatics analyses were performed to identify disease-defining genes (DDGs). Periph‑
eral blood samples (GSE81622, GSE99967, and GSE72326) were used to evaluate the effect of DDGs. Single-sample 
gene set enrichment analysis (ssGSEA) scores of the DDGs were calculated and correlated with specific immunol‑
ogy genes listed in the nCounter panel. GSE60681 and GSE69438 were used to examine the ability of the DDGs to 
discriminate LN from other renal diseases. K-means clustering was used to obtain the separate gene sets. The cluster‑
ing results were extended to data derived using the nCounter technique. The least absolute shrinkage and selection 
operator (LASSO) algorithm was used to identify genes with high predictive value for treatment response after the 
first RF in each cluster. LASSO models with tenfold validation were built in GSE200306 and assessed by receiver oper‑
ating characteristic (ROC) analysis with area under curve (AUC). The models were validated by using an independent 
dataset (GSE113342).

Results  Forty-five hub genes specific to LN were identified. Eight optimal disease-defining clusters (DDCs) were iden‑
tified in this study. Th1 and Th2 cell differentiation pathway was significantly enriched in DDC-6. LCK in DDC-6, whose 
expression positively correlated with various subsets of T cell infiltrations, was found to be differentially expressed 
between responders and non-responders and was ranked high in regulatory network analysis. Based on DDC-6, the 
prediction model had the best performance (AUC: 0.75; 95% confidence interval: 0.44–1 in the testing set) and high 
precision (0.83), recall (0.71), and F1 score (0.77) in the validation dataset.

Conclusions  Our study demonstrates that incorporating knowledge of biological phenotypes into the ML model is 
feasible for evaluating treatment response after the first RF in LN. This knowledge-based incorporation improves the 
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model’s transparency and performance. In addition, LCK may serve as a biomarker for T-cell infiltration and a therapeu‑
tic target in LN.

Keywords  Lupus nephritis, Renal flare, Transcriptomics, Machine learning, Prediction model

Background
Lupus nephritis (LN) is a severe complication of systemic 
lupus erythematosus (SLE). LN is a form of glomerulo-
nephritis and is typically classified into six distinct his-
tological classes depending on the manifestation and 
severity of renal involvement [1]. Even though there 
have been accumulating knowledge and effective thera-
peutic options in recent decades, LN remains a clinical 
challenge [2–4]. With current treatments such as gluco-
corticoids, cyclophosphamide (CYC), or mycopheno-
late mofetil (MMF), less than 50% of patients achieve a 
complete clinical response after 1  year [5]. Even with 
clinical remission, 44.4% of patients show residual histo-
logical activity, and 27–66% develop renal flare (RF) [6, 
7]. Once RF occurs, the risk of progressive kidney disease 
is dramatically increased, leading to poor outcomes and 
greater economic burden [8–10]. Thus, the prevention 
of RF with appropriate maintenance immunosuppressive 
therapy is vital and may decrease long-term morbidity 
and mortality [7]. However, 5–30% of patients develop 
end-stage kidney disease (ESKD) within 10 years [5, 11]. 
This discrepancy in therapeutic response among patients 
with LN indicates that the effect of conventional immu-
nosuppressive drugs is not uniform, and the identifica-
tion of candidates responsive to therapies is necessary for 
personalized medicine.

As histological changes are limited in LN, depend-
ing on the histological classification for therapeutic 
assessment is unreliable. In fact, the response to therapy 
might be potentially affected by intrarenal molecular 
mechanisms that drive disease through specific patho-
genic pathways [12]. Currently, biomarkers for predict-
ing treatment response in LN are accumulating but are 
mainly focused on serum and urinary analysis [13–15]. 
According to a recent systematic review, there was vast 
heterogeneity across studies, limiting their use in clinical 
settings [16]. Further, as the exploration of renal tissue is 
the gold standard for LN diagnosis, obtaining genomic 
information to identify the contributing disease path-
ways may provide the best value in predicting treatment 
response.

To the best of our knowledge, few studies have assessed 
large-scale transcriptomic profiles of LN under varying 
conditions. Mejia-Vilet et al. extracted RNA from kidney 
biopsies and found that intrarenal immune gene expres-
sion differed between LN at diagnosis and at flare [17]. 
Recently, Parikh et  al. adopted serial renal biopsies and 

conducted extensive transcriptomic analyses to dissect 
the immune pathways responsible for determining drug 
responses after RF, providing insights into this clinical 
scenario [12]. In fact, their findings could be extended 
if the biological pathways responsible for drug response 
and genes involved in LN were connected. This approach 
of incorporating knowledge relevant to disease could 
help eliminate false-positive markers and enhance the 
signal-to-noise ratio in large-scale omics data [18, 19].

In this study, we aimed to construct prediction mod-
els for treatment response in patients with LN after the 
first RF. We attempted to identify disease-defining genes 
(DDGs) for LN and incorporated these genes into the 
feature selection process for model establishment.

Methods
Study samples
Transcriptomic data files were downloaded from the 
National Center for Biotechnology Information Gene 
Expression Omnibus (GEO; http://​www.​ncbi.​nlm.​nih.​
gov/​geo) using the R/Bioconductor GEOquery package. 
DNA microarray data from GSE32591 and GSE112943 
were used as discovery datasets to identify hub genes 
for LN. Data from GSE32591 (Affy_HGU133A_CDF_
ENTREZG_10) were extracted from glomerular and 
tubulointerstitial compartments in 64 patients with LN 
and 29 healthy controls and normalized using the robust 
multi-array average (RMA) [20]. Data from GSE112943 
(Illumina HumanHT-12 V4.0 expression beadchip) were 
based on kidney samples and contained 14 LN cases and 
seven controls [21]. The expression data were normal-
ized using variance-stabilizing transformation and robust 
spline normalization. To confirm the disease-defining 
value of the hub genes, gene expression data derived from 
blood samples of patients with LN were used. GSE81622 
(Illumina HumanHT-12 V4.0 expression beadchip), 
GSE99967 (Affy_HuGene-2_0-st), and GSE72326 (Illu-
mina HumanHT-12 V4.0 expression beadchip) were 
included, and the data were normalized according to the 
methods described by the authors. Blood samples from 
58 patients with LN and 63 healthy controls were evalu-
ated. Further, GSE60861 (Agilent-026652 Whole Human 
Genome Microarray 4 × 44  K v2) and GSE69438 (Affy_
HG-U133_Plus_2) consisted of gene expression data 
from chronic renal diseases in addition to LN [22–24]. 
Therefore, these two datasets were used to examine the 
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impact of hub genes in the discrimination of LN from 
other kidney diseases.

For the construction of prediction models, data from a 
Series Matrix File (GSE200306) that evaluated the treat-
ment response in patients with LN at the first RF was 
used [12]. This study included 58 patients with prolifera-
tive LN (class III or IV + / − V) and ten healthy subjects. 
Treatment for LN at RF consisted of induction therapy 
followed by maintenance therapy (a combination of pred-
nisone and CYC or MMF). Response was assessed after 
the completion of the induction therapy, and responder 
was defined as the reduction of proteinuria greater than 
0.5 g/d with improved serum creatinine. A second biopsy 
was performed within 1  year. Another study (Series 
Matrix File: GSE113342) conducted by Mejia-Vilet  et 
al. compared the transcriptomic profile at RF and the 
expression at de novo LN [17]. Fourteen patients with LN 
with two tissue compartments (glomeruli and tubuloint-
erstitia) were included, and 28 samples at RF were used 
for validation. Both studies adopted the same immunol-
ogy gene panel (nCounter NanoString Human Immunol-
ogy v2), which included over 500 general immunology 
genes, including major classes of cytokines and their 
receptors, enzymes with specific gene families, interfer-
ons and their receptors, the tumor necrosis factor-recep-
tor superfamily, and the Killer-cell immunoglobulin-like 
receptor family genes. Additional 84 genes related to 
anti-fungal immune response are also included. This 
panel is therefore ideal for studying immune-related con-
ditions and diseases. A key advantage of this NanoString 
technology is the ability to directly quantify molecules 
of interest in the absence of an amplification step, which 
prevents introduction of artificial bias [25]. Gene expres-
sion data were pre-processed and normalized using 
author-defined methods. The details of the datasets are 
provided in Additional file  1: Table  S1 and Additional 
file 2: Figure S1.

Identification of differentially expressed genes between LN 
and healthy control
Principal component analysis (PCA) was performed 
to examine the altered gene expression profile of LN in 
the discovery datasets. The first two components that 
covered most of the variance were used to generate the 
PCA plots. As two tissue components were identified 
in the GSE32591 dataset, the analyses were separated. 
The R/Bioconductor ComplexHeatmap package was 
used to create heat maps with hierarchical clustering. 
Differentially expressed genes (DEGs) were identified 
using a linear model derived from the R/Bioconductor 
limma package. A Benjamini-Hochberg (BH) adjusted 
P < 0.05 was considered significant. Venn diagram analy-
sis (https://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/) 

was performed to identify common overlapping DEGs 
between the two tissue compartments in the GSE32591 
and GSE112943 datasets. Over-representation analy-
sis (ORA) was applied to identify significantly enriched 
Gene Ontology (GO) terms using Metascape (https://​
metas​cape.​org/). DisGeNET (https://​www.​disge​net.​org/) 
was used to assess the association between the genotypes 
and disease phenotypes. The adjusted P-value threshold 
was set at 0.05.

Identification of DDGs for LN
A protein–protein interaction (PPI) network was con-
structed by applying the up-regulated and down-reg-
ulated DEGs in the Search Tool for the Retrieval of 
Interacting Genes (STRING). The network was recon-
structed using Cytoscape software (version 3.8.2). The 
top sub-network modules were selected using plug-in 
molecular complex detection (MCODE). The criteria for 
determining DDGs for LN were an MCODE score > 3 
and node number > 5. Top-ranked modules were cho-
sen as the regulatory networks for the up-regulated and 
down-regulated genes. CytoHubba was used to identify 
the central elements of the biological networks [26]. The 
top 10 nodes from the algorithms, namely, the maximum 
neighborhood component (MNC), maximal clique cen-
trality (MCC), edge percolated component (EPC), den-
sity of maximum neighborhood component (DMNC), 
and degree, were selected, and those with a degree less 
than ten were excluded. The blood samples in GSE81622, 
GSE99967, and GSE72326 were used to evaluate the 
impact of the DDGs. The P-value was calculated using 
Wilcoxon’s rank sum test and was log10-transformed.

Permutation test
To confirm the significance of DDGs as gene signatures 
for LN, a permutation test was conducted. The same 
number of genes was randomly selected, and single- sam-
ple gene set enrichment analysis (ssGSEA) score was cal-
culated for each sample. This process was repeated 1000 
times to generate a background distribution of ssGSEA 
scores, which were then compared across LN samples 
and controls. Differences in the mean values of ssGSEA 
scores were obtained, and Wilcoxon’s rank sum test was 
used to derive the P-values. If there was a significant 
difference in the mean values and a low P-value against 
the background of our gene signature, it was considered 
significant.

Identification of disease‑defining clusters (DDCs)
The ssGSEA score was calculated to estimate the enrich-
ment of hub genes in each sample. Spearman’s correlation 
coefficients (rho) were calculated between the hub gene 
ssGSEA score and the expression of each immunology 
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panel gene. The coefficients of tissue and blood samples 
were pooled together, followed by K-means clustering to 
identify clusters in the immunology gene panel. The opti-
mal number of clusters was determined using the elbow 
method. Genes in each cluster were further characterized 
by GO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses implemented 
in STRING [27]. DEGs in the immunology gene panel 
between responders and non-responders in GSE200306 
were identified through a linear model using the limma 
package with the same criteria for significance men-
tioned above. To evaluate the influence of the clusters on 
the treatment response, the overlap of genes in a cluster 
with the DEGs for response was performed. Next, the 
least absolute shrinkage and selection operator (LASSO) 
was adopted to select genes with contributory effects to 
the response in a target cluster using the glmnet package 
in R. The selected genes were evaluated using CytoHubba 
and ranked according to the five network scores. The top 
regulatory genes were defined as high-rank genes with 
significantly different expression levels between respond-
ers and non-responders.

Evaluation of immune cell infiltration
Because the top regulatory genes were extracted from the 
nCounter immunology panel, they may potentially affect 
immune cell infiltration. To estimate immune cell infil-
tration for each sample, immune cell type enrichment 
analysis was carried out in the discovery sets and blood 
samples. ssGSEA scores for immune cell-specific gene 
sets were calculated using the ConsensusTME package 
in R [28]. The immune signatures used in our study have 
been proposed by xCell, Bindea et al., and Danaher et al. 
[29–31]. Spearman’s coefficient was calculated between 
the expression of the top-ranked regulatory genes and the 
ssGSEA score, which estimates immune cell infiltration.

Construction of prediction models
Patients with LN at the first RF were randomly divided 
into training and testing sets based on an 8:2 ratio. The 
original ratio of responders to non-responders was 2.76:1 
in the GSE200306. Therefore, the synthetic minority 
oversampling technique (SMOTE) in the training set 
was performed to balance the minority group using the 
DMwR package. The LASSO regression algorithm was 
used to obtain genes with non-zero coefficients via ten-
fold cross-validation. Receiver operating characteristic 
(ROC) analysis with area under the curve (AUC) and 
95% confidence interval (CI) was performed to evaluate 
the performance of the LASSO models using the pROC 
package in R in the training, testing, and entire sets. 
Patients with LN at RF in GSE113342 were used as a vali-
dation set to examine the predictive ability of the LASSO 

models, which was evaluated using the confusion matrix, 
precision, recall, and F1 score.

Statistical analysis
All statistical analyses were conducted using the R soft-
ware (version 4.1.2). Wilcoxon’s rank sum test was per-
formed for continuous variables, and P < 0.05 was set as 
the threshold for statistical significance.

Results
A comprehensive analysis was conducted in this study. 
The overall design and flowchart of the study are pre-
sented in Fig. 1.

Transcriptomic profiling in discovery datasets reveals 
alteration of gene expression in LN
To determine whether the gene expression levels 
could separate the study subjects into distinct groups, 
PCA was performed using GSE32591 and GSE112943. 
Striking clustering patterns were identified, whereby 
the normal glomerular samples in GSE32591 and the 
LN samples in GSE112943 showed distinct clustering 
(Fig.  2A). On the other hand, the subgroup of tubu-
lointerstitial samples with LN clustered with healthy 
controls. To specifically examine the clustering pat-
terns, a DEG analysis was conducted. To obtain all 
DEGs, no threshold for logFold Change (FC) was set, 
and Venn diagram analysis was performed to obtain 
common DEGs. A total of 4442, 4332, and 9886 DEGs 
were found in the glomeruli (GSE32591), tubuloint-
erstitia (GSE32591), and renal tissues (GSE112943), 
respectively (Fig. 2B). The heatmap analysis supported 
the findings of PCA analysis, and part of the tubuloint-
erstitial tissues with LN (n = 4) shared DEG expression 
patterns similar to those of the controls (Fig.  2C). In 
addition, one healthy control showed a DEG expression 
pattern similar to that of LN in GSE112943. To gener-
ate discovery datasets for comparison in an unbiased 
manner, the five samples were removed. Moreover, 
1839 DEGs were shared between glomeruli (1839/4442, 
41.4%) and tubulointerstitia (1839/4332, 42.5%), and 
the common DEGs were highly correlated (Spear-
man’s rho = 0.72, P < 2.2e-16) (Fig.  2D). This suggested 
that larger parts of the pathogenesis pathways were 
shared, and the information on genes relevant to LN 
could be derived from both tissue components. Venn 
diagram analysis revealed 847 common DEGs among 
the three subgroups of the discovery dataset (Fig.  2E). 
Among these, IFI44L, which was previously identified 
as one of six common DEGs (IFI27, IFI44, IFI44L, IFI6, 
EPSTI1, and OAS1) between SLE and normal sam-
ples, was the most common top DEG in GSE32591 and 
GSE112943 (Fig. 2F). The ORA of the 847 input DEGs 
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Fig. 1  Study design and bioinformatic pipeline. This graph was created with BioRender.com (license number IB24MA3A0V)
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demonstrated that interferon signaling (Reactome 
term: R-HSA-913531) was the most enriched pathway 
(– log10P = 32.42, Fig.  2G). SLE is characterized by 
activation of the interferon system, which supports LN 
as one of the organ manifestations of SLE [32]. Further-
more, using DisGeNET, we found that the LN pheno-
type was significantly enriched (– log10P = 15, Fig. 2H). 
Among the enriched diseases, IgA glomerulonephritis 
is another phenotype associated with kidney disease. 
Taken together, the 847 DEGs were feasible for explor-
ing disease mechanisms in LN.

DDGs for LN in tissue and blood samples
To determine a set of genes specific to LN, the top net-
works of the up-regulated and down-regulated DEGs 
were identified using the MCODE algorithm. A total of 
38 up-regulated and seven down-regulated genes were 
identified, which together were termed the DDGs for LN 
(Fig. 3A–B). The five algorithms in CytoHubba were used 
for DDGs to select the top 10 regulatory genes. We found 
that STAT1, RSAD2, MX1, and IRF7 were selected most 
of the time (n = 4) in the up-regulated gene set, whereas 
NR4A1, FOSB, EGR1, and DUSP1 were selected by all 
five algorithms in the down-regulated gene set (Fig. 3C). 

Fig. 2  Characterization of transcriptomic profiles in LN. A PCA of genes between LN samples and healthy controls in GSE32591 and GSE112943. 
GSE32591 is divided according to tissue origins to evaluate the expression patterns in two tissue compartments. Aquamarine: LN samples. Red: 
healthy controls. B MA plots visualize the DEGs between LN and control samples. The data are transformed into M (logFC) and A (mean expression). 
Red dots indicate DEGs with |logFC ≥ 1|. Aquamarine dots indicate DEGs with |logFC < 1|. C Heatmaps of up- and down-regulated genes in LN. 
Clusters of genes are stratified using hierarchical clustering. Expression levels are z-transformed. Color bar indicates the transformed expression 
value. D Scatter plot of correlation between logFC of common DEGs in glomerular and tubulointerstitial compartments. Significance of correlation 
is performed by Spearman’s test. E Venn diagram of DEGs among two tissue compartments in GSE32591 and renal tissue in GSE112943. F Violin 
plots reveal differences in IFI44L expression between LN samples and controls in GSE32591 (left panel) and GSE112943 (right panel). Wilcoxon’s rank 
sum test P value is shown. G Dot plot reveals clustered enrichment ontology categories from ORA. –Log10-transformed multiple testing-adjusted 
P value is shown for each enriched term. H Dot plot reveals the significance of association with diseases via DisGeNET. Log10-transformed multiple 
testing-adjusted P value is shown for each enriched phenotype
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Next, blood samples were collected, and the expres-
sion levels of DDGs were compared between LN and 
healthy controls. In addition to some missing genes in 
GSE99967, the up-regulated DDGs in the tissue samples 
showed similar differential patterns in the blood samples 
(Fig.  3D). However, the expression levels of EGR1 and 
GADD45B were not down-regulated in LN. GSE99967 
was removed from subsequent analyses because it con-
tained six missing genes.

DDGs can discriminate LN from other chronic kidney 
diseases
The ssGSEA score of the DDGs was calculated to rep-
resent the regulation-level activity of LN in each sam-
ple. We found striking differences in ssGSEA scores 
between LN and controls in both tissue and blood sam-
ples, with significantly higher ssGSEA scores in LN (all 
P < 0.001, Fig.  4A). We then performed a permutation 
test to evaluate whether these differences were specific 

to DDGs. After repeated selection of random gene sets 
1000 times, we found that the difference in the mean val-
ues of ssGSEA scores was not statistically significant for 
a large number of randomly chosen gene sets across the 
four datasets (Additional file  2: Figure S2). This result 
indicated that the DDGs could distinguish between the 
LN and control groups. Next, we found that the ssGSEA 
scores of the DDGs could also discriminate LN from 
other chronic kidney diseases, such as diabetic nephrop-
athy, focal segmental glomerulonephritis, membranous 
glomerulonephritis, and vasculitis, with significantly 
higher ssGSEA scores in LN. Therefore, this set of DDGs 
is considered specific for LN.

Eight DDCs were identified in the immunology gene panel
K-means clustering was performed, and optimal clusters 
were determined based on the elbow plot. To minimize 
the total within the sum of squares (WSS), the second 
elbow was chosen as the optimal cut-off. Eight DDCs 
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were used in our study, and the total WSS was < 100 
(Additional file  2: Figure S3 and Additional file  1: 
Table  S2). A hierarchical heatmap partitioned by the 
eight DDCs is shown in Fig. 4C. Except for DDC-1 and 
-7, the other DDCs showed various correlation patterns 
with the ssGSEA of DDGs. Additionally, in tissue sam-
ples, most of the immunology panel genes showed mod-
erate to high correlations, suggesting that the expression 
of these genes might be affected to some degree by the 
regulation-level activity of the DDGs derived from 

tissues. GO and KEGG pathway analyses revealed similar 
top-enriched terms (Fig. 4D). Most of them are related to 
the immune system process, cytokine receptor binding, 
and cytokine-cytokine receptor interaction. Of note, the 
top enriched pathways related to possible pathogenesis 
in LN were the TNF signaling pathway and Th1 and Th2 
differentiation for DDC-2 and -6, respectively [33, 34]. 
DEGs for treatment response were identified from biop-
sies obtained at RF and after treatment. We found that 
approximately 40% of DEGs with |logFC|≥ 1 belonged 

G
lo
m
er
ul
us

Tu
b
ul
oi
nt
er
st
itu

m

G
S
E
11

29
43

G
S
E
81

62
2

G
S
E
72

32
6

-1
-0.5
0
0.5
1

Spearman’s rho

Blood

TissueA

DDC-1

DDC-2

DDC-3

DDC-4

DDC-5

DDC-6

DDC-7

DDC-8

CB

0.00

0.25

0.50

0.75

1.00

Control LN

0.00

0.25

0.50

0.75

1.00

Control LN

0.00

0.25

0.50

0.75

1.00

Control LN

0.00

0.25

0.50

0.75

1.00

Control LN

Group

Control

LN

0.00

0.25

0.50

0.75

1.00

Control LN

ss
G

S
E

A
ss

G
S

E
A

GSE32591
Glomerulus

GSE32591
Tubulointerstitum

GSE112943

GSE81622 GSE72326

P < 0.001 P < 0.001 P < 0.001

P < 0.001 P < 0.001

Tissue

Blood

0

1
5

Cluster

C1

C2

C3

C4

C5

C6

C7

C8

First renal flare After treatment

40.9% 42.3%

88.9% up-regulated in 
non-responders

100% up-regulated in 
non-responders

Immunology gene panel

D

0.00

0.25

0.50

0.75

1.00

y A D s

0.00

0.25

0.50

0.75

1.00

D

GSE60861

GSE69438
Control LN Control LN Control LN

Control LN Control LN

ss
G
S
E
A

ss
G
S
E
A

D
M

FS
G
N

H
TN Ig
A

LN

M
C

D

M
N V
L

C
K

D

FS
G

N LN

M
G

N

All comparisons with LN P < 0.001

C8

C7

C6

C5

C4

C3

C2

C1

0 30 60 90

C8

C7

C6

C5

C4

C3

C2

C1

0 10 20 30 40 50

C8

C7

C6

C5

C4

C3

C2

C1

0 20 40 60

E
Defense response

Immune system process

Immune system process

Immune response

Immune system process

Immune system process

Immune system process

Immune system process

Cytokine receptor binding

Signaling receptor binding

Cytokine receptor binding

Cytokine receptor binding

Signaling receptor binding

Protein binding

Signaling receptor binding

Immune receptor activity

Influenza A

TNF signaling pathway

Cytokine-cytokine receptor interaction

Cytokine-cytokine receptor interaction

Cytokine-cytokine receptor interaction

Th1 and Th2 cell di�erentiation

Human cytomegalovirus infection

Epstein-Barr virus infection

-Log10P -Log10P -Log10P

Biological process Molecular function KEGG pathway

D
D

C
s

All comparisons with LN P < 0.05

Fig. 4  Regulatory-level activity specific for LN. A Box plots show differences in ssGSEA scores between LN samples and controls in tissues 
(GSE32591 and GSE112943) and peripheral blood (GSE81622 and GSE72326). Wilcoxon’s rank sum test P values are shown. B Box plots show 
differences in ssGSEA scores between LN and other chronic renal diseases in GSE60861 (upper panel) and GSE69438 (lower panel). Wilcoxon’s 
rank sum test P values are shown between LN and other renal diseases. DM: diabetes mellitus. FSGN: focal segmental glomerulonephritis. HTN: 
hypertension. MCD: minimal change disease. MN: membranous nephropathy. VL: vasculitis. CKD: chronic kidney disease. MGN: membranous 
glomerulonephritis. C Heatmap of correlation coefficients calculated between the ssGSEA scores of hub genes and immunology panel genes 
in tissue (GSE32591 and GSE112943) and blood samples (GSE81622 and GSE72326). GSE32591 is divided according to tissue origins to evaluate 
the expression patterns in two tissue compartments. Hierarchical clustering based on the K-means method is performed. Color bar indicates 
Spearman’s correlation coefficient. Cluster numbers are shown on the right. DDC: disease-defining cluster. D Dot plots show enriched GO terms 
(biological process and molecular function) and KEGG pathways for each eight cluster. –Log10-transformed multiple testing-adjusted P value 
is shown for each enriched term. E Pie plots reveal distribution of DEGs between responders and non-responders in GSE200306 according to 
the DDCs in renal biopsies obtained at first RF (left panel) and after treatment (right panel). DDC with the largest percentage is annotated. The 
percentages of genes up-regulated in non-responders are shown in this DDC



Page 9 of 15Lee et al. Journal of Translational Medicine           (2023) 21:76 	

to DDC-6 (40.9% at RF, 42.3% after treatment, Fig.  4E). 
Furthermore, 88.9% of DEGs in DDC-6 were up-regu-
lated in non-responders, which increased to 100% after 
treatment. These findings suggest that subsets of genes 
in DDC-6 might be potential candidates for predicting 
treatment response in LN after RF.

LCK was the top regulatory gene for treatment response 
in LN after the first RF
We then used LASSO to select genes in DDC-6 with pre-
dictive value. The parameters were tuned, and genes with 
non-zero coefficients were identified (Fig. 5A). A total of 
33 genes out of 63 DDC-6 genes were selected (Fig. 5B). 
Among the selected genes, FYN, RAF1, BCL10, LCK, 
CCL19, CD3D, CCL15, CXCL12, C7, NT5E, GZMK, and 
CLU were DEGs associated with treatment response in 
GSE200306. We then applied the five CytoHubba meth-
ods to examine the top 10 regulatory nodes in each 
biological subnetwork. CCR7 was selected by all algo-
rithms and ranked highly, except for the DMNC method 
(Fig.  5C). IL7R was selected by four algorithms and 
ranked top in each of them. However, neither gene was 
differentially expressed between the responders and non-
responders. In the next level of searching, LCK was found 
to be one of the DEGs and had higher ranks in MNC, 

MCC, EPC, and degree. Therefore, in our study, it was 
considered a key gene in regulating treatment response.

Estimation of immune cell infiltration according 
to the expression of LCK reveals distinct clustering results
ssGSEA scores of gene signatures specific for immune 
cell infiltration were calculated and correlated with the 
expression level of LCK in both tissue and blood samples 
with LN. We found moderate to strong positive correla-
tions with most types of T cells, and they were clustered 
together in hierarchical clustering (Fig. 6). However, LCK 
expression was negatively correlated with Tregs in two of 
the three studies. Based on the data derived from patients 
with LN, these findings suggest that LCK might modulate 
immune cell infiltration, especially T cells, in LN.

LASSO model based on the DDC 6 had the best predictive 
performance
Feature selection was performed via LASSO in the eight 
DDCs to identify predictive genes in each cluster, fol-
lowed by model training. We found that model perfor-
mance was the best for DDC-6 (LASSO-DDC-6), with an 
AUC of 1 (95% CI 1–1), 0.75 (95% CI 0.44–1), and 0.949 
(95% CI 0.8836–1) for the training, testing, and entire 
sets, respectively (Fig.  7A, Additional file  1: Table  S3). 
GSE113342 was used for further validation, and the 
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LASSO-DDC-6 model still outperformed the others, 
with an accuracy of 0.86 and generally high values of pre-
cision (0.83), recall (0.71), and F1 score (0.77) (Fig. 7B–C, 
Additional file  1: Table  S4). These findings indicate that 
incorporating knowledge specific to a disease into the 
prediction model is feasible.

Discussion
We designed a pilot study to evaluate the feasibility of 
using subsets of nCounter immunology genes to predict 
treatment response in LN after the first RF. The subsets 
were defined according to the clustering results, linking 
the regulatory activity of the hub genes to the immunol-
ogy gene panel. Overall, through extensive bioinformat-
ics analyses, we identified 45 hub genes that potentially 

discriminated LN samples from healthy controls and 
other chronic renal diseases. After considering the sys-
temic nature of SLE, the ssGSEA scores of DDGs cal-
culated in both tissue and blood samples divided the 
immunology gene panel into eight clusters. With this 
biologically pre-processed information, a subset of 
immunology genes was found to be of higher predictive 
importance and was incorporated into model training. 
The model performance was high and was validated in 
an independent dataset. This study demonstrated that 
our machine learning (ML) model was interpretable and 
could potentially be used in the clinical setting if more 
validation data were used.

The initial analysis involved two tissue compartments 
(glomerulus and tubulointerstitium) in GSE32591. 
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Although they had different DEGs profiles, the two 
compartments shared a large number of genes involved 
in interferon signaling. The interferon signaling, espe-
cially the type 1 interferon pathway, was well established 
in the pathogenesis of SLE and LN [35, 36]. This shared 
pathogenesis was confirmed by Parikh et  al., who iden-
tified this common dysregulation between the two com-
partments using renal biopsy from patients with LN [12]. 
The top hub genes selected via the five Cytohubba algo-
rithms were also supported by current evidence for LN. 
For example, STAT1 is involved in the JAK/STAT signal-
ing pathway in response to interferons [37]. Its activation 
up-regulates IFI16, triggering a positive feedback loop 
that promotes APOL1’s expression [38]. APOL1 over-
expression is toxic to podocytes and increases the risk 
of ESKD in LN. In addition, it has been shown that the 
protein levels of another interferon-inducible gene, MX1, 

are significantly higher in both the peripheral blood and 
renal tissues of patients with LN before immunosup-
pressive treatment, confirming our findings [39]. Down-
regulated genes, including EGR1 and DUSP1, were also 
supported by independent human renal biopsies in LN 
[20]. Additionally, a permutation test for the ssGSEA 
scores of the DDGs demonstrated their significance com-
pared with randomly chosen gene sets. Taken together, 
the DDGs identified in this study represent a valid gene 
signature.

Based on the 527 immunology genes, evaluation of 
enriched biological and molecular functions could be 
redundant, as this panel covers specific genes to address 
general immune-related gene families, such as the major 
cytokines, chemokines, and their receptors. Moreover, it 
does not include all the possible genes for a phenotype to 
be characterized. For example, infiltration of exhausted 
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CD8 T cells, which is related to prolonged remission in 
SLE after treatment, was defined by the expression of 
LAG3, CD244, and EOMES [40, 41]. However, this panel 
includes only EOMES, making it difficult to define the 
presence of this T cell subgroup. Using our approach, 
however, several enriched top pathways were identified; 
and according to literature, the enriched pathways for 
DDC-2 and DDC-6, TNF signaling pathway, and Th1 
and Th2 cell differentiation were most relevant to LN 
[33, 34]. The benefit of biological knowledge was success-
fully translated into model performance using LASSO-
DDC-6. This indicates that important features (i.e., 
genes) for determining responders were captured.

ML algorithms are excellent for making successful 
predictions based on learning the input/output data. In 
many cases, predictions are accurate even though there 
is no prior knowledge that directly reflects the underlying 
physical interactions [42]. However, the interpretation of 
the models is trivial if the model becomes complex. This 
is especially true for models such as neural networks, in 
which interpreting the hidden nodes is challenging, and 
each node corresponds to a complex nonlinear func-
tion of the input data [43]. Furthermore, it is difficult to 
select the optimal gene sets responsible for classification 
purposes for bioinformatics analyses that often include 
DNA microarray datasets. This is due to the small sample 
size compared to a large number of genes. By account-
ing for irrelevant and noisy genes, the risk of overfitting 
increases, which may reduce the generalization of the 
prediction model [44, 45]. To avoid overfitting, Xiong 
et  al. used several microarray datasets and divided the 
initial gene pool into clusters based on their structure, 
followed by LASSO and binary particle swarm optimiza-
tion [46]. Using this double-filter approach, they could 
select optimal gene subsets with higher interpretabil-
ity. For multi-omics data, Xu et  al. found LASSO out-
performed support vector machine and random forest 
algorithms [47]. To provide a cost-effective approach for 
breast cancer detection and patient stratification, they 
modified the ‘dfmax’ parameter of the glmnet function, 
limiting the maximum number of features in the LASSO 
model. Instead of incorporating DNA methylation profile 
and copy number data, they also found using transcrip-
tomic data alone leads to sparse and accurate signatures. 
In our study, as there were only approximately 500 genes 
in the immunology panel to determine the responders, 
we adopted a different approach by projecting the clus-
tering results within the microarray discovery datasets 
onto the immunology gene panel. The extent of co-reg-
ulation of a gene set was quantified by calculating the 
ssGSEA score. We then linked the LN-specific regula-
tory activity with the immunology gene expression in 
the same individual by Spearman’s correlation analysis to 

estimate the connection their connection. This estima-
tion was indirect, as we used information from micro-
array data on the nCounter platform. This inherent 
limitation might be resolved when more features or com-
plete transcriptomic profiles are available. In this way, 
we could apply novel mix-LASSO model to predict drug 
response by identifying a smaller number of tissue-spe-
cific features, while maintaining the model interpretabil-
ity and stability for various purposes [48]. Nevertheless, 
our study suggests that the approach of incorporating 
knowledge from one platform into another is feasible. 
However, we have to ensure that platforms being evalu-
ated are sufficiently comparable. Despite the poor cor-
relation between lowly and highly expressed genes in 
microarray and control-gene-normalized nCounter 
measurements, the relative expression levels were pre-
served for most genes [49]. Therefore, we believe that the 
cross-platform estimation is feasible. Moreover, cluster-
ing with the K-means method was applied to the optimal 
group immunology genes, generating separate gene sets 
that could be further filtered, reducing the final dimen-
sionality for model construction. In this study, each DDC 
comprised a maximum of 98 genes (DDC-4) and a mini-
mum of 19 genes (DDC-1), improving the original var-
iable-to-sample ratio. This approach could also be used 
in samples with complete transcriptomic information to 
derive interpretable gene sets. Feature scores can then be 
obtained from gene sets by building simple linear models 
or feeding them into neural networks. This model trans-
parency could help explain the link between genotypes 
and phenotypes or assist in discovering novel biomark-
ers [50, 51]. In the present study, the gene set selected in 
DDC-6 by LASSO could be a potential gene signature 
and predictive biomarker.

We also identified that LCK was differentially 
expressed and able to regulate other top-ranked genes 
in the sub-networks. LCK is an Src kinase lymphocyte-
specific protein tyrosine kinase that phosphorylates 
the immunoreceptor tyrosine-based activation motif 
of CD3ζ after T-cell receptor, which in turn recruits 
ZAP-70 and causes calcium influx in T cells [52]. In 
addition to its vital roles in the development, func-
tion, and differentiation of T cells, LCK is involved in 
many cellular diseases, such as cell cycle control, pro-
liferation, and differentiation [53]. The activation of T 
cells, including CD8 T cells, CD4 T follicular helper 
cells, and subsets of Th17 cells, has been recognized 
as a key contributor to the pathogenesis of SLE and 
LN [54]. Ko et  al. examined kidney tissues in LN and 
found increased immunohistochemical staining for 
CD4 + , CD8 + , and CD68 + in the renal  periglomer-
ular area [21]. In our study, LCK was up-regulated in 
non-responders and indirectly correlated with the 
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infiltration of various T cell subtypes. Based on its 
therapeutic significance in various inflammatory dis-
eases, we hypothesized that LCK could be a therapeu-
tic target for LN at RF.

Our study had several limitations. First, the estima-
tion of DDCs was based on different platforms, which 
could reduce the generalizability of the clustering 
results, as some genes might not have the same expres-
sion pattern or regulatory structure detected by differ-
ent techniques, which should be carefully addressed 
by comparing the DDG profiles on the microarray 
and nCounter platforms. Second, K-means clustering 
is sensitive to initial conditions. Even though we have 
evaluated the clustering results for many times to iden-
tify the optimal clustering results, there was still slight 
difference for each random start. However, one of the 
advantages of K-means clustering is its efficiency and 
the ability of handling larger datasets. In the future 
work, bootstrap sampling may be helpful to improve 
its problem. Third, only one ML algorithm was used 
in this pilot study. Other models suitable for trans-
parency and interpretability will be of interest in the 
future. Nevertheless, the performance of our model 
was comparable to that of a recent ML-based predic-
tion model [15]. In their study, they trained a variety 
of ML algorithms with 246 subjects to develop pre-
diction models for 1-year proteinuria and estimated 
glomerular filtration rate (eGFR) in LN. They found 
the combined model with traditional clinical data and 
novel urine biomarkers for eGFR had the best perfor-
mance in training and validation datasets and the AUC 
was near 0.7, which was slightly lower than our model. 
Fourth, the validation cohort had a small sample size, 
and replicates of patients were present due to inclu-
sion of different tissue compartments. Finally, we did 
not investigate the gene expression for cell junctions 
as they are important factors related to proteinuria, 
which is a clinical determination of RF [55]. Further 
experiment and the inclusion of larger validation sam-
ples are required.

Treatment of LN has been faced with many chal-
lenges. One of the challenges is the poor target tissue 
distribution for immunosuppressive drugs [56]. How-
ever, with the emergence of nanotechnology, potential 
nanomaterials with special physiochemical proper-
ties are being developed and applied for treating vari-
ous diseases including glomerulonephritis [57]. With 
better penetration of loaded drugs, clinical outcomes 
could be more likely associated with their therapeu-
tic effects in the absence of tissue barrier, which may 
lead to better prediction model performance due to 
stronger connection between drugs and outcomes.

Conclusion
In conclusion, we applied integrated bioinformatics 
analyses and incorporated knowledge of LN-specific 
regulatory activity into the training of ML models. The 
model performance was acceptable, and interpretability 
increased. In addition, we identified LCK to be of vital 
importance in determining LN responders after RF. 
This therapeutic target needs to be experimentally veri-
fied in future studies.
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