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Abstract 

Background  Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications of diabetes and 
a leading cause of death in diabetic patients. Mitochondrial metabolism and immune-inflammation are key for DCM 
pathogenesis, but their crosstalk in DCM remains an open issue. This study explored the separate roles of mitochon-
drial metabolism and immune microenvironment and their crosstalk in DCM with bioinformatics.

Methods  DCM chip data (GSE4745, GSE5606, and GSE6880) were obtained from NCBI GEO, while mitochondrial 
gene data were downloaded from MitoCarta3.0 database. Differentially expressed genes (DEGs) were screened 
by GEO2R and processed for GSEA, GO and KEGG pathway analyses. Mitochondria-related DEGs (MitoDEGs) were 
obtained. A PPI network was constructed, and the hub MitoDEGs closely linked to DCM or heart failure were identi-
fied with CytoHubba, MCODE and CTD scores. Transcription factors and target miRNAs of the hub MitoDEGs were pre-
dicted with Cytoscape and miRWalk database, respectively, and a regulatory network was established. The immune 
infiltration pattern in DCM was analyzed with ImmuCellAI, while the relationship between MitoDEGs and immune 
infiltration abundance was investigated using Spearman method. A rat model of DCM was established to validate the 
expression of hub MitoDEGs and their relationship with cardiac function.

Results  MitoDEGs in DCM were significantly enriched in pathways involved in mitochondrial metabolism, immu-
noregulation, and collagen synthesis. Nine hub MitoDEGs closely linked to DCM or heart failure were obtained. 
Immune analysis revealed significantly increased infiltration of B cells while decreased infiltration of DCs in immune 
microenvironment of DCM. Spearman analysis demonstrated that the hub MitoDEGs were positively associated with 
the infiltration of pro-inflammatory immune cells, but negatively associated with the infiltration of anti-inflammatory 
or regulatory immune cells. In the animal experiment, 4 hub MitoDEGs (Pdk4, Hmgcs2, Decr1, and Ivd) showed an 
expression trend consistent with bioinformatics analysis result. Additionally, the up-regulation of Pdk4, Hmgcs2, Decr1 
and the down-regulation of Ivd were distinctly linked to reduced cardiac function.
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Conclusions  This study unraveled the interaction between mitochondrial metabolism and immune microenviron-
ment in DCM, providing new insights into the research on potential pathogenesis of DCM and the exploration of 
novel targets for medical interventions.

Keywords  Diabetic cardiomyopathy, Mitochondria, Metabolism, Immune infiltration, Immunometabolism, 
Bioinformatics analysis

Background
With the changing lifestyles, the incidence of diabe-
tes mellitus (DM) shows a rapidly increasing trend. As 
estimated by the International Diabetes Federation, the 
number of DM patients will be increased to 0.5784 bil-
lion by 2030, resulting in a morbidity of up to 10.2% 
[1]. DM increases the risk of developing heart failure 
(HF) by 2–4 times, as compared to healthy people [2], 
and thus it tends to cause a highly poor prognosis. Dia-
betic cardiomyopathy (DCM) is one of the severe car-
diovascular complications [3] of DM first reported by S 
Rubler in 1972 [4]. It is multi-factorial in pathophysiol-
ogy and has not yet been fully explored.

Increasing studies have noted that mitochondrial 
events that lead to damage and dysfunction, includ-
ing abnormal dynamics [5], mitophagy [6–8], cal-
cium homeostasis imbalance [9–11], disturbed energy 
metabolism and oxidative stress [12, 13], play an essen-
tial role in DCM. In addition, excessive accumula-
tion of lipid intermediary metabolites is considered as 
directly linked to the toxic injury and dysfunction of 
diabetic myocardium [14]. It has been established that 
the immune infiltration and activation of inflammatory 
processes in myocardial tissues are also critical patho-
geneses of DCM. For example, both type 1 and 2 DM 
models had increased myocardial infiltration of mono-
cytes and macrophages [15, 16]; chronic hyperglycemia 
induced elevation of Th1, Th2, and Th17 cytokines by 
activating T cells via the RAGE-dependent pathway 
[17]; additionally, a high-glucose environment could 
also activate mast cells and induce the release of pro-
inflammatory mediators, resulting in exacerbation of 
the pathological remodeling in DCM [18].

Interestingly, accumulating evidence has revealed 
that there is a potential link between immunity and 
mitochondrial metabolism, and the metabolic state can 
affect the development of inflammation through chang-
ing the immune microenvironment [19]. Typical T cell 
activation is accompanied by the up-regulation of insu-
lin receptors and glycolytic enzymes [20].High levels 
of insulin can impair the function of regulatory T cells 
(Tregs) and inhibit their suppressive function towards 
inflammatory response via regulating the AKT/mTOR 
signaling pathway [21]. Both mitochondrial metabo-
lism and immune-inflammation are key pathogeneses 

of DCM, but their crosstalk in DCM have not yet been 
reported and require further exploration.

Bioinformatics allows for screening of molecules which 
show a difference between patients and healthy individu-
als from microarray data that vary at multiple levels. It is 
appreciated as an effective research method for explor-
ing the potential molecular mechanism of disease. With 
this method, the current study analyzed how mitochon-
dria-related genes promote the development of DCM 
and correlate to the immune infiltration based on asso-
ciated microarray data from GEO database (GSE4745, 
GSE5606, and GSE6880). Additionally, the relationship 
between hub mitochondria-related genes and immune 
infiltrates in DCM was investigated to help better under-
stand the underlying immunometabolism during disease 
development.

Methods
Microarray data retrieval
DCM datasets were obtained from the public reposi-
tory NCBI GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo) [22] 
using "diabetic cardiomyopathy" and "diabetic heart" as 
the search queries. We screened them further based on 
information such as sequencing type (transcriptology), 
animal species (Rattus norvegicus), sample source (ven-
tricle), and modeling time. Finally, GSE4745, GSE5606 
and GSE6880 were obtained. The GSE4745 ([RG_U34A] 
Affymetrix Rat Genome U34 Array) is generated by the 
GPL85 platform that contains 24 left ventricular (LV) 
samples from rattus norvegicus. To better analyze the dif-
ferential genes between DCM group and control (CON) 
group, 8 samples collected on day 42, including 4 DCM 
samples and 4 CON samples, were selected for analysis 
[23]. The GSE5606 ([Rat230_2] Affymetrix Rat Genome 
230 2.0 Array) is generated by the GPL1355 platform and 
composed of 14 LV samples from DCM rats (n = 7) and 
CON rats (n = 7) [24]. The GSE6880 ([RAE230A] Affy-
metrix Rat Expression 230A Array) is generated by the 
GPL341 platform comprising 6 LV samples from DCM 
rats (n = 3) and CON rats (n = 3) [25].

Acquisition of microarray data and identification 
of differentially expressed genes (DEGs)
Data of each microarray were accessed from GEO using 
R package "GEO query". DEGs from each microarray 

http://www.ncbi.nlm.nih.gov/geo
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were obtained with R package "limma" as implemented 
by GEO2R online tool (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​geo2r/) [26], and all identified DEGs met p < 0.05 and 
|log2 (Fold-change)|≥ 1. Resulting DEGs were visualized 
by Volcano Plot using R package "ggplot2" [27] and Heat-
map using R package "ComplexHeatmap" [28].

Functional enrichment analysis
Gene Set Enrichment Analysis (GSEA) [29] was applied 
using R package "clusterProfiler" [30], with the "c2.
cp.v7.2.symbols.gmt" (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/​index.​jsp) as the reference gene set, the 
number of permutations as 10,000, and the threshold 
of significance as 10. The results were visualized with R 
package "ggplot2" [27].

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses 
were accomplished in DEGs with R package "cluster-
Profiler" [30], and the items with P < 0.05 in Benjamini–
Hochberg test were regarded has having statistical 
significance. The results were visualized by Chordal and 
Circle graphs using R packages "ggplot2" [27] and "GOp-
lot" [31].

Identification of mitochondria‑related DEGs (MitoDEGs)
The mitochondrial protein database, MitoCarta3.0 
(http://​www.​broad​insti​tute.​org/​mitoc​arta) [32], was vis-
ited to obtain 1,140 mitochondria-localized genes. Mito-
DEGs were obtained via intersecting the DEGs from each 
microarray and the 1,140 mitochondria-localized genes 
using a Venn Diagram, and they were visualized as a 
Heatmap with R package "ggplot2" [27]. The overlapped 
MitoDEGs among the three microarrays were eventually 
obtained.

Analysis of protein–protein interactions (PPI) 
and identification of Hub genes
The overlapped MitoDEGs were processed for PPI analy-
sis with STRING database (https://​string-​db.​org/) [33], 
and the resulting interactions were visualized as a net-
work using Cytoscape 3.8.2 [34]. Hub MitoDEGs were 
screened out using the plug-ins CytoHubba and MCODE 
as implemented by the Cytoscape 3.8.2.

Acquisition of genes potentially key to DCM and HF
The CTD database (http://​ctdba​se.​org/) [35] assembles 
interaction data between chemicals, gene products, func-
tional phenotypes, and diseases, affording great conveni-
ence to research into disease-associated environmental 
exposures and potential mechanisms of action of drugs. 
With the CTD data, the link between hub MitoDEGs and 
the risk of developing DCM or HF was analyzed.

Prediction of a hub MitoDEGs‑Transcription factors (TF) 
‑miRNAs network
To explore the upstream regulators of hub MitoDEGs, 
TFs of hub MitoDEGs were predicted with the plug-in 
iRegulon of the Cytoscape 3.8.2 [36], and miRNAs of hub 
MitoDEGs were predicted using the miRWalk database 
(http://​mirwa​lk.​umm.​uni-​heide​lberg.​de) [37]. The hub 
MitoDEGs, resulting TFs and miRNAs were visualized as 
a network by the Cytoscape 3.8.2.

Immune infiltration analysis
The gene matrices of GSE5606 and GSE6880 original 
datasets were combined using the Perl script and nor-
malized after elimination of the batch effect and the het-
erogeneity induced by different platforms with R package 
"sva" [38]. The normalized gene expression matrix 
was used for further immune infiltration analysis. The 
GSE4745 dataset was excluded from the analysis, as the 
number of genes in GSE4745 was significantly less than 
that in the other two datasets, which might result in bias 
results.

The ImmuCellAI (http://​bioin​fo.​life.​hust.​edu.​cn/​web/​
ImmuC​ellAI) estimates the infiltration abundance of 
36 immune cell types based on RNA-Seq data or gene-
expression profiles from microarray data [39].The nor-
malized gene expression matrix was uploaded to the 
ImmuCellAI for analysis of immune infiltration, with 
Wilcoxon rank sum test used for between-group com-
parisons. Spearman correlation analysis was applied to 
explore the link between MitoDEGs/hub MitoDEGs and 
the immune cells.

Construction of animal models with DCM
The animal procedure was performed in strict accord-
ance with The Guide for Care and Use of Laboratory 
Animals [40] and with the approval from the Laboratory 
Animal Ethics Committee. Ten Sprague–Dawley male 
rats, weighing 200 ± 20  g, were housed in the labora-
tory animal center of our hospital. The Sprague–Dawley 
rat model of type 2 DM was generated using a high-fat 
diet combined with a low-dose STZ injection [41–43]. 
The rats were allowed to acclimate for 1 week with free 
access to diet and water ad  libitum in an environment 
that provided a relative temperature of 24 ℃, a relative 
humidity of 50–60%, and a 12  h/12  h light/dark cycle. 
Following that, the rats were divided into the CON and 
DCM groups by random assignment. The total mod-
eling time was 16  weeks. Rats in the CON group were 
fed normal diet, while rats in the DCM group were fed 
high-fat diet containing 60  kcal% fat, 20  kcal% protein, 
and 20  kcal% carbohydrate. After 4  weeks, streptozo-
tocin (STZ) (40  mg/kg, Solarbio) was intraperitoneally 
injected in rats of the DCM group to induce T2DM, and 
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citric acid buffer at the same dose was administrated in 
rats of the CON group. One week after injection, blood 
glucose was measured from the tail vein, and a random 
glucose level > 16.7  mmol/L was indicative of successful 
modeling. Tissue samples were obtained after another 
12  weeks of feeding. Blood glucose and body weight 
were monitored during modeling, and echocardiography 
and measurement of tibia length were performed before 
sampling.

Echocardiography
Rats were anesthesized with intraperitoneal injection 
of 30  mg/kg pentobarbital. Echocardiography was per-
formed with the transducer of a high-resolution imaging 
system. LV parameters, including left ventricular ejec-
tion fraction (LVEF), fraction shortening (FS), left ven-
tricular internal diameters at systole (LVIDs) and diastole 
(LVIDd), were measured from long- /short-axis images of 
the LV. Cardiac function was assessed by analysis of data 
of 3–5 cardiac cycles.

RNA extraction and qRT‑PCR
Total RNA was extracted from cardiac tissue using Tri-
zol and reversely transcribed into cDNA using a reverse 
transcription kit (Roche). qRT-PCR was fulfilled with a 
SYBR Green (Roche). The primers used for amplification 
were shown in Table S1. Target gene expression relative 
to GAPDH gene was shown as 2ΔΔCt.

Western blotting
Myocardial tissue was used to extract the samples, which 
were then boiled in a loading buffer for five minutes. 10% 
SDS-PAGE was used to separate the proteins. Primary 
antibodies were grown on the PVDF membranes over-
night at 4  °C. The primary antibodies used in this study 
were Actin (Dilution 1:1000, M20011, Abmart), Pdk4 
(Dilution 1:1000, YN5701, Immunoway), Hmgcs2 (Dilu-
tion 1:5000, ab137043, abcam), Decr1 (Dilution 1:1000, 
A13014, ABclonal), and Ivd (Dilution 1:2000, 10822-1-
AP, ProteinTech). The membranes were incubated with 
the secondary antibody for 1  h at room temperature. 
Finally, the membranes were detected by the ECL system.

Immunohistochemistry
Dewaxed, rehydrated, and antigen retrieval were per-
formed on paraffin slices. Methanol was used to inacti-
vate endogenous peroxidase for 15 min. The slices were 
then sealed after being treated with 5% BSA for 1 h, fol-
lowed by an overnight incubation with primary anti-
bodies. The primary antibodies used in this study were 
Pdk4 (Dilution 1:50, YN5701, Immunoway), Hmgcs2 
(Dilution 1:200, ab137043, abcam) Decr1 (Dilution 1:50, 
A13014, ABclonal) and Ivd (Dilution 1:500, 10822-1-AP, 

ProteinTech). The paraffin slices were cultured with sec-
ondary antibodies the next day for one hour at 37  °C. 
Finally, the slides were stained with a DAB Detection Kit, 
and the counterstained with haematoxylin.

Correlation between hub MitoDEGs and cardiac function
Correlation between hub MitoDEGs and LV parameters 
(EF%, FS%, and LVIDs) was analyzed using the Pearson 
algorithm, and the results were visualized with R package 
"ggplot2"[27].

Statistical analysis
Data are presented as the mean ± standard deviation (SD) 
of four independent experiments, and were analyzed 
using GraphPad Prism 8.0 (GraphPad Inc, San Diego, 
USA). The Shapiro–Wilk test was used to check data nor-
mality. The student’s t-test was used to evaluate the dif-
ference between the two groups when the data were in 
accordance with the normal distribution. P value < 0.05 
was considered to be statistically significant.

Results
DEGs in DCM and functional enrichment analysis
Flowchart of overall data screening strategy was shown 
in Fig.  1. Three DCM-related GEO datasets, GSE4745, 
GSE5606, and GSE6880, were obtained for analysis. 
Differential analysis demonstrated 293 DEGs in the 
GSE4745 dataset, including 149 genes up-regulated and 
144 genes down-regulated in DCM samples in compari-
son to normal samples; 544 DEGs in the GSE5606 data-
set, including 269 up-regulated and 275 down-regulated 
genes; and 463 DEGs in the GSE6880 dataset, including 
262 up-regulated and 201 down-regulated genes. The 
DEGs were visualized as Volcano Plots and Heatmaps 
(Fig. 2a–f).

GSEA showed that the DEGs from the three datasets 
were mainly involved in pathways related to lipid and 
fatty acid metabolism, and immunity, including Metabo-
lism of lipids, Regulation of lipid metabolism by PPARα, 
Fatty acid metabolism, Biosynthesis of unsaturated Fatty 
acids, Antigen processing and presentation, MHC class II 
antigen presentation, Regulation of TLR by endogenous 
ligand, Complement activation (Fig. 2g–n). In addition, it 
also showed enrichment of pathways involved in collagen 
synthesis, collagen fibril assembly, and oxidative stress.

The DEGs were further processed for functional 
enrichment with GO and KEGG pathway analyses. The 
most enriched GO terms were classified to Biological 
Process (BP), Cellular Component (CC) and Molecular 
Function (MF), majoring including mitochondrial func-
tion and component, energy metabolism, inflammatory 
immunity, hypoxia and redox reaction, collagen syn-
thesis, and insulin sensitivity, etc. (Fig.  3a–f). The most 
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enriched KEGG pathways of the DEGs were dominated 
by pathways involved in mitochondrial metabolism and 
function, hypoxia and redox reaction, substance genera-
tion, and immunity, etc. (Fig. 3g–l).

MitoDEGs in DCM
Mitochondria-related genes were retrieved from the 
MitoCarta3.0 database, and the genes overlapped with 
the DEGs from three datasets were selected as Mito-
DEGs. In total, there were 32 MitoDEGs (15 up-regu-
lated and 17 down-regulated) in the GSE4745 datasets 
(Fig.  4c), 34 MitoDEGs (18 up-regulated and 16 down-
regulated) in the GSE5606 datasets (Fig.  4d), and 25 
MitoDEGs (14 up-regulated and 11 down-regulated) in 
the GSE6880 datasets (Fig.  4e). The MitoDEGs of each 

dataset were combined, resulting in 67 overlapped Mito-
DEGs, including 35 genes up-regulated and 32 genes 
down-regulated in DCM samples in comparison to nor-
mal samples.

PPI network analysis and hub MitoDEGs identification
PPI of the 67 MitoDEGs was analyzed using the 
STRING database and visualized as a network with 
the Cytoscape (Fig.  4f ). Significant modules (gene 
clusters) were identified using the plug-in MCODE 
as implemented by the Cytoscape with the follow-
ing filter criteria: degree cut-off = 2; node score cut-
off = 0.2; k-core = 2; and max depth = 100. A module 
that was composed of 9 nodes and 17 edges was iden-
tified as significant, and the genes involved in the 

Data Souse

GSE4745
GSE5605
GSE6880

Identification of  MitoDEGs  PPI Network Construction&
Identification of  Hub Genes 

CTD Score Hub MitoDEGs-TF -
miRNAs Network

Animal Model 
Construction& Evaluation

qRT-PCR Assessment
of  Hub Genes

Correlation between 
Hub MitoDEGs and 
Cardiac Function

Immune Infiltration 
Analysis

Relationship between Hub 
MitoDEGs & Immune cells

Immunometabolism &
Diabetic Cardiomyopathy

DC

B Cell

Pdk4

Ivd

Hmgcs2 Decr1

Acquisition of DEGs &
Functional Enrichment Analysis

Fig. 1  Flowchart of the multistep screening strategy on bioinformatics data
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module were Acsl6, Acadsb, Decr1, Ivd, Oxct1, Gpam, 
Pdk4, Hmgcs2, and Acot2 (Fig.  4g). With the MCC 
algorithm of plug-in CytoHubba, 10 candidate hub 
genes were identified from the PPI network, includ-
ing Cpt1a, Hsd17b4, Hmgcs2, Acadsb, Decr1, Acot2, 

Gpam, Oxct1, Acsl6, and Ivd (Fig. 4h). Combining the 
results, 11 hub MitoDEGs, including Acadsb, Hmgcs2, 
Hsd17b4, Gpam, Acot2, Ivd, Decr1, Cpt1a, Acsl6, 
Oxct1, and Pdk4, were eventually obtained.

Fig. 2  DEGs in DCM and results of GSEA analysis. a–c Volcano plot of DEGs in GSE4745, GSE5606, GSE6880; d–f Clustered heatmap of DEGs in 
GSE4745, GSE5606, GSE6880; g–i GSEA profiles depicting the 7 significant GSEA sets in lipid metabolism; j 3 significant GSEA sets in oxidative stress; 
k, l 4 significant GSEA sets in immunity; m, n 10 significant GSEA sets in collagen biosynthesis
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Fig. 3  GO and KEGG enrichment analyses of DEGs from GSE4745, GSE5606 and GSE6880. a, b The enriched GO terms of DEGs in GSE4745; c, d 
The enriched GO terms of DEGs in GSE5606; e, f The enriched GO terms of DEGs in GSE6880; g, h KEGG pathway enrichment results in GSE4745; i, j 
KEGG pathway enrichment results in GSE5606; k, l KEGG pathway enrichment results in GSE6880. BP biological process, CC cellular component, MF 
molecular function
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Fig. 4  MitoDEGs in DCM; PPI network analysis and hub MitoDEGs identification. a, b Venn diagrams showed the number of upregulated a and 
downregulated b DEGs that overlap between GSE4745, GSE5606, GSE6880, MitoCarta3.0; c Clustered heatmap of DEGs both in GSE4745 and 
MitoCarta3.0; d Clustered heatmap of DEGs both in GSE5606 and MitoCarta3.0; e Clustered heatmap of DEGs both in GSE6880 and MitoCarta3.0; f 
PPI network of MitoDEGs; g A key cluster with 9 genes was further chosen as hub genes by MCODE; h Top 10 hub genes explored by CytoHubba
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Relationship between hub MitoDEGs and DCM/HF
The CTD database was applied to predict the relation-
ship between hub MitoDEGs and DCM/HF. As analyzed, 
Cpt1a, Gpam, Hmgcs2, and Acadsb had the highest asso-
ciation with DCM (Fig.  5a), while Cpt1a, Pdk4, Gpam, 
and Hmgcs2 showed the highest correlation with HF 
(Fig. 5b).

Hub MitoDEGs‑TFs‑miRNAs regulatory network
The upstream regulation of the hub MitoDEGs was 
explored via predicting related TFs and miRNAs. TFs 
of hub MitoDEGs were predicted with plug-in iRegulon 

of the Cytoscape, and a hub MitoDEGs-TFs regulatory 
network comprising 19 TFs (Rora, Maf, Ing4, Srebf2, 
Mafb, Zfp706, Pole3, Rreb1, Mybl2, Myb, Tcf4, Mafa, 
Cebpa, Thra, Pdcd11, Yy1, Runx2, Cdx1, Ubp1) was 
constructed (Fig. 5c). miRNAs of hub MitoDEGs were 
predicted with the miRWalk 3.0, and a hub MitoDEGs-
miRNAs regulatory network that involved 299 nodes 
and 569 edges was generated (Fig. 5d). There were three 
miRNAs, including miR-298-5p that had interactions 
with Ivd, Acsl6, Acot2, and Hmgcs2; miR-30c-1-3p that 
interacted with Oxct1, Ivd, Cpt1a, and Acsl6; and miR-
344b-5p that interacted with Oxct1, Cpt1a, Acsl6, and 
Hmgcs2. However, further validation is required.
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Fig. 5  Relationship between hub MitoDEGs and DCM/HF; Hub MitoDEGs-TFs-miRNAs regulatory network. a, b Hub MitoDEGs related to DCM 
and HF diseases based on the CTD database; c TF–hub MitoDEGs regulatory network: the red squares represent hub MitoDEGs, and the yellow 
dots represent transcription factors; d miRNA–hub MitoDEGs regulatory network: the red squares represent hub MitoDEGs, and the purple dots 
represent miRNA
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Immune cell infiltration in DCM
Infiltration of 36 immune cell types was analyzed using 
the ImmuCellAI algorithm and compared between the 
DCM and CON groups in the GSE5606 and GSE6880 
datasets. Significant differences were demonstrated 
between the DCM and CON groups in the myocardial 
infiltration of 9 immune cell types (P < 0.05). Specifically, 
B cell, Marginal Zone B and Memory B were much more 
abundant in the DCM group, while Granulocytes, Den-
dritic cells, MoDC, cDC1, pDC, and cDC2 were more 
abundant in the CON group (Fig. 6a–c). Further analysis 
for the infiltrating immune cells in DCM showed multi-
ple correlations between the cells (Fig.  6d). The degree 
of correlation was indicated by scores. The synergistic 
effect was observed as the strongest between CD4 T cell 
and Naive CD4 T (0.99), followed by CD4 T cell and T 
helper cell (0.98), CD8 Tcm and CD8 Tex (0.98), Naive 
CD4 T and T helper cell (0.97). In contrast, the competi-
tive effect was found as the strongest between Naive CD8 
T and B cell (-0.72), followed by pDC and Marginal Zone 
B (-0.69), Naive CD8 T and Memory B (-0.69).

Relationship between MitoDEGs/hub MitoDEGs 
and immune cells
Spearman method was applied to explore the poten-
tial associations between MitoDEGs/hub MitoDEGs 
and immune cells. The positive/negative associations 
between MitoDEGs (35 up-regulated and 32 down-reg-
ulated) and immune cells were demonstrated in Fig. 7a, 
b. Of the 11 hub MitoDEGs, Pdk4 was positively associ-
ated with Marginal Zone B but negatively associated with 
cDC2, MoDC, and pDC; Oxct1 was positively associated 
with pDC and CD8 Tem; Ivd was positively associated 
with CD8 Tem; Hsd17b4 was positively associated with 
Marginal Zone B and M2 macrophage but negatively 
associated with cDC2, MoDC, and pDC; Hmgcs2 was 
positively associated with Marginal Zone B, M2 mac-
rophage but negatively associated with Granulocytes 
and cDC2; Gpam was negatively associated with Den-
dritic cells, Granulocytes, cDC1, and MoDC; Decr1 was 
positively associated with Marginal Zone B and M2 mac-
rophage while negatively associated with Granulocytes, 
cDC2, and pDC; Cpt1a was negatively associated with 
Dendritic cells, cDC1, MoDC, and pDC; Acsl6 was posi-
tively associated with pDC, Eosinophil, and CD8 Tem; 
Acot2 was negatively associated with Dendritic cells and 
cDC1 (Fig. 7c).

General biological and echocardiography features of DCM 
rats
During modeling, the body weight of high-fat diet fed 
rats of the DCM group was significantly higher than 
that of the CON group, and it tended to decrease from 

2  weeks after STZ injection and became remarkably 
lower than that of the CON group before tissue sampling 
(Fig. 8a). After 1 week of STZ induction, the blood glu-
cose of the DCM group began to increase, and the level 
was consistently higher than that of the CON group 
throughout the entire modelling process (Fig. 8b). Echo-
cardiography showed that as compared to the CON 
group, the DCM group witnessed significantly lower 
EF% and FS% (P < 0.05) but remarkably higher LVIDs 
(P < 0.05). Besides, the LVIDd was marginally varied 
between the two groups (Fig.  8c–h). Moreover, notable 
increases in the heart weight normalized to body weight 
(HW/BW) and heart weight normalized to tibia length 
(HW/TL) were found in the DCM group as compared to 
the CON group (P < 0.05, Fig. 8i, j).

Experimental validations of hub MitoDEGs expression 
in DCM rats
Ventricular expression of 9 hub MitoDEGs (Acadsb, 
Acot2, Cpt1a, Decr1, Gpam, Hmgcs2, Hsd17b4, Ivd, and 
Pdk4) was validated in rats with qRT-PCR. As compared 
to the CON group, Pdk4, Hmgcs2 and Decr1 had signifi-
cantly increased expression in the DCM group (P < 0.05), 
while Ivd reversely exhibited remarkably decreased 
expression in the DCM group (P < 0.05) (Fig.  8k). After 
that, we further validated the protein expressions of 
Pdk4, Hmgcs2, Decr1 and Ivd between the DCM and 
CON groups by western blotting and immunohistochem-
istry. The results showed that the protein expression lev-
els of Pdk4, Hmgcs2, Decr1 and Ivd were consistent with 
those of mRNA (P < 0.05) (Fig. 8l–n).

Relationship between hub MitoDEGs and cardiac function
The four hub MitoDEGs (Pdk4, Hmgcs2, Decr1, and Ivd) 
with distinct differential expression between the DCM 
and CON groups were further analyzed for their asso-
ciations with EF%, FS% and LVIDs. The number of PCR 
cycles of Pdk4 had highly significant positive correlations 
with EF% (R = -0.904; P = 0.002) and FS% (R = 0.934; 
P < 0.001), but had a highly significant negative correla-
tion with LVIDs (R = 0.852; P = 0.007); the number of 
PCR cycles of Hmgcs2 exhibited highly significant posi-
tive correlations with EF% (R = 0.782; P = 0.022) and FS% 
(R = 0.812; P = 0.014); the number of PCR cycles of Decr1 
showed highly significant positive correlations with EF% 
(R = 0.829; P = 0.011) and FS% (R = 0.801; P = 0.017); the 
number of PCR cycles of lvd showed highly significant 
negative correlations with EF% (R = -0.978; P < 0.001) and 
FS% (R = -0.943; P < 0.001), but had a highly significant 
positive correlation with LVIDs (R = 0.852; P = 0.007) 
(Fig.  8o). Collectively, the up-regulated expression of 
Pdk4, Hmgcs2, and Decr1 and the down-regulated 
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Fig. 6  Infiltration of immune cell types compared between the DCM and CON. a The violin plot of the immune cell proportions; b Stacked bar 
chart of the immune cell; c Heatmap of the proportions of 36 immune cell types; d The correlation matrix of immune cell proportions
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Fig. 7  Relationship between MitoDEGs/hub MitoDEGs and immune cells. a, b The correlation between upregulated a and downregulated b DEGs 
and immune cells; c The correlation between hub MitoDEGs and immune cells

Fig. 8  Confirmation of hub MitoDEGs expression and association with cardiac function in DCM rats. a–j General biological and echocardiography 
features of DCM rats; k Hub MitoDEGs mRNA expression of CON and DCM rats; l, m Protein levels of Pdk4, Hmgcs2, Decr1 and Ivd by western 
blotting, and quantitative analysis in cardiac tissues; n Immunostaining of Pdk4, Hmgcs2, Decr1 and Ivd protein expression. o Correlations between 
Pdk4, Hmgcs2, Decr1, Ivd mRNA levels and cardiac functional parameters in CON and DCM rats, including: EF%, FS%, LVIDs(mm). Mean ± SD, n = 4 
rats per group. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 vs. control group. ns no significance

(See figure on next page.)
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expression of Ivd in myocardial tissues of DCM were 
highly linked to the reduction in cardiac function.

Discussion
The number of DM patients has grown worldwide at an 
alarming rate. DM commonly occurs with target organ 
damage that leads to a poor prognosis, and it is tightly 
linked to the initiation and development of HF [44]. It 
has been proven that the risk of developing HF in DM 
patients is associated with the presence of DCM [45]. 
However, it remains elusive about the pathogenesis of 
DCM, and there is a paucity of effective therapeutic strat-
egies. In this context, strengthening our understanding 
on DCM pathogenesis and looking for potential thera-
peutic targets are in urgent need. With multiple bioinfor-
matics methods, the present study firstly obtained DEGs 
from the three DCM-related microarray datasets from 
GEO and found that the DEGs were enriched in pathways 
associated with mitochondrial metabolism, immune-
inflammation, and collagen synthesis. Mitochondrial dys-
function and metabolic abnormality have been proven to 
play a role in cardiac hypertrophy and myocardial fibro-
sis [46]. In addition, various activities of immune cells, 
such as transition from macrophages to fibroblast-like 
cells [47], B-cell infiltration [48], and transition between 
T lymphocyte subsets (Th17 to Treg) [49], are also criti-
cal for pathogenesis of myocardial fibrosis. Based on the 
findings, our study aimed at analyzing the regulatory 
roles of mitochondrial metabolism and immune dysregu-
lation in the occurrence and development of DCM and 
exploring related targets. The findings of the study may 
help us better understand the mitochondrial metabolism, 
immunity, and their crosstalk in DCM.

Presently, mitochondria-related genes in DCM have 
not yet been reported by bioinformatics studies. For 
the first time, our study applied the MitoCarta 3.0, an 
authoritative database of mitochondrial proteome, to 
obtain mitochondria-related genes, and then identified 9 
hub MitoDEGs with had a strong correlation with DCM 
or HF. To validate our findings, DCM rats were modeled. 
Expression analysis revealed four genes, including Pdk4, 
Hmgcs2, Decr1, and Ivd, which showed a consistent 
expression trend as that detected by prior bioinformat-
ics analysis. Additionally, we found that the up-regulation 
of Pdk4, Hmgcs2, Decr1 and the down-regulation of Ivd 
were significantly associated with the reduction in car-
diac function.

Mitochondrial metabolic disorder is one of the impor-
tant pathogeneses of DCM [44], while Pdk4, Hmgcs2, 
Decr1, and Ivd are enzymes essential for mitochondrial 
metabolism. In DCM, the most significant metabolic 
disorders in myocardial tissues are decreased glucose 
utilization and increased fatty acid oxidation, which 

can lead to cardiac lipotoxicity, myocardial fibrosis, 
and effects on cardiac function. Pdk4 (Pyruvate dehy-
drogenase kinase 4) is localized to the mitochondrial 
matrix and participates in fatty acid oxidation as a key 
enzyme [50]. Studies found that Pdk4 showed increased 
expression in myocardial tissues of DM mice [51], and 
it could be used as a therapeutic target for DM [52, 53] 
due to its role as a key target genes of the PPARα sign-
aling pathway [54, 55]. In addition, specific expression 
of Pdk4 could induce insulin resistance, reduction in 
myocardial glucose oxidation and increase in fatty acid 
oxidation [56, 57]. To the contrary, suppression of Pdk4 
activity could lead to reduced mitochondria-associated 
ER membranes (MAM) formation and improve insu-
lin signal transduction through preventing the MAM-
induced mitochondrial Ca2 + accumulation [58]. Other 
than the role in mediating metabolic reprogramming, 
Pdk4 also has implications for cell respiration by play-
ing a role in regulation of mitochondrial dynamics [59]. 
Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase 2) 
is also distributed to the mitochondrial matrix and acts 
as a rate-limiting enzyme in ketogenesis [60]. George 
A.Cook et  al. [61] found that Hmgcs2 was increas-
ingly expressed in DCM rats, consistent with the pre-
sent study. Another study noted significantly increased 
expression of Hmgcs2 enzyme in the right ventricle in 
cases of arrhythmogenic cardiomyopathy, suggesting 
enhanced ketoacid metabolism, and it also reported 
concurrent elevation of plasm β-hydroxybutyrate. The 
results indicated that up-regulation of Hmgcs2 enzyme 
was predictive of occurrence of major adverse cardio-
vascular events and disease progression [62]. However, 
there was a study which demonstrated reduced car-
diac content of Hmgcs2 in non-diabetic patients with 
end-stage HF [63]. We speculated that the discrep-
ancy might be due to the difference in cardiac meta-
bolic substrates between diabetic and non-diabetic 
cases [64]. Decr1 (2,4-dienoyl-CoA reductase 1) is 
a mitochondrial enzyme involved in degradation of 
poly-unsaturated fatty acids [65]. Most of the existing 
studies concentrated on its role in lipid metabolism in 
tumor cells [65–67], while only a few was performed in 
non-diabetic HF [68, 69]. Therefore, further research 
is in demand to explore the role of Decr1 in DCM. 
Ivd (Isovaleryl-CoA dehydrogenase) is another mito-
chondrial enzyme with implications for metabolism of 
the branched chain amino acids leucine [70]. Previous 
research revealed that leucine-enriched diet was con-
ducive to improving the cardiac injury and dysfunction 
caused by cancer cachexia [71] and anti-tumor drugs 
[72]. Furthermore, circulating levels of branched chain 
amino acids were proven as independently associated 
with the incidence of HF in diabetic patients [73].
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The metabolic status and immune processes are inter-
connected [74]. Immune dysregulation is common in 
DCM and plays a role in disease progression. In the pre-
sent study, we used the ImmuCellAI algorithm to analyze 
immune cell infiltration and found higher enrichment of 
multiple dendritic cells (Dendritic cells, MoDC, cDC1, 
pDC, and cDC2) in the CON group than the DCM group. 
Dendritic cells are specialized antigen-presenting cells 
that serve as important mediators of immune responses 
[75], and the number was reduced in both type 1 and 2 
DM patients [76, 77]. It was reported that dendritic cells 
were protective immunomodulators playing a role during 
the healing from myocardial infarction. In addition, den-
dritic cells tended to accumulate in infarct border zone 
after myocardial infarction and simultaneously medi-
ated the regulation of homeostasis by monocytes and 
macrophages [78]. In human infarcted myocardial tis-
sues, the reduced number of dendritic cells was reported 
as associated with the recruitment of pro-inflammatory 
monocytes, increase in macrophages, impairment of 
reparative fibrosis, and the cardiac rupture after myo-
cardial infarction [79]. In all, dendritic cells protect the 
heart via regulating the recruitment of various types of 
immune cells. The current study also found that B cell, 
Marginal Zone B, and Memory B were highly abundant 
in the DCM group. B cells maintain the bridge between 
innate and adaptive immunity through their antigen-
specific responses, and they are also conducive to sus-
taining the chronic inflammation in DCM [80]. Animal 
experiments revealed that B cells regulated the compo-
sition of the cardiac leukocyte pool, and B cell-deficient 
mice had a smaller fibrotic area while a higher LVEF [81]. 
Another study found that B cell depletion was accom-
panied by significant reductions in TNF-α, IL-1β, IL-18, 
and apoptosis in myocardial cells, and further introduc-
tion of B cells worsened inflammatory response and car-
diac function [82]. Collectively, B cells are critical for the 
pro-inflammatory environment of the failing heart tis-
sue and myocardial injury. There were also some studies 
showing that increase in neutrophil-to-lymphocyte ratio 
was associated with the incidence of subclinical DCM 
[83]; impaired Th/Treg balance and increased ventricular 
infiltration of T cells exacerbated the cardiac hypertrophy 
and fibrosis in T2DM [84, 85]; M1 macrophages poten-
tiated DCM progression via secreting inflammatory fac-
tors to induce insulin resistance [86].

Mitochondrial metabolism can have a huge impact 
on the fate and function of immune cells. Correlation 
analysis of the study indicated that Pdk4, Hmgcs2, and 
Decr1 were positively associated Marginal Zone B while 
negatively associated with dendritic cells. In addition, 
Ivd was positively associated with CD8 Tem. This is con-
sistent with our findings that dendritic cells had a lower 

enrichment in the DCM group than the CON group and 
had significant enrichment in B cells. The findings of the 
study deepen our understanding about the link between 
mitochondrial metabolism and immune cells in DCM.

In this study, the interaction between mitochondrial 
metabolism and the immune microenvironment was 
found for the first time through bioinformatics analysis 
of DCM. Screening and verification of Pdk4, Hmgcs2, 
Decr1 and Ivd provide potential molecular targets for 
deep exploration of immunometabolism in DCM. There 
are some limitations to our study. Firstly, we have only 
validated the hub genes in the DCM rats and lack the 
support of clinical data. Secondly, although a rigorous 
bioinformatics analysis was conducted in the present 
study, we did not conduct further experiments to verify 
the effects of mitochondrial metabolism genes on the 
immune microenvironment and cardiac function. Hence, 
the specific mechanism of immunometabolism regula-
tion in DCM still needs to be further explored in vivo and 
in vitro. This novel direction will be the focus of our sub-
sequent study.

Conclusions
In summary, we identified the differences of mitochon-
drial related genes and immune cell infiltration between 
DCM and CON by comprehensive bioinformatics analy-
sis. We found crosstalk between mitochondrial metabo-
lism and immune infiltration in DCM for the first time. 
Four hub genes were screened and verified, among which 
Pdk4, Hmgcs2 and Decr1 were highly expressed in DCM, 
while Ivd was low. Most importantly, Pdk4, Hmgcs2 and 
Decr1 were positively correlated with Marginal Zone B 
and negatively correlated with DC cells; Ivd was posi-
tively correlated with CD8 Tem. These findings suggest 
that Pdk4, Hmgcs2, Decr1 and Ivd are co-regulatory mol-
ecules of immunometabolism in DCM. Besides, the infil-
tration differences of Marginal Zone B, Marginal Zone B 
and CD8Tem play an important role in the pathophysiol-
ogy of DCM.
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