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Abstract 

Background  Our previous study showed that fucosyltransferase 2 (Fut2) deficiency is closely related to colitis. Colitis 
increases the risk for the development of colorectal cancer (CRC). This study aimed to investigate the effect and 
underlying mechanism of action of Fut2 in CRC.

Methods  Intestinal epithelium-specific Fut2 knockout (Fut2△IEC) mice were used in this study. CRC was induced 
using azoxymethane (AOM) and dextran sulfate sodium (DSS). Immunofluorescence was used to examine the fuco-
sylation levels. Proteomics and N-glycoproteomics analyses, Ulex Europaeus Agglutinin I (UEA-I) affinity chromatogra-
phy, immunoprecipitation, and rescue assay were used to investigate the mechanism of Fut2 in CRC.

Results  The expression of Fut2 and α-1,2-fucosylation was lower in colorectal tumor tissues than in the adjacent 
normal tissues of AOM/DSS-induced CRC mice. More colorectal tumors were detected in Fut2△IEC mice than in con-
trol mice, and significant downregulation of melanoma cell adhesion molecule (MCAM) fucosylation was detected in 
the colorectal tumor tissues of Fut2△IEC mice. Overexpression of Fut2 inhibited cell proliferation, invasion and tumor 
metastasis in vivo and in vitro in SW480 and HCT116 cells. Moreover, fucosylation of MCAM may be a mediator of 
Fut2 in CRC. Peracetylated 2-F-Fuc, a fucosyltransferase inhibitor, repressed fucosylation modification of MCAM and 
reversed the inhibitory effects of Fut2 overexpression on SW480 cell proliferation, migration, and invasion. Our results 
indicate that Fut2 deficiency in the intestinal epithelium promotes CRC by downregulating the fucosylation of MCAM.

Conclusions  The regulation of fucosylation may be an potential therapy for CRC, especially in patients with Fut2 
gene defects.
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Background
Colorectal cancer (CRC) is the third most commonly 
diagnosed malignancy and the fourth leading cause of 
cancer-related deaths worldwide [1–3]. The global mor-
bidity rate is 10.0%, and the mortality rate is 9.4% [4]. 
CRC includes sporadic, hereditary, and colitis-associated 
CRC [5]. In addition to somatic mutations and epigenetic 
changes, accumulating evidence indicates that chronic 
inflammation is associated with an increased risk of CRC 
development [6, 7]. Additionally, increasing evidence 
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indicates a strong association between inflammatory 
bowel disease and CRC [8, 9].

Fucosyltransferase 2 (Fut2) is one of the enzymes 
responsible for the addition of fucose to proteins or 
lipids by α-1,2-fucosylation in the intestinal mucosa [10, 
11]. Our previous study reported that intestinal epithe-
lium‐specific Fut2 deficiency exacerbates dextran sulfate 
sodium (DSS)‐induced colitis [12]. However, the relation-
ship between Fut2 expression and CRC remains unclear. 
Since chronic inflammation is considered a risk factor for 
CRC development, the role of Fut2 in CRC remains to be 
further explored.

Fut2, as a vital α-1,2-fucosyltransferase, mainly regu-
lates the fucosylation of cells or specific proteins [13]. For 
example, our previous study found that Fut2 mediates 
fucosylation of intestinal epithelial cells to protect intes-
tinal barrier function and relieve intestinal inflamma-
tion [12]. In addition, our previous study concluded that 
FUT2-mediated fucosylation of intestinal epithelial cells 
protects intestinal barrier function and relieves intesti-
nal inflammation [14]. Other studies have also reported 
that Fut2 induces lung epithelial fucosylation, thereby 
exacerbating airway inflammation in asthmatic patients 
[15]. Regarding specific proteins, one study revealed 
that a loss of Fut2-mediated mucin O-glycosylation pat-
tern of Muc5ac worsens the gastric mucosal binding of 
Helicobacter pylori BabA adhesin, which is a recognized 
feature of pathogenicity [16]. In addition, Fut2 can also 
modulate the glycosylation profile of mucus secreted by 
HT-29 cells, thereby regulating the intestinal epithelial 
barrier functions [17]. Thus, our objective was to deter-
mine whether Fut2 is involved in CRC by regulating the 
fucosylation of certain key proteins.

In this study, intestinal epithelium-specific Fut2 knock-
out mice (Fut2△IEC mice) were generated to investigate 
the role of Fut2 in CRC. N-glycoproteomics and pro-
teomics analyses were conducted to identify specific 
proteins regulated by Fut2. Ulex Europaeus Agglutinin 
I (UEA-I) affinity chromatography, immunoprecipita-
tion, and rescue assays were performed to investigate the 
underlying mechanism of action of Fut2 in CRC. Col-
lectively, our results revealed that intestinal epithe-
lium-specific Fut2 deficiency mice were susceptible to 
azoxymethane/dextran sulfate sodium (AOM/DSS)-
induced CRC by inhibiting the fucosylation of melanoma 
cell adhesion molecule (MCAM).

Methods
Mice
As our previous study reported, we used Pvillin-Cre 
recombinase transgenic C57BL/6 mice (Pvillin-Cre TG 
mice) and Fut2flox/flox C57BL/6 mice (purchased from 
GemPharmatech Co. Ltd) to cross and generate mice 

with the Fut2 gene specifically deleted in intestinal epi-
thelial cell (Pvillin-Cre + Fut2flox/flox mice, abbreviated as 
Fut2△IEC) [12]. Knock-out of Fut2 in intestinal epithe-
lial cells and the loss of α1,2-fucosylation in the tissue 
were validated in our previous study [12]. Fut2△IEC male 
mice (8–10 weeks old) were used in further experiments. 
Fut2 negative mice (wild-type (WT) mice) were used as 
controls for Fut2△IEC mice. All mice were housed in the 
specific pathogen-free (SPF) grade facility of Huazhong 
University of Science and Technology and maintained 
under 12 h light/dark cycles with free access to food and 
water [12]. All animal studies were approved by the Ani-
mal Experimentation Ethics Committee of Huazhong 
University of Science and Technology and performed in 
accordance with national and EU guidelines [12].

Model establishment
WT and Fut2△IEC mice were randomly divided into four 
groups: WT control, WT AOM/DSS, Fut2△IEC con-
trol, and Fut2△IEC AOM/DSS (n = 5 per group). Mice 
in the AOM/DSS groups (WT AOM/DSS and Fut2△IEC 
AOM/DSS) and AOM/DSS-induced colitis-associated 
CRC models were prepared as previously described 
[18]. Briefly, the male mice were first treated with AOM 
(10 mg/kg). One week later, the mice were fed 2% DSS for 
1 week, followed by regular drinking water for 2 weeks. 
This cycle was repeated three times. Throughout the trial, 
body weight, diarrhea, and macroscopic bleeding of the 
mice were monitored.

Histological examination
For histological examination, distal colon specimens 
were fixed in 4% formalin for 24 h and embedded in par-
affin, stained with hematoxylin and eosin (H&E), and 
analyzed by a pathologist that had no prior knowledge of 
the experimental procedures.

Cell culture and treatment
Two CRC cell line (SW480 cells and HCT116 cells) were 
used in this study. SW480 cells were cultured in Roswell 
Park Memorial Institute (RPMI) 1640 medium sup-
plemented with 10% fetal bovine serum (FBS) and 1% 
penicillin-streptomycin [19]. HCT116 cells were grown 
in Dulbecco’s Modified Eagle Medium (DMEM) supple-
mented with 10% FBS and 1% penicillin-streptomycin 
[19]. Cells were maintained in a 5% CO2 incubator at 
37  °C. The cells were routinely tested to exclude myco-
plasma contamination.

Lentivirus transfection
The lentiviral vector system and the empty vectors were 
purchased from the GeneChem Corporation (Shanghai, 
China). Cells (5 × 105) were transfected with the specific 



Page 3 of 14Wang et al. Journal of Translational Medicine           (2023) 21:82 	

virus at a multiplicity of infection of 20 in the presence 
of polybrene (5 μg/mL). After 12 h, the supernatant was 
replaced with the cultured medium. Expression of Fut2 
and MCAM in transfected cells was validated by western 
blot.

CCK8 assay
Cell proliferation was assessed using the CCK8 assay kit 
(Dojindo Laboratories, Kumamoto, Japan). The cells were 
seeded into 96-well plates at a density of 2 × 103 well−1 
and incubated in a 5% CO2 incubator for 24, 48, or 72 h. 
Next, 10 μL of CCK8 reagent was added to each well and 
the plates were returned to the incubator for another 2 h. 
The absorbances was measured at 450 nm using a micro-
plate reader (BioTek, Winooski, VT, USA).

Wound‑healing assay
Cells were seeded in 6-well plates at 37  °C in a 5% CO2 
atmosphere until the cells grew to 80% of the coverage 
area at the bottom of the wells. Straight lines were drawn 
on the cell layer with a 10  μL pipette tip. The treated 
6-well plates were observed and photographed under a 
microscope at different times.

Migration and invasion assays
Cell migration and invasion assays were performed in a 
Transwell chamber (Corning, Corning, NY, USA) accord-
ing to the manufacturer’s protocol. For the migration 
assay, 1 × 105 cells were seeded into the upper chamber 
containing FBS-free medium, and the lower chamber 
contained complete cell culture media. After incubation 
at 37  °C in an atmosphere of 5% CO2 for the indicated 
hours, the non-migrating or non-invading cells in the 
upper chamber were removed with cotton swabs. The 
cells that penetrated the membrane filters were fixed in 
4% methanol, stained with crystal violet, and counted 
under a light microscope. For the invasion assays, the 
upper chambers were precoated with 15 μg/μL Matrigel 
(Corning), following the same procedures as the migra-
tion assay.

Subcutaneous tumorigenesis assay
Twelve BALB/c nude mice (male, 4 weeks-old, weighting 
18 ± 2  g) were randomly divided into two groups of six 
animals each. SW480 and HCT116 cells were suspended 
in phosphate buffered saline (PBS) at a density of 1 × 107/
ml. Next, 200 μL of cell suspension was subcutaneously 
injected into the axillae to induce tumor growth. After 
4  weeks, the mice were sacrificed and their tumor sizes 
and weights were measured.

Co‑immunoprecipitation (CoIP) assay
Cells were harvested and lysed in 500 μL of CoIP buffer 
containing a protease inhibitor cocktail (Thermo Fisher 
Scientific). After centrifugation, cell lysates were col-
lected and precleared by incubating with 20  μL of 
immobilized UEA-I beads for 1  h at 4  °C. The beads 
were then discarded using a magnetic frame and the 
lysates were incubated with a primary antibody or con-
trol immunoglobulin G on a rotator at 4  °C overnight. 
On the following day, 20  μL of immobilized protein 
A/G beads was added to precipitate the protein com-
plex at 4  °C for 4  h. Subsequently, the samples were 
washed five times, the beads were boiled in loading 
buffer, and the proteins were prepared for immunoblot 
analysis.

Immunofluorescence and immunohistochemistry
For immunofluorescence staining, paraffin embed-
ded sections (5  μm) with colon tissues were hydrated, 
treated for antigen retrieval with citrate buffer (pH 
6), and the slides of cells were fixed in 4% formalin 
for 30 min and then washed with PBS for 3  times. For 
Ulex europaeus agglutinin-I (UEA-I) staining, sections 
were incubated with rhodamine UEA-I for 1 h at 37 °C. 
The nuclei were stained with DAPI (Beyotime Biotech, 
China) for 8  min at room temperature. Images were 
acquired using a confocal microscope (Nikon, Japan).

Immunohistochemistry (IHC) of colon tissues was 
performed using a VECTASTAIN Elite ABC kit and 
DAB Detection kit (Boster Biological Technology Co., 
Ltd) following the manufacturer’s instructions, using an 
anti-F4/80 antibody (ARG55738, Arigo).

Western blot analysis
Proteins were harvested from cells and colon tissues 
using RIPA Lysis Buffer (Beyotime, Hainan, Jiangsu, 
China) supplemented with phenylmethyl sulfonyl fluo-
ride protease and phosphatase inhibitors. The total 
protein concentration was determined using a Pierce™ 
BCA Protein Assay Kit (Thermo Fisher, Waltham, 
Massachusetts, USA), and denatured protein sam-
ples of appropriate quality were subjected to sodium 
dodecyl sulfate polyacrylamide gel electrophoresis 
and then transferred to polyvinylidene fluoride mem-
branes. Then membranes were later blocked with 5% 
skimmed milk and incubated with specific antibodies 
against Fut2 (Santa Cruze, CA, USA), MCAM (Santa 
Cruze, CA, USA), actin (Antgene, Wuhan, China), and 
GAPDH (Antgene, Wuhan, China) overnight at 4  °C. 
The secondary antibody was purchased from GeneTex 
(Irvine, California, USA). Protein bands were visualized 
by the FluorChem Imaging System (ProteinSimple, San 
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Jose, California, USA) using the commercial Pierce™ 
Fast Western Blot Kit and ECL Substrate (Thermo 
Fisher, Waltham, Massachusetts, USA).

RNA extraction and qPCR
RNA was extracted from colon tissue or cells using TRI-
zol reagent (Invitrogen) according to the manufacturer’s 
protocol. Reverse transcription (cDNA) was synthesized 
from 1  μg of total RNA with Prime Script RT Master 
Mix (Takara Biotechnology, Dalian, China). Quantitative 
Real-time PCR (qPCR) was performed using 1 μl of first-
strand cDNA with the LightCycler® 480 SYBR I Master 
Mix (Roche, Switzerland) at a final volume of 10 μl. All 
samples were run in triplicate and underwent 45 ampli-
fication cycles on a Roche LightCycler R480 (Roche, 
Switzerland). The relative fold-change in mRNA expres-
sion was measured by using the 2−ΔCT method and nor-
malized. The primers used are listed in Additional file 1: 
Table S1.

TCGA database
We collected mRNA expression profiles and clinical data 
of patients with CRC from the Cancer Genome Atlas 
(TCGA) database (https://​tcga-​data.​nci.​nih.​gov/​tcga/). 
Clinical data such as gender, age, race, T, N, M stage, 
pathologic stage, and primary therapy outcome, were 
also downloaded from TCGA data portal.

Statistical analysis
The SPSS 20.0, Graphpad prism software and Image J 
software were used for statistical analysis. Data were pre-
sented as mean values ± SEM for independent experi-
ments. For comparison between two groups, a paired 
t-test was performed. Multiple group comparisons were 
calculated by one-way analysis of variance (ANOVA). 
P < 0.05 was considered statistically significant. Prot-
eomic analysis are listed in Additional file 2.

Results
Fut2 is downregulated in CRC and correlates with poor 
prognosis
Data (275 CRC tissues and 45 normal colon tissues) from 
TCGA database were analyzed and revealed that Fut2 
expression was reduced in CRC tissues compared to non-
tumor tissues (Fig.  1A). Furthermore, low expression of 
Fut2 was correlated with poor prognosis in CRC patients 
(Fig. 1B). As shown in Table 1, low expression of Fut2 was 
significantly associated with pathologic stage (stage I-II 
vs stage III-IV, p = 0.045) and M stage (p = 0.021). Fur-
thermore, the ROC curve indicated that Fut2 expression 
had good predictive power, with an area under the curve 
(AUC) of 0.769 (95% confidence interval [CI] = 0.732–
0.805), to discriminate CRC tissues from normal tissues 

(Fig.  1C). Meanwhile, mRNA and protein levels of Fut2 
in tumor tissues and adjacent tissues from CRC patients 
(Fig.  1D, E) and AOM/DSS-induced CRC mice (Fig. 1F, 
G) were detected using qPCR and western blotting. 
The results showed that Fut2 mRNA and protein levels 
were significantly downregulated in tumor tissues com-
pared to the adjacent tissues in both humans and mice 
(p < 0.05). Moreover, α-1,2-fucosylation in colonic tissues 
was evaluated using UEA-I staining. As it is shown in 
Fig. 1H, I, α-1,2-fucosylation of colonic tissues decreased 
prominently in AOM/DSS mice compared to that in the 
control mice (p = 0.0014).

Fut2 deficiency enhances promotion of AOM/DSS‑induced 
CRC​
Fut2△IEC mice were used to investigate the role of Fut2 
in CRC in vivo. Fut2△IEC and control mice were intra-
peritoneally injected with AOM and subjected to three 
cycles of DSS (Fig. 2A). Fut2△IEC mice were susceptible 
to AOM/DSS compared with WT mice, which mainly 
manifested as significant weight loss (p < 0.001; Fig.  2B) 
and high mortality (p = 0.0029) (Fig.  2C). Fut2△IEC 
mice showed a dramatic increase in tumor multiplicity 
compared with control mice (Fig.  2D); the mean tumor 
number was 12.2 in Fut2△IEC mice versus 3.5 in controls 
(p < 0.001; Fig.  2E, F). The increase in tumor burden in 
Fut2△IEC mice was mediated by an increase in both the 
number of small (< 2 mm), medium (2–5 mm), and large 
(˃ 5 mm) tumors (Fig. 2G).

Fut2 inhibits cell proliferation, migration and invasion 
of SW480 and HCT116 cells
Fut2 was overexpressed in SW480 and HCT116 cells 
in vitro to investigate its role in proliferation, migration 
and invasion of colon cancer cells. We ectopically over-
expressed Fut2 in SW480 and HCT116 cell lines, and the 
efficiency of overexpression was verified by qPCR and 
western blotting (Fig.  3A, B). As expected, overexpres-
sion of Fut2 also resulted in increased α-1,2-fucosylation 
in the cells (Fig. 3C).

The mean colony number significantly decreased in 
SW480 and HCT116 cells overexpressing Fut2 com-
pared to that in control cells (Fig. 3D). CCK8 assays also 
showed that Fut2 overexpression significantly inhibited 
SW480 and HCT116 cell proliferation (Fig. 3E). To exam-
ine whether migration could be regulated by Fut2 in CRC 
cell lines, wound healing and Transwell migration assays 
were performed. Fut2 overexpression markedly inhib-
ited the migration of SW480 and HCT116 cells. Tran-
swell migration assays revealed that Fut2 overexpression 
decreased SW480 cell migration by 41% and decreased 
HCT116 cell migration by 37% (Fig.  3F). In addition, 
our results showed that invading Fut2-overexpression 

https://tcga-data.nci.nih.gov/tcga/
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Fig. 1  Fut2 is down regulated in CRC and correlates with poor prognosis. A Expression of Fut2 mRNA (including 275 CRC tissues and 45 normal 
colon tissues) from TCGA database was first analyzed. B Amplification of Fut2 gene copy number associated with good disease-free survival in 
TCGA cohort (n = 135, log-rank test, P = 0.047). C ROC curves for classifying CRC tissues versus normal colon tissues in the TCGA database. D The 
proteins level of Fut2 in colon tissues extracted from normal and colorectal cancer patient (n = 4 per group). E The relative mRNA expression of 
Fut2 in control and colorectal cancer patient colon tissues was detected by qPCR (n = 4 for per group). F The proteins level of Fut2 in colon tissues 
extracted from control mice and AOM/DSS mice (n = 3 per group). G The relative mRNA expression of Fut2 in control and AOM/DSS mice colon 
tissues was detected by qPCR (n = 5 for per group). H The typical images of mice colon tissues stained with UEA-I. I The mean gray value of UEA-I 
in control mice and AOM/DSS mice (n = 5 per group). Data are expressed as mean ± SEM. The data come from three independent experiments. In 
all panels: *p < 0.05, **p < 0.01. (CRC​ colorectal cancer, TCGA​ The Cancer Genome Atlas, AOM/DSS azoxymethane/dextran sodium sulfate, UEA-I Ulex 
Europaeus Agglutinin-I, SEM Standard Error of Mean)
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in SW480 and HCT116 cells decreased significantly 
compared to that of the control cells (p = 0.0088 and 
p = 0.027, respectively) (Fig.  3G). This result was also 
confirmed by a wound-healing assay (Fig. 3H, I).

Fut2 inhibits tumor proliferation in xenograft model
In addition, we subcutaneously injected both WT and 
Fut2-overexpressed SW480 and HCT116 cells into nude 

mice and measured the tumor weight after 4  weeks. 
The tumor weights of animals administered Fut2-over-
exxpressed SW480 and HCT116 cells were significantly 
lower (p = 0.0132 and p = 0.01, respectively) than those of 
mice injected with control cells (Fig.  4A, B). The tumor 
volumes of animals administered Fut2-overexxpressed 
SW480 and HCT116 cells were significantly lower 
(p < 0.0001 and p = 0.0071, respectively) than those of 
mice injected with control cells (Fig.  4C). Immunohis-
tochemical analysis showed that animals injected with 
Fut2-overexxpressed cells had a lower percentage prolif-
eration of Ki67 + tumor cells than mice administered WT 
control cells (Fig. 4D).

Glycoproteomics reveals glycoproteins that may be 
associated with Fut2‑mediated CRC tumorigenesis
Proteomics and N-glycoproteomics (LC-MS/MS tech-
nology) were carried out to compare the protein and 
glycoprotein expression levels in the tumors of Fut2△IEC 
mice and the control mice. A schematic illustration of the 
proposed method is shown (Fig. 5A). Thus, 630 N-glyco-
sylation sites in 428 glycoproteins were identified using 
quantitative information. Among these glycoproteins, 
130 decreased and 38 increased by more than two-fold 
change (p < 0.05). (Fig.  5B). The differentially expressed 
glycoproteins identified by Gene Ontology (GO) analy-
sis were implicated in ‘cellular process’, ‘cell component’, 
‘binding function’ and so on (p < 0.05). Cellular compo-
nent analysis by GO revealed that differentially expressed 
proteins were enriched in ‘cell’ and ‘intracellular’ terms 
(Fig.  5C). In addition, Clusters of Orthologous Groups 
analysis showed that differentially expressed glycopro-
teins were mainly enriched in signal transduction mecha-
nisms and posttranslational modifications (Fig.  5D). To 
further determine the detailed glycoprotein, the volcano 
plot showed that MCAM was one of the five glycopro-
teins whose N-glycosylation expression was the most 
downregulated (Fig. 5E). MCAM is a cell adhesion mol-
ecule associated with tumor progression [20]. Cellular 
component analysis showed that MCAM belongs to the 
‘cell’ term. Proteomics revealed that MCAM in Fut2△IEC 
mice was down-regulated 1.2  times compared to that 
in control mice (Fig.  5F). However, glycoproteomics 
revealed that N-glycosylation of MCAM was downregu-
lated 15 times more in Fut2△IEC mice than in the control 
mice, which is much larger than the multiple of its own 
change (Fig. 5G).

Fut2 inhibits colon cancer via fucosylation of MCAM
The detailed mechanism of the differential glycopro-
teins involved in Fut2-mediated CRC was further stud-
ied. Immunoprecipitation experiments in colon tissues 
from WT mice further demonstrated the interaction 

Table 1  Clinicopathological characteristics of high- and low-
Fut2 expression groups

Bold values denote two-sided p < 0.05

Fut2 Fucosyltransferase 2, PD partial response, SD stable disease, PR partial 
response, CR complete response

Characteristic Low 
expression 
of Fut2

High 
expression 
of Fut2

p

n 239 239

Age, n (%) 0.113

  <  = 65 88 (18.4%) 106 (22.2%)

  > 65 151 (31.6%) 133 (27.8%)

Gender, n (%) 1.000

 Female 113 (23.6%) 113 (23.6%)

 Male 126 (26.4%) 126 (26.4%)

Race, n (%) 0.026
 Asian 2 (0.7%) 9 (2.9%)

 Black or African American 39 (12.7%) 24 (7.8%)

 White 124 (40.5%) 108 (35.3%)

T stage, n (%) 0.426

 T1 4 (0.8%) 7 (1.5%)

 T2 39 (8.2%) 44 (9.2%)

 T3 161 (33.8%) 162 (34%)

 T4 35 (7.3%) 25 (5.2%)

N stage, n (%) 0.168

 N0 133 (27.8%) 151 (31.6%)

 N1 56 (11.7%) 52 (10.9%)

 N2 50 (10.5%) 36 (7.5%)

M stage, n (%) 0.021
 M0 165 (39.8%) 184 (44.3%)

 M1 42 (10.1%) 24 (5.8%)

Pathologic stage, n (%) 0.078

 Stage I 38 (8.1%) 43 (9.2%)

 Stage II 85 (18.2%) 102 (21.8%)

 Stage III 68 (14.6%) 65 (13.9%)

 Stage IV 42 (9%) 24 (5.1%)

Primary therapy outcome, n (%) 0.186

 PD 12 (4.8%) 13 (5.2%)

 SD 2 (0.8%) 2 (0.8%)

 PR 10 (4%) 3 (1.2%)

 CR 96 (38.4%) 112 (44.8%)

Age, median (IQR) 70 (58, 77) 68 (59, 78) 0.696



Page 7 of 14Wang et al. Journal of Translational Medicine           (2023) 21:82 	

between Fut2 and MCAM (Fig.  6A, B). The effect of 
Fut2 on MCAM was further supported by colon tis-
sues from Fut2△IEC and control mice treated with 
AOM/DSS. In Fut2△IEC mice, the glycosylation level 

of MCAM was lower than that in the control mice 
(Fig.  6C). Furthermore, MCAM was overexpressed in 
the Fut2 overexpressed SW480 cell line (Fig.  6D). CoIP 
studies showed that peracetylated 2-F-Fuc (an inhibitor 

Fig. 2  Fut2 deficiency enhances promotion of AOM/DSS-induced CRC. A Schematic overview of this colon carcinogenesis model. B Body weight 
change during the disease process. C Survival rate of mice from each group. D Macroscopical changes in colon. Colons were removed at day 70 
from treated WT and Fut2△IEC mice, and representative results from 5 independent animals are shown here. E Tumor numbers of each group. F The 
typical images of mice colon tissues from treated WT and Fut2△IEC mice. G The number of tumors corresponding to different tumor sizes of each 
group. Data are expressed as mean ± SEM. The data come from three independent experiments. In all panels: ***p < 0.001, ****p < 0.0001. (CRC​ 
colorectal cancer, AOM/DSS azoxymethane/dextran sodium sulfate, WT wild type, SEM Standard Error of Mean)
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Fig. 3  Fut2 inhibits cell proliferation of SW480 and HCT116 cells. A The relative mRNA expression of Fut2 in control and fut2 overexpressed SW480 
and HCT116 cells was detected by qPCR (n = 3 for per group). B The relative protein expression of Fut2 in control and fut2 overexpressed SW480 
and HCT116 cells was detected by western blot (n = 3 for per group). C The typical images of SW480 and HCT116 cells stained with UEA-I. D The 
plate clone formation experiment of SW480 and HCT116 cells in control and Fut2-overexpression group. E CCK8 assays of SW480 and HCT116 cells 
in control and Fut2-overexpression group. F The typical images of transwell migration assay in control and fut2 overexpressed SW480 and HCT116 
cells. G The typical images of transwell matrigel invasion assay in control and fut2 overexpressed SW480 and HCT116 cells. H, I Wound-healing assay 
at 48 h in control and fut2 overexpressed SW480 and HCT116 cells. Data are expressed as mean ± SEM. The data come from three independent 
experiments. In all panels: *p < 0.05, ***p < 0.001. (CCK8 Cell Counting Kit-8, SEM Standard Error of Mean)
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Fig. 4  Fut2 inhibits tumor proliferation in xenograft model A The typical images of nude mice injected with SW480 and HCT116 cells in control 
and Fut2-overexpression group. B The tumor weight of in control and Fut2-overexpression group of SW480 and HCT116 cells. C The tumor volume 
of in control and Fut2-overexpression group of SW480 and HCT116 cells. D The representative image of Ki67 staining of nude mice injected with 
SW480 and HCT116 cells in control and Fut2-overexpression group. Data are expressed as mean ± SEM. The data come from three independent 
experiments. In all panels: *p < 0.05, **p < 0.01, ****p < 0.0001. (SEM Standard Error of Mean)
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of fucosyltransferase, 20  μM) could reverse the effect 
of Fut2 that increases the α-1,2-fucosylation of MCAM 
(Fig. 6E).

Transwell migration, invasion and wound-healing 
assays revealed that inhibition of MCAM-overexpress-
ing cell migration and invasion was also restored by the 
inhibitor of fucosyltransferase (Fig.  7A–C). The CCK8 
assay revealed that the inhibition of MCAM-overex-
pressing cell proliferation was restored by an inhibitor of 
fucosyltransferase (Fig. 7D). These results indicated that 
down-regulation of MCAM α-1,2-fucosylation reversed 
the effects of Fut2 overexpression on SW480 cell prolif-
eration, migration, and invasion.

Discussion
In the present study, decreased expression of Fut2 and 
α-1,2-fucosylation was observed in patients with CRC. 
Moreover, we revealed that Fut2 deficiency in the intes-
tinal epithelium exacerbates AOM/DSS-induced CRC, 
including cell proliferation, migration, and invasive abili-
ties. In addition, prominent down regulation of MCAM 
fucosylation was detected in colorectal tumor tissues of 
Fut2△IEC mice. Finally, a fucosyltransferase inhibitor 
repressed the fucosylation modification of MCAM, pro-
moting cell proliferation, invasion and tumor metastasis 
in Fut2-overexpression cells, indicating that fucosylation 
of MCAM might be a mediator of Fut2 in CRC. There-
fore, our study demonstrated that intestinal epithelium-
specific Fut2 deficiency mice were susceptible to AOM/
DSS induced CRC by inhibiting the fucosylation of 
MCAM.

In our study, we demonstrated that the downregulation 
of Fut2 and α-1,2-fucosylation in the colonic epithelium 
of CRC patients, and the decreased Fut2 expression level 
correlated with poor patient survival. The role of Fut2 in 
other cancers remains controversial. For example, a pre-
vious study demonstrated that Fut2 plays important roles 
in promoting the growth, adhesion, and migration of 
breast cancer cells [21]. In lung adenocarcinoma (LUAD), 
it has also been reported that Fut2 promotes cancer 
metastasis through epithelial-mesenchymal transition 
initiated by TGF-β/Smad signaling [22, 23]. Addition-
ally, in liver cancer, Fut2 was reported to increase levels 

of Globo H and enhance cancer cell proliferation [24]. 
These studies suggest that Fut2 plays an important role in 
promoting the development of the above-mentioned can-
cers; however, there are few reports on the role of Fut2 in 
CRC. Only one study reported that downregulating the 
transcription of caudal-type homeobox  2 (a tumor sup-
pressor) resulted in a decrease in the transcription level 
of Fut2, thereby contributing to colon cancer cells metas-
tasis [25]. This study indicated that the decreased levels 
of Fut2 promoted colon cancer metastasis, which was 
similar to our results. Therefore, the role of Fut2 in can-
cer development may be tissue specific.

The abnormal proliferation, migration, and metastasis 
of tumor cells is a hallmark of tumor pathology during 
tumor progression [26, 27]. In our study, we demon-
strated that Fut2 deficiency enhanced the promotion of 
AOM/DSS-induced CRC. In addition, overexpression 
of Fut2 inhibited cell proliferation, invasion and tumor 
metastasis in colon cancer cells, both in vivo and in vitro. 
However, other researchers found that silencing Fut2 
suppressed cell migration, whereas Fut2 overexpres-
sion increased cell migration, invasion and metastasis in 
breast cancer [21]. Furthermore, Deng et  al. found that 
increased expression of Fut2 has been observed in LUAD, 
and Fut2 enhanced cell migration and invasion of LUAD 
cell lines [22]. The different roles of Fut2 in cancers may 
be due to differences in the tissues and organs. However, 
the specific mechanism by which Fut2 regulates CRC 
remains unclear.

The main role of Fut2, a vital α-1,2-fucosyltransferase, 
is to regulate fucosylation of cells or specific proteins 
[13]. Our previous study demonstrated that Fut2 medi-
ates fucosylation of intestinal epithelial cells to protect 
intestinal barrier function and relieve intestinal inflam-
mation [12]. With regard to specific proteins, a study has 
found that loss of Fut2-mediated mucin O-glycosylation 
of Muc5ac impairs gastric mucosal binding of H. pylori 
BabA adhesin [16]. In addition, Fut2 can also modulate 
the glycosylation profile of mucus, thereby regulating the 
intestinal epithelial barrier functions [17]. Accordingly, 
we determined whether Fut2 is involved in CRC by regu-
lating fucosylation of certain key proteins.

(See figure on next page.)
Fig. 5  Glycoproteomics reveals glycoproteins that may be associated with Fut2-mediated CRC tumorigenesis A Schematic illustration of our 
systems biology approach to identify N-glycoproteins mediating the effects of Fut2 on CRC metastasis. B The number glycoproteins with fold 
change over 2.0 in WT vs. Fut2△IEC mice by proteomic analysis. C The differentially expressed glycoproteins by GO analysis in WT vs. Fut2△IEC mice. 
D The differentially expressed glycoproteins by COG analysis in WT vs. Fut2△IEC mice. E The differentially N-glycosylation expressed glycoproteins 
presented by the volcano plot in WT vs. Fut2△IEC mice. F The relative protein level of MCAM in colon tissues from WT vs. Fut2△IEC mice by proteomic 
analysis. G The relative N-glycosylation expression level of MCAM in colon tissues from WT vs. Fut2△IEC mice by glycoproteomic analysis. Data are 
expressed as mean ± SEM. The data come from three independent experiments. In all panels: ***p < 0.001, ****p < 0.0001. (CRC​ colorectal cancer, WT 
wild type, MCAM melanoma cell adhesion molecule, SEM Standard Error of Mean)
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Fig. 5  (See legend on previous page.)



Page 12 of 14Wang et al. Journal of Translational Medicine           (2023) 21:82 

To determine the most related glycosylated proteins 
that mediate the effects of Fut2 on CRC development, 
proteomics and N-glycoproteomics (LC-MS/MS tech-
nology) were used to compare the proteins and glycopro-
teins expression levels in control and Fut2△IEC mice. The 
five most significantly downregulated glycoproteins at 
the N-glycosylation level were Cathepsin C, Folate hydro-
lase 1, N-acylsphingosine amidohydrolase 1, Tissue fac-
tor and MCAM. MCAM is a cell adhesion molecule that 
has been associated with CRC progression. However, 
the other four glycoproteins were not that related with 
tumorigenesis. MCAM has been considered to be associ-
ated with tumor development in human malignant mela-
noma [20, 28]. A study reported that MCAM is essential 
for the survival and transformation of hepatocellular 
carcinoma (HCC) by inducing the translation initia-
tion and transcriptional activities of c-Jun/c-Fos [29]. In 
contrast, reduced MCAM expression has been revealed 
to stimulate tumorigenesis and cancer stemness in CRC 

by activating the Wnt/β-catenin signaling pathway [30]. 
Another study also demonstrated that MCAM deficiency 
in human CRC cells significantly promotes tumor pro-
gression, further confirming its tumor-suppressive roles 
in CRC [31]. Therefore, we determined whether MCAM 
is the key protein that mediates the effects of Fut2 on 
CRC development.

We first demonstrated the structural interaction 
between Fut2 and MCAM using CoIP studies, which 
indicated that there may be a functional interaction 
between them. After using an inhibitor of fucosyltrans-
ferase peracetylated, 2-F-Fuc, the glycosylation modifica-
tion effect of Fut2 on MCAM was significantly weakened, 
reflecting the regulatory effect of Fut2 on MCAM glyco-
sylation. We further verified the influence of MCAM on 
the involvement of Fut2 in inhibiting CRC. In the Fut2-
overexpressed SW480 cell line, the results showed that 
MCAM overexpression extended the inhibitory effects 
on migration, invasion, and cell proliferation. More 

Fig. 6  Fut2 interacts with MCAM and mediates the fucosylation of MCAM. A, B Co-immunoprecipitation experiments showed structural interaction 
between Fut2 and MCAM. C Immunoprecipitation experiments showed the expression of MCAM with or without biotinylated UEA-I in colon tissues 
of WT and Fut2△IEC mice. D The typical western blot image of MCAM expression in vector and MCAM overexpression SW480 cell line with Fut2 
overexpressed. E Immunoprecipitation experiments showed the expression of MCAM with or without biotinylated UEA-I in control and MCAM 
overexpression SW480 cell line with Fut2 overexpressed (with or without peracetylated 2-F-Fuc treated). Data are expressed as mean ± SEM. The 
data come from three independent experiments. (MCAM melanoma cell adhesion molecule, UEA-I Ulex Europaeus Agglutinin-I, WT wild type, 
2-F-Fuc 2-fluorofucose, SEM Standard Error of Mean)
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importantly, using an inhibitor of fucosyltransferase 
could restored the inhibitory effect of SW480 caused 
by the overexpression of MCAM. Taken together, these 
results demonstrated that Fut2 inhibits the progression 
of CRC by promoting the glycosylation of MCAM.

In summary, our findings demonstrate that a defi-
ciency of fucosylation due to a Fut2 mutation leads to 
low fucosylation of MCAM, followed by CRC progres-
sion and metastasis. We believe that Fut2 and MCAM 
are promising compounds in CRC therapy.

Conclusions
Our results revealed that intestinal epithelium-specific 
Fut2 deficiency mice were susceptible to AOM/DSS-
induced CRC by inhibiting the fucosylation of MCAM. 
The regulation of fucosylation may be a potential 
therapy for CRC, especially in patients with Fut2 gene 
defects.
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