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Abstract 

Background  Deterioration of normal intestinal epithelial cells is crucial for colorectal tumorigenesis. However, the 
process of epithelial cell deterioration and molecular networks that contribute to this process remain unclear.

Methods  Single-cell data and clinical information were downloaded from the Gene Expression Omnibus (GEO) 
database. We used the recently proposed dynamic network biomarker (DNB) method to identify the critical stage of 
epithelial cell deterioration. Data analysis and visualization were performed using R and Cytoscape software. In addi-
tion, Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis was used to identify potential tran-
scription factors, and CellChat analysis was conducted to evaluate possible interactions among cell populations. Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set variation analysis (GSVA) analyses 
were also performed.

Results  The trajectory of epithelial cell deterioration in adenoma to carcinoma progression was delineated, and the 
subpopulation of pre-deteriorated epithelial cells during colorectal cancer (CRC) initialization was identified at the 
single-cell level. Additionally, FOS/JUN were identified as biomarkers for pre-deteriorated epithelial cell subpopula-
tions in CRC. Notably, FOS/JUN triggered low expression of P53-regulated downstream pro-apoptotic genes and 
high expression of anti-apoptotic genes through suppression of P53 expression, which in turn inhibited P53-induced 
apoptosis. Furthermore, malignant epithelial cells contributed to the progression of pre-deteriorated epithelial cells 
through the GDF signaling pathway.

Conclusions  We demonstrated the trajectory of epithelial cell deterioration and used DNB to characterize pre-dete-
riorated epithelial cells at the single-cell level. The expression of DNB-neighboring genes and cellular communication 
were triggered by DNB genes, which may be involved in epithelial cell deterioration. The DNB genes FOS/JUN provide 
new insights into early intervention in CRC.
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Background
Colorectal cancer (CRC) is the third most frequent dis-
ease and second leading cause of cancer-related fatalities 
globally [1]. The genomic and transcriptomic landscapes 
of familial adenomatous polyposis have been delineated 
at the single-cell level [2]. In addition, previous study has 
mapped the single-cell resolution of colorectal adeno-
mas and serrated polyps [3]. Joanito et al. identified two 
epithelial tumor cell states based on single-cell and bulk 
transcriptomic analysis and further refined the consen-
sus molecular classification of CRC [4]. In vitro colorectal 
cancer organoid culture systems were systematically eval-
uated at the single-cell scale [5]. Teng et al. revealed the 
molecular basis of the impact of gut microbes on the effi-
cacy of neoadjuvant radiotherapy in locally advanced rec-
tal cancer based on host-bacterial colony interactions [6]. 
Based on clinical studies, early detection is necessary for 
timely intervention in patients with CRC. However, most 
studies have concentrated on the analysis of advanced-
stage tumors [7–9] and have largely ignored precancer-
ous lesions. Consequently, the transition process from 
the precancerous to cancerous state and the molecular 
drivers of this transition remain underexplored. Deterio-
ration of intestinal epithelial cells is crucial for colorectal 
tumorigenesis. It has been demonstrated that a variety of 
variables, such as genetic mutations, growth factors, and 
cytokines, contribute to the deterioration of epithelial 
cells [10]. In addition, the hypothesis that a population of 
carcinoma precursor epithelial cells exists during epithe-
lial cell deterioration has been proposed [11]. However, 
the process of epithelial cell deterioration in CRC remains 
unclear. Therefore, if pre-deteriorated epithelial cells and 
regulatory molecular networks can be found during CRC 
epithelial cell deterioration to intervene with the develop-
ment of the adenoma-carcinoma sequence, this may be a 
breakthrough in preventing the early occurrence of CRC.

Dynamic network biomarkers (DNBs), which are a 
small group of closely connected variables that can be 
used to provide early warning signals of impending criti-
cal transitions through drastic statistical indicators, offer 
a statistical method for assessing variables related to 
critical states [12–14]. DNBs are a group of biomolecules 
that can signal critical states prior to the rapid deterio-
ration of complex diseases. The DNB method has pre-
viously been applied in CRC research. For example, Hu 
discovered a subpopulation of pre-exhausted CD8 + T 
cells based on DNB and single-cell data, which contrib-
utes to T cell exhaustion in CRC. The main causes of T 

cell exhaustion were found to be the hub genes CCT6A 
and TUBA1B [15]. According to single-cell analysis of 
CRC adjacent tissue B cells, stage II was a crucial stage 
before lymph node metastasis, and the DHX9 gene par-
ticipated in dynamic network changes during CRC devel-
opment [16]. In addition, several research teams have 
applied the DNB method to examine lung metastasis in 
hepatocellular carcinoma, as well as irreversible altera-
tions during cell differentiation [17, 18]. Currently, sin-
gle-cell RNA sequencing (scRNA-seq) is a potent method 
to address the heterogeneity of epithelial cells in the CRC 
microenvironment. By combining scRNA-seq and DNB, 
we may be able to identify pre-deteriorated epithelial 
cells and essential functional molecular networks in the 
CRC microenvironment.

In this study, we aimed to clarify the mechanism under-
lying epithelial cell deterioration in CRC and to identify 
pertinent targets and biomarkers in pre-deteriorated epi-
thelial cells. To identify biomarkers of pre-deteriorated 
epithelial cells in CRC, we constructed an epithelial cell 
deterioration trajectory in CRC using the scRNA-seq 
dataset (GSE161277) supplied by the research team of 
Hubing Shi [11, 19]. We also evaluated gene network 
modifications in epithelial cells during deterioration 
using the DNB method, and interpreted the roles of these 
genes in terms of networks. Finally, we investigated the 
cellular interactions between pre-deteriorated and malig-
nant epithelial cells. In summary, this study not only suc-
ceeded in identifying a subpopulation of pre-deteriorated 
epithelial cells during CRC initialization but also discov-
ered a core molecular network that plays a critical role 
in this subpopulation. We hope that these findings will 
provide novel biomarkers or useful targets for early CRC 
intervention.

Methods
Theoretical basis
We developed a single-cell landscape entropy (SCLE) 
method to detect a critical state before a critical transi-
tion from a relatively normal state to a deteriorated state 
(Fig. 1A). A group of molecules known as dynamic net-
work biomarker (DNB) biomolecules exists and satisfies 
the following three properties:

1.	 The standard deviation (SDin) for genes in the DNB 
group increases drastically;
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2.	 The Pearson’s correlation coefficient (PCCin) for 
genes in the DNB group increases drastically;

3.	 The Pearson’s correlation coefficient (PCCout) 
between any one member in the DNB group and any 
other non-DNB member decreases rapidly;

These three properties are necessary for phase transi-
tion in biological systems. Clearly, the early-warning 
signals of the critical transition in a system are detected 
through quantifying the perturbation in the local net-
works of some drastically fluctuating variables.

The time period can be viewed as a pseudotime that 
reflects the process of epithelial cell deterioration. Based 
on various intracellular gene expression patterns, the 
deterioration trajectory of epithelial cells is divided into 
six subpopulations, each of which is considered as a time 
point.

Algorithm for identifying the signal of critical transition 
based on single‑cell landscape entropy (SCLE)
Based on the time series of scRNA-seq data, the fol-
lowing algorithm was used to predict critical transition 
(Fig. 1B):

[Step 1] Normalize scRNA-seq data. The original 
gene expression matrix with M rows/genes and N 
columns/cells was normalized using the logarithm 
log(1+ x) at each time point.
[Step 2] Define the global template network NG . 
The global template network NG was constructed 
by mapping genes to a protein–protein interaction 
(PPI) network obtained from the STRING data-
base, with all isolated nodes discarded.
[Step 3] Extract each local network from the global 
template network NG . Specifically, there are M 
genes in the global template network NG corre-
sponding to M local networks LNk(k = 1, 2, 3, …, 
M). The local network LNk is centered on gene gk , 
with its first-order neighbors { gk1  , gk2  , …, gkQ } serv-
ing as edges.
[Step 4] Calculate the gene-specific local SCLE 
score H (k)

t  for each local network at a time point 
t. The associated local SCLE score for a local net-
work LNk centered on a gene gk was obtained as 
follows:

Fig. 1  Overall project design together with algorithm details. A The three stages transition of PPI network during epithelial cell deterioration 
progression in classic dynamic network biomarker theory. B Single-cell landscape entropy algorithm
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where SD(gk(t) ) denotes the standard deviations of 
the central gene gk at a time point t and PCC(gk(t), 
gkj (t) ) denotes the Pearson’s correlation coefficient 
between the central gene gk and a neighboring gene 
gkj  at a time point t. The constant Q is the number of 
neighboring genes in the local network LNk.
[Step 5] Calculate the time-specific SCLE score Ht 
based on a set of genes with the greatest local SCLE 
values, that is:

where the constant R, representing the number of 
top 5% of genes with the highest local SCLE value, is 
an adjustable parameter. Ht , the SCLE score of time 
point t in Eq. 3, can be applied to identify the early 
warning signals for the critical transition. At each 
time point, the SCLE value of a particular cell popu-
lation is employed as the time-specific SCLE score to 
identify the critical point.
	 As the system approaches the vicinity of the 
critical point, the DNB molecules exhibit fluctuating 
collective behavior, causing the dependent proper-
ties of the DNB members in the critical state to dif-
fer from those in the before-transition state. More-
over, the local SCLE value H (k)

t  in Eq.  1 increases 
sharply as the system approaches the critical point 
(Fig. 1B).

Data processing
The scRNA-seq data used for this research were obtained 
from the Gene Expression Omnibus (GEO) database 
with accession number GSE161277 [11]. We processed 
the scRNA-seq data using Seurat (version 4.1.1) pipelines 
[20]. Owing to biological differences between tissues, we 
removed batch effects from patients using the R package 
Harmony (version 0.1.0) [21]. The resolution parameter 
of FindClusters function was set at 1 for all cell types and 
0.6 for the epithelial cell subpopulation.

(1)

H
(k)
t = [−

1

log(Q)

Q
∑

i=1

pi(t)log(pi(t))] × SD(gk(t))

(2)pi(t) =
|PCC(gk(t), gkj (t))|

∑Q
j=1 |PCC

(

gk(t), gkj (t)
)

|

(3)Ht =
∑R

k=1
H

(k)
t ,

Copy number variants (CNV) analysis
The R package infercnv (version 1.10.1) was used to cal-
culate CNVs in epithelial cells and to identify malignant 
cells using default parameters. Epithelial cells from nor-
mal tissues were used as the controls.

Trajectory analysis
The R package Monocle (version 2.22.0) [19] was imple-
mented to infer the epithelial cell deterioration trajectory. 
For trajectory inference, differentially expressed genes 
(DEGs) of the malignant cell subpopulation were used as 
ordering genes. We then obtained the epithelial cell dete-
rioration trajectory after dimension reduction and cell 
ordering with the ordered genes.

DEG identification and functional enrichment analysis
The FindMarkers function in Seurat (version 4.1.1) 
[20] was used to identify DEGs for each cluster. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were 
performed using the clusterProfiler package (version 
4.2.2) [22]. The R package Gene Set Variation Analy-
sis (GSVA; version 1.42.0) [23] was used for functional 
enrichment analysis.

Protein–protein interaction network analysis
The PPI network of DNB genes was constructed using 
the STRING database (version 11.5) [24]. We exported 
the adjacency matrix by visualizing it in Cytoscape (ver-
sion 3.9.1) [25], calculating the degree of each gene using 
the CytoHubba plugin, and selecting the top 50 genes for 
visualization.

Cell–cell interaction and single‑cell regulatory network 
inference and clustering (SCENIC) analyses
Cell–cell interaction analysis was performed using Cell-
Chat (version 1.5.0) [26]. We evaluated the possible 
interactions among the cell populations based on the 
ligand-receptor pair data in CellChatDB. Using the R 
package SCENIC (version 1.3.1) [27], SCENIC analysis 
was used to identify potential transcription factors in 
cells on the pseudotime trajectory and to analyze their 
transcriptional activity.

Statistical analysis
Statistical analysis and visualization were conducted and 
implemented using R software (version 4.1.2), and the 
statistical threshold for significance was set at p < 0.05. 
The detailed code is available from the link of GitHub 
(https://​github.​com/​Kathe​rine7​76666/​CRC_​Epi_​DNB).

https://github.com/Katherine776666/CRC_Epi_DNB
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Results
Identification of epithelial cell subtypes and their 
deterioration trajectory
Strict quality control standards were implemented to 
screen the processed scRNA-seq data in the original arti-
cle, and Uniform Manifold Approximation and Projec-
tion (UMAP) was performed on the cell populations in 
normal, adenoma, and carcinoma tissues for visualization 
(Additional file 1: Fig. S1A). Based on canonical markers 
for known cell lineages, the identified clusters were anno-
tated as biological cell types (Additional file  1: Fig. S1B 
and Additional file 8: Table S1), epithelial cells (EPCAM), 
T cells (CD3D), Follicular B cells (MS4A1), Plasma B 
cells (MZB1), Macrophages (CD68), and Fibroblasts 
(DCN). To better investigate colorectal carcinogenesis, 
we extracted 11,635 labeled epithelial cell samples from 
three tissues for further analysis. InferCNV analysis was 
then performed on epithelial cells to identify malignant 
epithelial cells (Additional file  2: Fig. S2). Based on the 
results of the inferCNV analysis, epithelial pathological 
genetic markers [28] and canonical colorectal epithe-
lial markers, 11,635 epithelial cells were reclustered into 
seven subpopulations (Fig.  2A, B and Additional file  9: 
Table S2).

To better understand the molecular mechanisms of 
colorectal carcinogenesis, we constructed the deteriora-
tion trajectory of epithelial cells based on three subpopu-
lations of epithelial cells: benign, TUBA1B + H2AFZ + 
HMGB2 + HIST1H4C + , and malignant cells. Based on 
various intracellular gene expression patterns, epithelial 
cell deterioration was divided into six clusters (Fig.  2C, 
D). APCDD1, REG1A, and SELENBP1 were significantly 
highly expressed in the epithelial cell subpopulation at 
the beginning of the differentiation trajectory (Fig.  2E 
and Additional file 1: Fig. S1C, D). As epithelial cell dete-
rioration had not yet begun, the expression of benign epi-
thelial cell markers was high, whereas that of malignant 
epithelial cell markers shown in Fig. 2B was low (Fig. 2E, 
F and Additional file 1: Fig. S1C–F). During the deterio-
ration process, non-deteriorated, pre-deteriorated, and 
malignant epithelial cell subpopulations have unique 
characteristics. In addition to the increased expression of 
mutated genes with the deterioration of epithelial cells, 
key functional genes in epithelial cells were also altered 
(Fig. 2G). With the exception of NUPR1, low expression 
of epithelial cell apoptotic genes was associated with the 
deterioration of epithelial cells. Additionally, the expres-
sion of NUPR1 increased with tumor aggressiveness 
[29]. Malignant epithelial cells showed elevated NUPR1 
expression, which may have boosted tumor aggressive-
ness. Furthermore, cell proliferation genes were highly 
expressed in malignant epithelial cells, suggesting that 

the terminal subpopulations were active in response to 
additional proliferative signals (Fig. 2G).

To identify the specific cell populations responsible for 
deterioration, we conducted a DEG analysis on six epithe-
lial cell subpopulations. At the beginning of the deteriora-
tion trajectory, we identified the epithelial cell subpopulation 
as REG1A + LEFTY1 + SMOC2 + PCCA + epithelial cell. 
It is possible that this subpopulation will deteriorate. Typi-
cal defensive, secretory, and absorptive capabilities were 
still present, with high expression of genes that characterize 
benign epithelial cells (Fig. 2E and Additional file 1: Fig. S1C, 
D). In contrast, the epithelial cell subpopulation at the end 
of the deterioration trajectory highly expressed malignant 
epithelial cell marker genes, including MMP7 and ERO1A 
(Fig.  2F, Additional file  1: Fig. S1E and Additional file  10: 
Table  S3). Additionally, we found that malignant epithelial 
cell subpopulations were different. Malignant epithelial cells 
were identified as LYZ + CST3 + STMN1 + CYP2W1 + epi-
thelial cell and MMP7 + FABP1 + TFF1 + CKB + epithelial 
cell (Fig. 2H). Finally, we investigated the trajectory of epithe-
lial cell deterioration in CRC adenomas and carcinomas.

Identification of pre‑deteriorated epithelial cell 
subpopulation in colorectal tumorigenesis
Using the DNB approach, we discovered a subpopula-
tion of pre-deteriorated epithelial cells with a strong 
signal of the critical state prior to epithelial cell deterio-
ration, as shown by the considerable shift in single-cell 
landscape entropy (SCLE) in the fourth period (Fig. 3A). 
We identified the fourth-period subpopulation as 
FABP5 + S100P + PLA2G2A + TUBA1B + epithelial cells. 
Notably, S100P, the pre-deteriorated marker, was both a 
DNB gene and a DEG for these pre-deteriorated epithe-
lial cells, demonstrating that this cell subpopulation had 
already begun to exhibit deterioration characteristics 
and can be defined as pre-deteriorated epithelial cells. 
In total, 260 DNB genes were identified in this study. In 
the critical state, the DNB module genes fluctuated dras-
tically, with a wide deviation in gene expression and a 
strong association within the module. Therefore, we con-
structed a network for DNB core genes, such as GAPDH, 
EEF2, HSPA8 and EEF1A1, which ranked highly in the 
network in terms of molecular degree and may be cru-
cial for the deterioration of epithelial cells (Fig.  3B and 
Additional file 3: Fig. S3A-D). Based on GO enrichment 
analysis, DNB genes were enriched in several regulatory 
pathways related to proliferation or apoptosis, such as 
epithelial cell proliferation, apoptotic signaling pathways, 
signal transduction by p53-like mediators, and NIK/NF-
kappaB signaling (Additional file 4: Fig. S4A).

To further discover functional changes in DNB genes 
in pre-deteriorated epithelial cells as defined by DNB, 
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Fig. 2  Trajectory of epithelial cell deterioration. A UMAP clustering of epithelial cells (n = 11,635) from scRNA-seq of patients with CRC. B Expression 
of marker genes in seven clusters of epithelial cells. C, D Potential trajectory of epithelial cell deterioration in adenoma and carcinoma tissues 
(n = 3688) inferred using Monocle2 based on gene expression. Pseudotime is shown numbered 1- 6 and the red dash indicates the direction 
of the pseudotime. E, F The expression levels of APCDD1 and MMP7 in different pseudotime of epithelial cell subpopulation. The average gene 
expression is indicated by the black dash. G The heatmap shows dynamic changes in gene expression, including benign epithelial markers, mutant 
genes associated with epithelial cell deterioration, epithelial apoptotic processes, and cell proliferation. H The heatmap shows expression of cell 
type-specific gene markers in different epithelial cell clusters. Marker genes for each cluster identified by Seurat analysis, with four genes selected 
for each cluster highlighted at the top
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Fig. 3  Identification of epithelial cell subtype. A The graph on the left demonstrates that the curve of SCLE score Ht defined in Materials and 
Methods suddenly increases as the system approaches the critical point (p = 0), which is considered as a critical state transition at a bifurcation 
point. The graph on the right demonstrates that pre-deteriorated epithelial cells were in the critical state and potential trajectory of epithelial cell 
deterioration is same as Fig. 2D. B The graph shows the PPI network of DNB core genes. C Function analysis (GSVA) demonstrates that various gene 
sets may have varying effects on the progression of epithelial cell deterioration. Pathways that were significantly enriched in the pre-deterioration 
stage are marked in red. Limma was used to compare enrichment score between before-deterioration stage and pre-deterioration stage, as well 
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GSVA analysis was applied to these epithelial cells. The 
results showed that the p53 signaling pathway was con-
siderably enriched in pre-deteriorated epithelial cells 
(Fig.  3C), which is consistent with the results of other 
study [11]. Furthermore, after the DNB-derived pre-
deterioration period, oncogenic signaling pathways such 
as JAK-STAT, Wnt, PI3K-Akt, VEGF, and TGF-β were 
significantly altered. In addition, the citrate cycle (TCA 
cycle) and glycolysis/gluconeogenesis were downregu-
lated in the early stages of the proposed chronotropic tra-
jectory, and then upregulated at the end of the proposed 
chronotropic trajectory (Fig.  3C). This result is consist-
ent with previous studies showing that malignant cells 
primarily use glycolysis rather than the TCA pathway to 
generate energy and intermediate precursors for metabo-
lite biosynthesis, a phenomenon known as the Warburg 
effect [2, 30]. Consequently, we identified a subpopula-
tion of pre-deteriorated epithelial cells with unique gene 
expression patterns and functional transition states.

We further performed SCENIC analysis of these epi-
thelial cells to investigate the transcription factors that 
may play a regulatory role in the deterioration of epi-
thelial cells. Specific co-expressed TFs and their poten-
tial target genes were identified (Fig. 3D and Additional 
file  5: Fig. S5). The results revealed a significant differ-
ence in the regulatory activity of the TFs obtained from 
screening before and after the critical period. Apoptosis-
induction-related TFs [31] such as FOS, JUN, and TP53 
exhibited significantly higher transcriptional activity 
in before-deteriorated cell populations than in deterio-
rated cell populations. Notably, FOS and JUN form AP-1 
transcription factor dimers that affect cell life and death 
by regulating the expression and transcriptional activ-
ity of the tumor suppressor gene, TP53 [32]. In contrast, 
the upregulation of the transcriptional activity of MYC, 
MYBL2, and XBP1 is associated with cell proliferation 
[33–35], which may contribute to the progression of pre-
deteriorated epithelial cells toward deterioration.

Low expression of P53 triggered by FOS/JUN suppressed 
P53‑induced apoptosis in pre‑deteriorated epithelial cells, 
contributing to epithelial cell deterioration
We used a soft clustering algorithm to categorize DNB-
neighboring genes based on their expression trends and 
discovered drastic changes in the gene expression levels 
of the epithelial cell subpopulation between the critical 
state and after the critical state (Fig.  4A). Furthermore, 
the critical period detected using the DNB method was 
considered the period of pre-deteriorated epithelial cells 
(Fig. 3A). Once the critical period is complete, these cells 
become malignant epithelial cells.

To systematically explore the roles of DNB genes in the 
pre-deteriorated epithelial cell subpopulation, we con-
structed a PPI network for DNB and DNB-neighboring 
genes. We found that the expression of DNB-neighboring 
genes showed flip-flop changes after the critical period 
(Fig.  4B). Therefore, these DNB-neighboring genes are 
regarded as reversed genes that play a significant role 
in epithelial cell deterioration. DNB genes also interact 
with reversed genes in the network, which may change 
gene expression patterns or regulate downstream inter-
actions. Remarkably, these DNB-neighboring genes were 
enriched in pathways such as colorectal cancer, apopto-
sis, and metabolism-related pathways (Additional file  4: 
Fig. S4B). Subsequently, we mapped DNB genes and 
DNB-neighboring genes to these pathways and observed 
a regulatory role of DNB genes on DNB-neighboring 
genes in the apoptosis pathway. Therefore, we selected 
this section for further analysis.

Furthermore, we constructed a subnetwork of DNB 
genes and DNB-neighboring genes mapped to the 
apoptotic pathway. These DNB-neighboring genes 
are driven by DNB genes. We discovered that FOS 
and JUN act as DNB genes to drive the reversal altera-
tions of P53 expression (Fig.  4C and Additional file  6: 
Fig. S6A). We observed that the expression of the DNB 
genes FOS and JUN significantly decreased with epithe-
lial cell deterioration (Fig.  4D, E), which is consistent 
with a previous study [36]. Additionally, the expression 

Fig. 4  The reversed expression of DNB-neighboring genes is driven by DNB genes. A The series of graphs illustrates the pattern of dynamic 
changes in DNB neighboring genes between Pre-deterioration stage and Deteriorated stage using MFUZZ. B Cytoscape visualization of the 
interaction network between the DNB genes and their neighboring genes, including three stages of epithelial cell deterioration. The DNB genes are 
represented by square-shaped network nodes from the pink region. The DNB-neighboring genes are represented by the network nodes grouped in 
circles from the orange region. All three types of deterioration states involve the same genes and their locations in the network, and a gradient from 
blue to red denotes low to high levels of gene expression. C Cytoscape visualization of DNB genes and their neighboring genes interaction network 
in the pre-deterioration stage. Rectangles represent the DNB genes, and circles represent the DNB-neighboring genes. The gradient from blue to 
red denotes low to high levels of gene expression. D–F The expression of FOS, JUN and TP53 in before-deterioration stage and deteriorated stage. 
Differences in expression are checked using the Wilcox test. G FOS and JUN regulated the expression of P53 and its downstream apoptosis-related 
genes to suppress P53-induced apoptosis. The oval represents DNB genes, the rectangle represents DNB-neighboring genes, and the diamond 
represents additional genes that do not belong to any category. The gradient from blue to red denotes low to high levels of gene expression

(See figure on next page.)
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of P53, a DNB-neighboring gene in pre-deteriorated 
epithelial cells, significantly decreased with epithelial 
cell deterioration (Fig.  4F). Subsequently, we selected 
four apoptosis-related genes with known functions 
(two pro-apoptotic and two anti-apoptotic) and ana-
lyzed their gene expression to identify apoptotic trends 
during epithelial cell deterioration. The results demon-
strated that during the deterioration of epithelial cells, 
the expression of pro-apoptotic genes, such as BBC3 and 
CASP6, dramatically decreased, whereas the expression 
of anti-apoptotic genes, such as GADD45A and XIAP, 
significantly increased (Additional file  6: Fig. S6B). This 
suggests that apoptosis was inhibited during epithelial 
cell deterioration. SCENIC analysis demonstrated that 
the transcriptional activities of FOS and JUN had simi-
lar expression patterns (Fig. 3D), suggesting that they act 
synergistically. JUN and FOS are proto-oncogenes with 
expression products that can dimerize to form the activa-
tor protein-1 (AP-1) complex [37, 38], which is involved 
in tumorigenesis by regulating the expression and tran-
scriptional activity of the target gene P53 to affect apop-
tosis [32]. In our gene regulatory role analysis, FOS and 
JUN formed the AP-1 complex that regulates the expres-
sion of downstream apoptosis-related genes of the P53 
pathway by inhibiting the expression of P53, contributing 
to the suppression of P53-dependent apoptosis (Fig. 4G). 
Consequently, FOS and Jun drive low expression of P53 
to suppress P53-induced apoptosis, which may contrib-
ute to epithelial cell deterioration.

Malignant epithelial cells contributed to the progression 
of pre‑deteriorated epithelial cells toward deterioration 
through the GDF signaling pathway
We performed CellChat analysis to explore the inter-
actions between the six epithelial cell populations on 
the deterioration trajectory. GDF15 promotes cell 
proliferation by binding to its receptor TGFBR2 [39]. 
Compared to the other five subpopulations of epithe 
lial cells, MMP7 + FABP1 + TFF1 + CKB + epithelial cell  
showed the highest expression of ligand-receptor  
pair in the GDF signaling pathway (Additional file  7: 
Fig. S7D). As a sender of the GDF signaling pathway, 
MMP7 + FABP1 + TFF1 + CKB + epithelial cells con 
veyed the strongest proliferation signal to FABP5  

+ S100P + PLA2G2A + TUBA1B + epithelial cells (Fig.  5A 
and Additional file 7: Fig. S7A), which may contribute to the 
progression of pre-deteriorated epithelial cells toward 
deterioration. In addition, the expression level of GDF15 
was significantly upregulated with epithelial cell deterio-
ration (Fig. 5D), which is consistent with a previous study 
[40]. In this study, GDF15 was a DNB gene in the pre-
deteriorated epithelial cell subpopulation, and TGFBR2 is 
a DNB-neighboring gene. DNB genes interact with their 
neighboring genes and may provide feedback to the DNB 
gene population to influence cellular communication 
(Fig.  5E). In conclusion, we suggest that malignant epi-
thelial cells may accelerate the progression of pre-dete-
rioration of epithelial cells toward deterioration through 
the GDF signaling pathway.

Furthermore, we investigated whether intercel-
lular communication among cell populations in the 
tumor microenvironment (TME) affects the deteriora-
tion of cell populations at the critical point. The results 
showed that T cells influenced the deterioration of 
FABP5 + S100P + PLA2G2A + TUBA1B + epithelial 
cells through CD8A-CEACAM5, along with the high-
est communication probability and increased expres-
sion of the ligand-receptor pair (Fig.  5B and Additional 
file  7: Fig. S7B, E). Additionally, macrophages, plasma 
B cells, and fibroblasts affected the deterioration of 
FABP5 + S100P + PLA2G2A + TUBA1B + epithelial cells 
through GRN-SORT1 (Fig.  5C). Notably, macrophages 
possessed the highest expression of ligand-receptor 
pairs and the highest communication probability in the 
GRN signaling pathway (Additional file  7: Fig. S7C, F). 
These results suggest that T cells and macrophages may 
be involved in epithelial cell deterioration through the 
CEACAM/GRN signaling pathway.

Discussion
Determining the process of epithelial cell deterioration is 
a significant challenge when dissecting colorectal tumo-
rigenesis. However, scRNA-seq is a useful technique for 
characterizing cell subpopulations in CRC. This study 
describes the trajectory of epithelial cell deterioration. 
We used DNB to identify biomarkers for pre-deteriorated 
epithelial cells during the critical deterioration period. At 
the level of intercellular communication, we discovered 

(See figure on next page.)
Fig. 5  Intercellular communication contributes to epithelial cell deterioration. A Chord plot shows the interactions among cell subpopulations on 
the epithelial cell deterioration trajectory through the GDF signaling pathway. B Chord plot shows the interactions among cell populations in the 
TME through the CEACAM signaling pathway. C Chord plot shows the interactions among cell populations in the TME through the GRN signaling 
pathway. D The expression of GDF15 in before-deterioration stage and deteriorated stage. Differences in expression are checked using the Wilcox 
test. E Cytoscape visualization of the protein–protein interaction network. Red rectangles represent DNB-genes, and blue rectangles represent 
DNB-neighboring genes. Genes that directly engaged in the network are represented by the solid green line, and genes that indirectly engaged in 
the network are represented by the orange dotted line
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that malignant epithelial cells contribute to the dete-
riorating progression of pre-deteriorated epithelial cells 
through the GDF signaling pathway.

We identified a subpopulation of pre-deteriorated epi-
thelial cells during the deterioration process using the 
DNB method. Compared to conventional static methods 
based on differential expression of molecular biomark-
ers to detect molecular alterations in cell subpopulations, 
DNB provides advantages in identifying the deterioration 
of epithelial cells in CRC [41]. Pre-deteriorated epithe-
lial cells represent a critical transition period in which 
the expression patterns of DNB-neighboring genes are 
flipped. DNB genes were enriched in the regulation of 
NIK/NF-kappaB signaling. It has been shown that NF-κB 
is a major regulator of gene expression in inflammatory- 
associated malignancies [42], and suppression of this 
pathway may be a potential therapy strategy for cancer 
[43]. In addition, DNB-neighboring genes were enriched 
in cancer and apoptosis pathways. Dysregulation of 
apoptosis is correlated with uncontrolled cell prolifera-
tion and cancer progression [44]. And the dysregulation 
of apoptosis is correlated with mitochondrial dysfunc-
tion [45]. The release of cytochrome c into the cytoplasm 
and the opening of the mitochondrial transition pore can 
activate the apoptotic process [46, 47]. DNB-neighboring 
reverse genes in pre-deteriorated epithelial cells may pro-
vide clues for the intervention in deterioration. Further-
more, we discovered that the enrichment scores of the 
Wnt and PI3K-Akt pathways were significantly elevated 
after the critical period of deterioration. Aberrant Wnt 
signaling and overexpression of PI3K-Akt signaling have 
been reported in numerous malignancies, particularly 
CRC [48, 49]. Moreover, we discovered that MYC sign-
aling pathways associated with cell proliferation were 
significantly enriched in pre-deteriorated epithelial cells. 
Sustaining proliferative signaling is considered as a hall-
mark of cancer [50]. Maintenance of cell proliferation 
signals in pre-deteriorated epithelial cells may contribute 
to their progression toward deterioration. In conclusion, 
pre-deteriorated epithelial cell populations may be a new 
cell subpopulation for cellular targeting in early interven-
tion studies in CRC. Prevention of epithelial cell deterio-
ration requires further investigation.
FOS/JUN interacted with P53 in the DNB gene inter-

action network. The expression of c-Jun has consist-
ently been shown to be involved in growth inhibition 
and apoptosis induction by several anticancer drugs [51]. 
Previous research has shown that in prostate cancer cell 
lines, a lack of FOS promotes cell proliferation and results 
in changes to oncogenic pathways [52]. Additionally, pre-
vious studies have demonstrated that the AP-1 motif, 
which binds to c-Fos/c-Jun, is required for efficient tran-
scription of the human P53 promoter [53, 54]. Moreover, 

downregulation of c-Fos and c-Jun expression leads to 
reduced expression of endogenous P53 [53]. Further-
more, P53 is an important tumor suppressor gene that 
induces apoptosis [55]. P53-induced apoptosis in epi-
thelial cells is a crucial mechanism for the prevention of 
tumor progression. In our gene regulatory role analysis, 
FOS and JUN induced low expression of P53-regulated 
downstream pro-apoptotic genes and high expression of 
anti-apoptotic genes through suppressing P53 expres-
sion, which in turn inhibited P53-induced apoptosis. 
However, the transcriptional profile during epithelial cell 
deterioration was aberrant. FOS/JUN, as the DNB gene, 
drive P53 into the critical state of deterioration, which 
may have an impact on the P53-induced apoptotic pro-
cess, suggesting that the disturbed apoptotic process in 
epithelial cells prior to deterioration may not ensure their 
normal proliferation. These studies of FOS/JUN mecha-
nisms, along with our DNB gene expression patterns, 
indicated that FOS/JUN as a DNB gene has the potential 
to be an intervention target for pre-deteriorated cells.

We found that the intercellular signaling network con-
tributes to epithelial cell deterioration. GDF15, a ligand 
of malignant epithelial cells, interacts with TGFBR2, the 
receptor of pre-deteriorated epithelial cells. GDF15 is 
a member of the TGF-β superfamily [56] and has been 
previously identified as a new potential biomarker for 
cervical cancer [57]. In addition, GDF15 overexpres-
sion accelerated the growth and progression of oral 
squamous cell carcinoma [58], whereas GDF15 knock-
down in malignant gliomas decreased cell proliferation 
in  vitro and carcinogenesis in  vivo [59]. Furthermore, 
GDF15 promoted the progression of Esophageal Squa-
mous Cell Carcinoma through the activation of TGFBR2 
[39]. Therefore, we speculated that malignant epithelial 
cells promote pre-deteriorated epithelial cells toward 
deterioration through GDF signaling. These results pro-
vide new insights into the mechanism of epithelial cell 
deterioration.

We discovered that the citrate cycle (TCA cycle) and 
glycolysis/gluconeogenesis were increased near the 
end of the proposed chronotropic trajectory after being 
downregulated early in the proposed chronotropic tra-
jectory. This result ties well with previous study on the 
transcriptomic analysis of FAP patients [2]. In line with 
the previous study [36], the expression of FOS and JUN 
decreased significantly with epithelial cell deterioration. 
In addition, the transcriptional activity of HNF4A was 
upregulated after the critical period, this is consistent 
with what has been found in previous study [60]. Fur-
thermore, the p53 signaling pathway was significantly 
enriched in pre-deteriorated epithelial cells, which is 
broadly in line with the result of another study [11]. 
Noteworthily, we clearly identified the subpopulation of 
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pre-deteriorated epithelial cells at the single-cell level. 
And FOS/JUN were found to be biomarkers for the pre-
deteriorated epithelial cell subpopulation in CRC.

However, this study has several limitations. The pre-
deteriorated epithelial cells selected for the critical period 
included only 450 cells, but the cell number satisfied our 
analysis criteria (n > 6). Further confirmation of the sub-
population of pre-deteriorated epithelial cells using flow 
cytometry is required. In addition, further knockdown 
of FOS and JUN genes in cellular and animal models are 
required to confirm the precise mechanism by which 
FOS/JUN drive pre-deteriorated epithelial cells towards 
deterioration. It would be better to develop biomarkers in 
combination with more advanced nanomaterials, such as 
carbon nanotubes and nanostructured lipid nanocarriers 
[61–64].

Conclusions
In summary, we demonstrated the trajectory of epi-
thelial cell deterioration and used DNB to character-
ize pre-deteriorated epithelial cells from adenoma and 
carcinoma tissues of CRC patients at the single-cell 
level. FOS/JUN regulated the expression of downstream 
apoptosis-related genes of the P53 pathway through 
inhibiting the expression of P53, thereby contributing 
to the suppression of P53-dependent apoptosis (Fig.  6). 
Malignant epithelial cells contributed to the progression 
of pre-deteriorated epithelial cells through GDF signal-
ing (Fig. 6). These findings provide new insights into the 
mechanism of epithelial cell deterioration and toward 
early intervention in CRC.
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