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Abstract 

Background Glioma is the most prevalent primary tumor of the central nervous system. Glioblastoma multiforme 
(GBM) is the most malignant form of glioma with an extremely poor prognosis. A novel, regulated cell death form 
of copper-induced cell death called “cuproptosis” provides a new prospect for cancer treatment by regulating 
cuproptosis.

Methods Data from bulk RNA sequencing (RNA-seq) analysis (The Cancer Genome Atlas cohort and Chinese Glioma 
Genome Atlas cohort) and single cell RNA-seq (scRNA-seq) analysis were integrated to reveal their relationships. A 
scoring system was constructed according to the cuproptosis-related gene expression, and core genes were experi-
mentally verified using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western 
blot (WB), immunohistochemistry (IHC), and immunofluorescence (IF). Moreover, cell counting kit-8 (CCK8), colony 
formation, 5-ethynyl-2’-deoxyuridine (EdU) incorporation, transwell, and flow cytometry cell cycle were performed to 
evaluate cell proliferation, invasion, and migration.

Results The Cuproptosis Activation Scoring (CuAS) Model has stable and independent prognostic efficacy, as veri-
fied by two CGGA datasets. Epiregulin (EREG), the gene of the model has the most contributions in the principal 
component analysis (PCA), is an onco-immunological gene that can affect immunity by influencing the expres-
sion of programmed death-ligand 1 (PD-L1) and mediate the process of cuproptosis by influencing the expression 
of ferredoxin 1 (FDX1). Single cell transcriptome analysis revealed that high CuAS GBM cells are found in vascular 
endothelial growth factor A (VEGFA) + malignant cells. Oligodendrocyte transcription factor 1 (OLIG1) + malignant is 
the original clone, and VEGF and CD99 are the differential pathways of specific cell communication between the high 
and low CuAS groups. This was also demonstrated by immunofluorescence in the tissue sections. Furthermore, CuAS 
has therapeutic potential for immunotherapy, and we predict that many drugs (methotrexate, NU7441, KU -0063794, 
GDC-0941, cabozantinib, and NVP-BEZ235) may be used in patients with high CuAS.
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Conclusion EREG is the core onco-immunological biomarker of CuAS and modulates the cross-talk between VEGF 
and CD99 signaling in glioblastoma, and CuAS may provide support for immunotherapy and chemotherapy.

Keywords Cuproptosis, Bulk RNA-seq analysis, Single cell RNA-seq, Immunohistochemistry, Transwell assays, Flow 
cytometry cell cycle, VEGFA, CD99, Immune microenvironment

Background
Glioma is the most prevalent primary tumor of the 
central nervous system [1]. It is classified into grades 
I to IV by the World Health Organization based on its 
malignant features, wherein grades I, II, and III are low-
grade glioma and grade IV is high-grade glioma, also 
known as glioblastoma multiforme (GBM) [1, 2]. GBM 
is the most malignant form of glioma with an extremely 
poor prognosis. Despite considerable advances in the 
development of treatments, including surgical resec-
tion, radiotherapy, and chemotherapy, little progress 
toward prolonged survival and better prognosis has 
been achieved over the last few decades [3]. The modest 
median overall survival (OS) time in GBM is approxi-
mately 14 months, and only 5% to 6.8% of patients with 
GBM survive 5  years after diagnosis [1–4]. Multiple 
clinical trials, including those on immunotherapy, have 
been conducted for patients with GBM; however, the 
results did not conclude the expected results [1–4]. In 
our previous study, we generated a ferroptosis-related 
prognostic risk score model to predict the clinical sig-
nificance and immunogenic characteristics of GBM 
[5]. However, the biomarkers and predictors for patient 
outcome and the immunotherapy response of GBMs 
have not been fully elucidated, and existing predictive 
models are far from satisfactory.

Beyond classical apoptosis, several forms of regulated 
cell death (RCD) have been identified, such as ferrop-
tosis, necroptosis and pyroptosis [6]. These RCD sub-
routines differ in the initiating stimuli, intermediate 
activation events, and end effectors. Various heavy met-
als are essential micronutrients; however, the insuffi-
ciency or excessive abundance of metals can trigger cell 
death, which can induce RCD through different subrou-
tines. For example, ferroptosis has been defined as an 
iron-dependent form of oxidative cell death caused by 
unrestricted lipid peroxidation [7]. A novel RCD form of 
copper-induced cell death called “cuproptosis” was pro-
posed by Tsvetkov et al. [8], which is gaining attention in 
the field. Cuproptosis differs from oxidative stress-related 
cell death (e.g., apoptosis, ferroptosis, and necroptosis). 
In contrast, mitochondrial stress, especially the aggre-
gation of lipoylated proteins and destabilization of Fe-S 
cluster proteins, results in proteotoxic stress and ulti-
mately cell death. Hence, it may provide a new prospec-
tive for cancer treatment by regulating cuproptosis.

Methods
Data preparation
The omics data of the GBM samples from the TCGA 
database, including mRNA expression, Single Nucleo-
tide Variant (SNV), copy number variation (CNA), and 
clinical information, were downloaded from UCSC Xena 
(https:// xenab rowser. net/). The mutation, CNA, and 
intracomatous heterogeneity of samples were derived 
from previous studies [9]. The sample set from the 
CGGA (http:// www. cgga. org. cn/) database was used as 
an independent validation set, involving 139 (CGGA1-
mRNAseq325) and 124 (CGGA2-mRNA-Array301) 
GBM samples. Data for scRNA-seq were downloaded 
from the GEO (https:// www. ncbi. nlm. nih. gov/ geo/) 
database (GSE173278). Clinical characteristics of the 
three data sets were summarized (see Additional file  1: 
Table S1).

Cuproptosis activation scoring model
Ten cuproptosis characteristic genes (FDX1, LIAS, 
LIPTI, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and 
CDKN2A) were obtained from previous studies [8]. 
Based on these characteristic genes, consistent cluster-
ing analysis was used to identify two sample clusters in 
the TCGA-GBM sample. The gene expression count data 
of two sample clusters were calculated based on R packet 
DESeq2 to identify differentially expressed genes (DEGs) 
[10]. Candidate prognostic genes were identified from 
differentially expressed genes based on a univariate Cox 
regression analysis, and redundant factors were further 
filtered using LASSO Cox analysis. Based on the contri-
bution of the prognostic genes to principal components 1 
and 2, CuAS was defined as:

where HR (hazard ratio) is derived from the Cox analysis. 
The CuAS model in the validation cohort was reproduced 
with a similar formula. The construction of the cluster and 
CuAS models is illustrated in a schematic diagram (Fig. 14).

Biofunction prediction
The GO/KEGG enrichment analysis based on GSVA 
calculated the GO/KEGG signature activity scores in 

cuproptosis activation score(CuAS)

= GeneHR>1 ∗ (PC1+ PC2)

− GeneHR<1 ∗ (PC1+ PC2)

https://xenabrowser.net/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
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each sample, and the significant differences in the activ-
ity scores between the sample groups were compared. In 
addition, gene set enrichment analysis (GSEA) was used 
to calculate the differential expression of genes between 
the high and low CuAS groups, and the enrichment sig-
nificance was calculated.

Overall survival outcome prediction
Samples were grouped into the high or low CuAS groups 
according to the median value of the CuAS. The OS dif-
ference between the high and low CuAS groups was pre-
dicted with the Kaplan–Meier algorithm. The receiver 
operating characteristic (ROC) curve and area under the 
curve (AUC) were generated to compare the prognostic 
ability within the different models.

GBM immune landscape
The immune and stroma scores and the tumor purity of 
the tumor samples were calculated based on the ESTI-
MATE algorithm [11]. The cell composition of the tumor 
microenvironment (cellular infiltration) was calculated 
based on the CIBERSORT [12] and xCell algorithms [13] 
and GSVA score of the 28 immune cell signature genes, 
respectively [14].

Tissue sampling from glioma patients
Fresh GBM tissues from histologically confirmed cases 
were obtained from the Union Hospital, Tongji Medical 
College, Huazhong University of Science and Technol-
ogy. The study was approved by the ethics committee of 
the Union Hospital, Tongji Medical College, Huazhong 
University of Science and Technology.

Cell culture, real‑time polymerase chain reaction, 
and immunohistochemistry
The normal human astrocyte cell line HA1800 and 
human glioma tumor cell lines U87, U251, LN229 and 
A172 were purchased from the Cell Bank of the Chinese 
Academy of Sciences. The STR identification reports of 
the cancer cell lines are presented in Additional materials 
(see Additional materials-cell lines STR identification), 
and we also used CCLA, an excellent cell line identifica-
tion database, for secondary identification to ensure no 
cross-contamination of cell lines [15]. The cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
(Gibco) containing 10% heat-inactivated fetal bovine 
serum and 1% penicillin/streptomycin. qRT-PCR was 
conducted to compare the gene expression in 20 tumor 
samples in adjacent normal tissue. qRT-PCR was per-
formed in triplicate using samples derived from three 
independent experiments. Formalin-fixed, paraffin-
embedded GBM tissues were used for IHC staining. The 

primers’ sequence are provided (see Additional file  1: 
Table S3).

Lentivirus infection assay
The assay complies with the protocol described in a pre-
vious article [16]. Short hairpin RNA (shRNA) against 
EREG (shEREG) and a negative control shRNA (sh NC) 
were designed and synthesized by GeneCreate (Wuhan, 
China). The lentivirus, pLent-shEREG-Flag-Puro or its 
negative control (NC) pLent-Flag-Puro (GeneCreate) was 
used to infect GBM cells with enhanced infection solu-
tion (GeneCreate) according to the manufacturer’s proto-
col. Seventy-two hours after the cells were infected with 
lentivirus, 2 μg/mL puromycin was added to kill the cells 
that had not been transfected. shRNA sequences are pro-
vided (see Additional file 1: Table S2).

Cell counting kit‑8 assay
U87 and U251 cells were assessed with the CCK-8 
(Biosharp, China) reagent according to the manufactur-
er’s instructions. Cells were inoculated on 96-well plates 
at a density of 2000 cells per well with 100 μL of medium. 
CCK8 solution (10 μL) was added to each well every 24 h 
for a total of 96 h, and the cells were further incubated at 
37 °C for 1 h. The absorbance of each well was measured 
at 450 nm with a spectrophotometer.

Colony formation assay
U87 and U251 cells were prepared into a single cell sus-
pension and seeded into a six-well plate (200 cells/well) 
for a two-week incubation to form colonies. After stain-
ing with 0.01% crystal violet (Sigma), the colonies were 
subjected to microscopic examination. The rate of colony 
formation was calculated.

Cell invasion and migration assays
After starving the cells for 6–8 h in serum-free DMEM, 
a total of 1 ×  104 cells were seeded in the upper cham-
ber with 200  μl of serum-free medium for the migra-
tion assay. In addition, 2 ×  104 cells were added into 
Matrigel-coated upper transwell chambers for the inva-
sion assay. The lower chambers were filled with DMEM 
containing 10% FBS. After incubation at 37  °C for 24 h, 
cells on the lower surface of the membrane were fixed in 
100% methanol and stained with 0.1% crystal violet dye 
for 20  min at room temperature. Finally, after washing 
with phosphate-buffered saline, the cells were imaged in 
five randomly selected fields under a light microscope 
(Olympus Corporation) at × 100 magnification.

5‑ethynyl‑2’‑deoxyuridine (EdU) incorporation assay
According to the manufacturer’s instructions, the 
EdU Kit (Roche, Mannheim, Germany) was utilized to 
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monitor the proliferation of transfected cells. A Zeiss 
Axiophot Photomicroscope (Carl Zeiss, Oberkochen, 
Germany) was used to capture representative images.

Compound
Elesclomol (STA-4783) was obtained from MedChemEx-
press (MCE).  CuCl2 (Copper (II) chloride, 97%, 222011), 
and  FeCl3 (reagent grade, 97%, 157740) were obtained 
from Sigma-Aldrich.

Western blotting
Proteins from tissues and cells were extracted using radi-
oimmunoprecipitation assay (RIPA) (strong) buffer (Bey-
otime, Shanghai, China) containing protease inhibitors. 
Subsequently, protein concentrations were determined 
using a Bicinchoninic Acid (BCA) Protein Assay Kit (Bey-
otime). A total of 20 or 30 μg of protein was subjected to 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis and transferred to a 0.22 or 0.45 µm polyvinylidene 
difluoride (PVDF) membrane (EMD Millipore, Bedford, 
USA). PVDF membranes were then blocked in 5% skim 
milk for 2 h. Subsequently, samples were incubated with 
specific primary antibodies at 4  °C overnight. Follow-
ing this, membranes were incubated with the appropri-
ate secondary antibodies for 2  h at room temperature. 
Finally, the protein bands were visualized with enhanced 
chemiluminescence (ECL) Western blotting substrate 
(New Cell & Molecular Biotech). Information on the 
antibodies are provided (see Additional file 1: Table S4).

Flow cytometry cell cycle assay
After transient transfection, U87 and U251 cells were 
fixed in 75% ethanol for 12  h. Subsequently, cells were 
stained with propidium iodide (Beyotime) for cell cycle 
analysis. Finally, the percentage of cells in each cell cycle 
phase (G0/G1, S, and G2/M) was assessed, and the 
results were analyzed using the ModFit LT software.

RNA velocity and cells communication
The RNA velocity of the tumor cells was calculated using 
the package ‘velocity’ and ‘scVelo’ in Python. The vari-
ous states of the GBM cells was mapped to show their 
internal transformation. The cross-talk between immu-
nocytes and GBM cells was analyzed using the R pack-
age ‘celltalker,’ and differential ligand-receptor pairs were 
identified.

Transcription factor (TF) regulatory network construction
The RcisTarget human database was downloaded from 
https:// resou rces. aerts lab. org/ cista rget/ for transcription 
factor regulatory network construction. The correspond-
ing gene ranking motif database (Hg38_refseq-r80_10kb_
up_and_down_tss.mc9nr.feather, annotations_fname 

motifs-v9-nr.hgnc-m0.001–00.0.tbl) were downloaded 
from the human transcription factors list (https:/github.
com/aertslab/pySCENIC/tree/master/resources), which 
is based on psSCENIC transcription factor regulation 
network. The AUCell algorithm was used to calculate 
the activity of each transcription factor, and the regula-
tion module was identified according to the Connection 
Specificity Index (CSI). The calculation method of CSI 
was based on a previous article [17]. Similarly, we used 
the hTFtarget database to predict between TF and tar-
gets, which contains the most comprehensive data on 
human TF-target to date [18]. The overall activity score 
of the regulatory module was defined as the mean of all 
TF activities in the module.

Prediction of potential drug sensitivity
The drug sensitivity information and corresponding 
expression level were obtained from Genomics of Drug 
Sensitivity in Cancer (GDSC), Cancer Cell Line Encyclo-
pedia (CCLE), and the Cancer Therapeutics Response 
Portal (CTRP) (https:// porta ls. broad insti tute. org/ ctrp). 
The CuAS score of each cell line was calculated and 
grouped based on the median. The correlation between 
the AUC and IC50 data of multiple drugs in the cell lines 
was calculated by using Spearman’s correlation. The dif-
ference of the AUC value between the two groups were 
compared by the Wilcoxon test.

Statistical analysis
The significance of the difference between the two groups 
of continuous variables was evaluated using the Wilcox 
rank-sum test. Spearman’s rank correlation was used to 
evaluate the correlation between the variables. Univariate 
and multivariate Cox regression and LASSO Cox regres-
sion were used to identify molecules with prognostic effi-
cacy, and the K-M curves and log-rank tests were used 
to assess the survival differences between the sample 
groups. All computational analyses were performed by R 
(version 4.1.2) or Python.

Results
Cuproptosis characteristic gene consistent clustering 
to identify sample subgroups
The RNA-seq data of 169 TCGA-GBM samples were 
obtained, and the tumor samples were clustered into two 
groups based on cuproptosis genes (FDX1, LIAS, LIPT1, 
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A) 
through consistent cluster analysis (Fig.  1A, B, C). Sig-
nificant differences were not observed in the survival 
between the two subgroups of samples, suggesting that 
these 10 genes alone may not be able to characterize the 
effect of cuproptosis mechanism on patient survival ben-
efit (Fig. 1D). We also observed the expression patterns of 

https://resources.aertslab.org/cistarget/
https://portals.broadinstitute.org/ctrp
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these 10 characteristic genes in two subgroups of samples 
(Fig. 1E). However, significant differences were observed 
in the landscape of mutation, immune checkpoint expres-
sion level, and cancer hallmarks between the two sub-
groups. First, the SNV mutation frequencies of TP53 and 
other genes showed significant differences between the 
two types of samples (Fig. 2A). The map of CNA showed 
that both types of patients had significant amplification 
on chromosome 7 (Fig.  2B), and significant difference 
was not observed in total frequency of CNA (Fig.  2C). 
In addition, significant differences were observed in 
intratumoral heterogeneity between the two subgroups 
(Fig.  2D). Moreover, we observed a significantly differ-
ent expression level of immune checkpoint genes PD-1, 
IDO1, and LAG3 in the two subgroups (Fig. 2E). Signifi-
cant differences were observed in the cancer hallmarks of 
fatty acid metabolism, KRAS, P53, NOTCH, and PI3K/
AKT/MTOR signaling pathway between the two sub-
groups (Fig. 2F).

Construction of cuproptosis activation scoring 
model based on differentially expressed genes 
between the sample subgroups
First, the DEGs between the two groups of samples were 
identified based on DESeq2 (Fig.  3A). The functions of 
these DEGs were enriched in the cell cycle related pro-
cesses, protein kinase activity, P53 signaling pathway, and 
TGF-βsignaling pathway (Fig. 3B, C). In the TCGA-GBM 
sample set, we identified 14 candidate prognostic marker 
genes that were significantly associated with the OS of 
patients based on univariate Cox regression (Fig. 3E) and 
further filtered the redundant factors using LASSO Cox 
to obtain 11 prognostic marker genes (Fig. 3D). Based on 
the PCA of these 11 genes, their contribution to principal 
components 1 and 2 were used as coefficients (Fig. 3F) to 
construct CuAS.

The prognostic efficacy of CuAS
In the training set, we scored the samples based on 
these 11 genes and the results of the PCA (Fig.  4A). 
We found that patients with higher CuAS scores had 
significantly worse OS (Log-rank P < 0.0001, Fig.  4B) 
and 6  month AUC (95%CI) = 0.625 (0.608–0.643), 
1  year AUC (95%CI) = 0.69 (0.646–0.732), 2  year 
AUC (95%CI) = 0.797 (0.735–0.852), 3  year AUC 
(95%CI) = 0.825 (0.765–0.885) (Fig.  4E). In addition, 
two validation sets from the CGGA database showed 

that CuAS had stable prognostic efficacy (Log-rank 
P = 0.0075, Fig.  4C, Log-rank P = 0.0043, Fig.  4D). Uni-
variate Cox regression analysis was performed on CuAS 
and multiple clinical features to evaluate the independ-
ence of the prognostic efficacy of CuAS. The results 
showed that CuAS was significantly associated with 
patient prognosis (HR (95% CI) = 7.51 (3.75, 15.05)) 
(Fig.  4F). Consistent results were also observed in the 
independent validation sets (HR (95% CI) = 1.74 (1.133, 
2.593)) (Fig.  4G). Furthermore, we constructed a multi-
variate Cox regression model for CuAS and multiple clin-
ical features and found that CuAS could still serve as an 
independent prognostic factor (HR (95% CI) = 7.35 (3.23, 
16.7)) (Fig. 4H), HR (95% CI) = 1.90 (1.12, 3.2)) (Fig. 4F)).

Epiregulin (EREG) was an oncogenic gene that can 
influence immunity and cuproptosis
The EREG mRNA expression levels were high in tissues 
and multiple glioma cell lines (Fig. 5 A, B). We used West-
ern blot (Fig. 5C) and IHC staining (Fig. 5E) to detect the 
EREG protein expression levels in tumors and normal 
tissues, and we found that the protein expression levels 
of EREG in tumors were higher than that in normal tis-
sues. Additionally, we found that the protein expression 
levels of EREG in glioma cell lines were higher than that 
in normal astrocytic cell lines (Fig.  5G). Subsequently, 
we constructed knockdown stable cell lines of EREG and 
verified the knockdown effects on mRNA (Fig.  5F) and 
protein levels (Fig. 5D). Functional experiments showed 
that EREG knockdown (KD) can significantly inhibit the 
proliferation detected by Edu exepriments (Fig. 7E), inva-
sion (Fig.  6D), migration (Fig.  6E), and colony forming 
ability (Fig. 6C) of tumor cells. Additionally, flow cytome-
try cell cycle assays suggested that EREG KD significantly 
inhibited cell cycle progression from the G0/G1 phase to 
the S phase (Fig. 7F). To explore the relationship between 
EREG and immune infiltration, we detected the expres-
sion level of PDL1 in EREG-KD group and found that 
PDL1 also decreased (Fig.  6A). To explore the relation-
ship between EREG and cuproptosis, we performed the 
different treatment gradients of Cu-Elesclomol(ES) (1:1) 
on U251 cell lines and found that cell viability decreased 
with increasing time, and the effect of ES-Cu required 
a specific concentration range (5–50  nM) (Fig.  7A, B). 
Subsequently, we treated tumor cells with the same con-
centration (30 nM) with ES-Cu, and observed cell viabil-
ity at 0, 12, 24, 36, 48, 60, 72, 84, and 96  h (Fig. 7D). It 

(See figure on next page.)
Fig. 2 Landscape, immune checkpoint expression, and cancer hallmarks scores among the subgroups of patients with cuproptosis. A SNV and 
inDel mutation profiles in subpopulations of patients with cuproptosis. B Copy number variation characteristics of patients with cuproptosis. C 
Differences in the frequency of copy number variation in subsets of patients with cuproptosis. D Differences in intratumoral heterogeneity scores 
among subgroups of patients with cuproptosis. E Differentially expressed immune checkpoint genes in the two patient subpopulations. F Hallmark 
expression scores of cancer were significantly different between the two patient subgroups
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was found that the proliferation rate of the treated cells 
decreased significantly compared with the cells that were 
not treated with ES-Cu. Then, the same treatment was 

performed on the shEREG and shNC groups and found 
that the proliferation rate of the two treated groups 
decreased significantly when compared with the shEREG 

Fig. 3 Cuproptosis Activation Scoring Model (CuAS) was constructed based on differentially expressed genes among the sample subgroups. 
A Identification of differentially expressed genes between the two groups based on DESeq2. B Differentially expressed genes were enriched in 
function by GO-BP analysis. C The KEGG pathway enrichment of differentially expressed genes. D The redundant factors were filtered by the LASSO 
Cox method to obtain the prognostic marker genes. E Univariate Cox regression was used to identify differentially expressed genes significantly 
associated with OS. F The contribution of prognostic marker genes to principal components 1 and 2 based on a principal component analysis
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and shNC groups that were not treated with ES-Cu; how-
ever, the reduction rate of the proliferation of the shEREG 
group was higher than that of the shEREG group with 
ES-Cu treatment, indicating that EREG can influence 
cell proliferation by affecting the process of cuproptosis 
(Fig.  7C, D). Therefore, we detected the protein expres-
sion level of FDX1 in the shEREG and shNC groups. The 
results showed that FDX1, the core regulatory protein in 
cuproptosis, was down-regulated in the shEREG group 
(Fig.  6B). Based on the above results, we believe that 
EREG is an oncogenic gene that can affect immunity by 
influencing the expression level of PDL1 and is closely 
related to the process of cuproptosis.

Single cell transcriptome analysis of CuAS patterns
Based on the downloaded single cell data (GSE173278, 
29339 cells,10X Genomics platform), R Package Seurat 
was used to process the data. The expression profile was 
transformed by Log10, and 2,000 highly mutated genes 
were identified based on the VST method. Subsequently, 
principal component analysis and dimensionality reduc-
tion visualization were performed using UMAP. As a 
strong batch effect was observed, Harmony was used for 
batch correction (see Additional file  2: Fig. S1). Follow-
up analysis was conducted based on the corrected data. 
The default parameters were used for clustering, and the 
meaning reference of analysis results based on known 
markers (SingleR was BP and HPCA) for cell type annota-
tion (Fig. 8A). The cells in the GBM samples were divided 
into 7 categories, three malignant cell (OLIG1 + malig-
nant, n = 11637; VEGFA + malignant, n = 6446; 
CENPF + malignant, n = 5363), microglia (n = 3219), 
fibroblasts (n = 1020), endothelial cells (n = 919), and oli-
godendrocytes (n = 735) (Fig.  8C). CuAS was calculated 
by using the previous model coefficients, but several 
cuproptosis characteristic genes were not detected in sin-
gle cell data, and the expression level of many character-
istic genes was undetectable (see Fig. 8E and Additional 
file  2: Fig. S2). A small number of cells (approximately 
2800 cells) with a high CuAS score accounted for less 
than 10% of the whole cells and were distributed in mul-
tiple cell subpopulations. Most of the subpopulations 
contained less than 5% of cells with high CuAS, and 1132 
cells with high CuAS were present in VEGFA + malig-
nant cells (hypergeometric test, p value < 0.05). Trajectory 

inference of tumor cells are depicted (see S Additional 
file  2: Fig. S3). Moreover, the ancestor clone was deter-
mined based on CNV in combination with the idea of 
clone evolution, so as to determine the evolutionary rela-
tionship between cells more accurately. Based on CNV, 
we found that the OLIG1 + malignant cell may be the 
ancestor clone (Fig. 8D). Furthermore, in order to better 
explain the functional role of CuAS at the single cell level, 
the functions of VEGFA + malignant cells were observed 
and functional enrichment analysis was conducted based 
on specific up-regulated genes obtained by differential 
expression analysis. Pathways are mainly enriched in 
pathways related to hypoxia and oxidative stress (Fig. 8B).

Differential activation of transcription factors 
between high and low CuAS
Annotated files of human transcription factors were 
obtained from the RcisTarget database and the list of 
human transcription factors were downloaded. Tran-
scription factor regulatory network was constructed 
using pySCENIC. Subsequently, the AUCell algorithm 
was used to calculate the activity of each transcription 
factor, and according to the CSI between the different 
transcription factors, four regulatory modules were iden-
tified (Fig.  9A). Module score was performed for each 
cell sample. We explored the association between cell 
type and module score, which revealed that the score of 
Module1 was significantly higher in VEGFA + malignant 
cells, while the score of Module2 was significantly higher 
in the endothelial cell subset. The score of Module3 was 
significantly higher in the microglia cell subset, while the 
score of Module4 was higher in the CENPF + malignant 
cells and partial OLIG1 + malignant cells, which reflected 
the differences of TF activated by different malignant cell 
subsets (Fig. 9B, C). Similarly, the results of the hTFtar-
get database showed that transcription factors such as 
FOSL2, JUND, NFIC and PBX3 were highly active in the 
VEGFA + malignant subgroup (see Additional file 2: Fig. 
S4). In particular, we previously observed that cells with 
high CuAS scores were concentrated in VEGFA + malig-
nant subsets, showing the potential association between 
CuAS scores and Module1.

Correlation between CuAS and immune microenvironment
First, GO/KEGG enrichment analysis based on GSVA 
algorithm was performed on TCGA-GBM tumor 

(See figure on next page.)
Fig. 4 Prognostic efficacy verification of CuAS. A Expression patterns of 11 prognostic marker genes in TCGA samples. B Differences in overall 
survival among CuAS score groups in TCGA samples. C Significant differences in overall survival among CuAS score groups in validation set CGGA1. 
D Significant differences in overall survival among CuAS score groups in validation set CGGA2. E The predictive efficacy of CuAS scores in TCGA 
samples for patient survival. Univariate Cox regression was used to evaluate the prognostic efficacy of CuAS scores and clinical features in (F) TCGA 
samples and (G) validation set CGGA2. Multivariate Cox regression was used to evaluate the independence of prognostic efficacy of CuAS scores 
and clinical features in (H) TCGA samples and (I) validation set CGGA2
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samples, and immune-related pathways were differ-
ently enriched between the high and low CuAS groups, 
including T cells, NK Cell, B cell signal, chemokine sig-
nal, cytokine interaction, and other pathways (Fig. 10A). 
GO enrichment also showed that the activation differen-
tiation and proliferation of T cells, NK cell proliferation, 
cytotoxic reaction, and other characteristics were highly 
enriched when CuAS scores were high (Fig.  10B). In 
addition, we identified differentially enriched signatures 
between the high and low CuAS groups based on GSEA 
enrichment analysis and also captured immune reaction 
processes such as leukocyte adhesion migration and T 
cell activation (Fig. 10C), indicating that the mechanism 
of cuproptosis is closely related to immune reaction pro-
cess. Further, we calculated the immune and stromal 
components by using ESTIMATE, and it was observed 
that CuAS was significantly positively correlated with 
the stromal, immune, and ESTIMATE scores, while it 
was significantly negatively correlated with tumor purity 
(Fig.  10D–G), which suggested the association between 
cuproptosis and immunity. By using GSVA to calculate 
immune cell infiltration, we found that cuproptosis was 
significantly correlated with various types of immune 
cell infiltration, including activated DC and NK cells. 
(Fig. 12H). In addition, CIBERSORT and xCell methods 
were used to calculate various immune cell infiltrates, 
which revealed similar results (see Additional file 2: Fig. 
S5).

Specific cell communication was different between high 
and low CuAS groups
As the high CuAS cells were significantly enriched in 
VEGFA + malignant cells, we mainly analyzed the dif-
ference in communication and function between the 
VEGFA + malignant and other cells. Extensive cell 
communication was observed in each cell subpopu-
lation (Fig.  11A). Furthermore, by distinguishing 
between the incoming and outgoing signals, we found 
that fibroblasts are the dominant signaler of outgo-
ing signaling, and VEGFA + malignant cells are the sig-
nal receivers (Fig.  11B). Furthermore, we identified two 
patterns of cell subpopulations in outgoing signaling, 
in which VEGFA + malignant cells belonged to Pattern 
2 and corresponding pathways included VEGF, FGF, 
CDAM, CD22, ADGRE5, and other malignant progres-
sion related pathways (Fig. 11C). Meanwhile, we analyzed 
the dominant signaling pathway of each cell and found 

that VEGFA + malignant cells are not only involved in 
the signaling pathway of VEGF, but also in the CD99 
signaling pathway, which was not proposed in the non-
negative Matrix Factorization (NMF) analysis (Fig. 11D). 
The CD99 signaling pathway plays an important role in 
tumor progression and transendothelial migration of 
cancer cells. VEGF and CD99 signaling pathways were 
further analyzed, and it was found that VEGFA + malig-
nant cells are the dominant signalers of VEGF sig-
nals, and the cell subsets that were affected are mainly 
the endothelial cells and fibroblasts, both of which are 
important components of angiogenesis (Fig.  11 E, G). 
In addition, VEGFA + malignant cells are the dominant 
signaler, receiver, and influencer of CD99 signaling path-
ways, indicating that CD99 signaling pathways can occur 
as feedback loops (Fig. 11 F, H). Meanwhile, endothelial 
and fibroblast cells are also affected by CD99 signaling 
pathways, suggesting that VEGEA + malignant cells can 
influence transvascular endothelial migration (Fig.  12). 
The immunofluorescence detection of tissue samples 
with high and low CuAS showed that VEGFA and CD99 
were also highly expressed in tissues with high CuAS. The 
results were opposite in tissues with low CuAS (Fig. 13E, 
F, G), which provided a new idea for the intervention of 
cuproptosis-related tumor cells.

CuAS is associated with prognosis of immunotherapy
Based on all the immunotherapy data searched, we 
observed the ability of the CuAS score in predicting the 
prognosis and efficacy in the immunotherapy cohort. 
Phs001493 (Renal cell carcinoma, Anti-PD1 therapy) and 
PRJEB23709_ipiPD1 (Melanoma,anti-CTLA4 & AMP; 
Anti-pd1 dual antibody therapy) were significantly asso-
ciated with worse prognosis (see Additional file  2: Fig. 
S6B and D). For a patient’s Progression Free Survival 
(PFS), we found that NCT02684006 (kidney cancer, anti-
PDL1 treatment) was significantly associated with worse 
prognosis (see Additional file 2: Fig. S6E). Therefore, high 
CuAS patients may benefit from immunotherapy.

Potential targeted drugs for high CuAS glioblastoma cells
The expression data of cell lines were extracted from 
three databases: GDSC, CCLE, and CTRP. A lower AUC 
value represents a higher sensitivity to drugs. Using the 
AUC data provided by these databases, multiple drugs 
with a negative correlation between the AUC and sig-
nature were found in GDSC, such as methotrexate, 

Fig. 5 mRNA and protein expression of EREG. A mRNA expression of normal and tumor tissues. B mRNA expression of NHA and GBM cell lines. C 
Protein expression of normal and tumor tissues. D Western blot was used to detect knockdown inefficiency of EREG in the U87 and U251 cell lines. 
E The protein expression of EREG in normal and tumor tissues was detected by immunohistochemistry. F qRT-PCR was used to detect knockdown 
inefficiency of EREG in the U87 and U251 cell lines. G Protein expression of NHA and GBM cell lines.*P < 0.05, **P < 0.01, ***P < 0.001. Error bars 
indicate the mean ± SD

(See figure on next page.)
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BMS -708163, YM201636, FR -180204, and NU − 7441 
(Fig.  12A). A variety of drugs with positive correlations 
were also found, such as cyclopamine (Fig.  12B). These 
drugs showed significant differences in the AUC between 
the groups of high and low signature (Fig. 12 C, D). No 
drugs with an IC50 significantly correlated with signature 
were found in CCLE, while drugs with a significant AUC 
(KU -0063794, cytochalasin B, GDC − 0941, cabozantinib, 
CI − 976, SJ -172550, SGX − 523, BRD − K71935468, 
temozolomide, AT7867, BRD-K66532283, palmostatin 
B, GDC-0879, ETP-46464, and NVP-BEZ235) negatively 
correlated with signature were found in CTRP (Fig. 12E, 
F). These drugs were found in the AUC values of the high 
and low signature groups were significantly different in 
CTRP (Fig.  12  J, H). Therefore, high CuAS samples are 
likely to be sensitive to these compounds, and these com-
pounds may be novel treatment options for GBM.

Experimental validation of model genes
The genes expression levels in the model were detected 
by qRT-PCR, and the results showed that they were 
highly expressed in 20 pairs of tumor and normal tis-
sues (UNCX, SLC6A3, AGAP2-AS1, LINC00968, PTX3 
and SBSPON), while ITPRID1, DCST2, ETV3L, and 
ENSG00000261327 were down-regulated (Fig.  13A). 
According to the corresponding PCR results, we divided 
the tissue samples into high and low CuAS groups. IHC 
staining was performed on UNCX, SLC6A3, and PTX3, 
and it was found that the protein expression of the high 
CuAS group was higher than that of the low CuAS group 
(Fig. 13B, C, D).

Discussion
Copper is an essential cofactor in all organisms; how-
ever, it is toxic for cells when concentrations of copper 
exceed thresholds maintained by an evolutionarily con-
served homeostasis mechanism [19, 20]. In fact, it is 
not known how excessive copper can induce cell death. 
However, the Broad Institute has currently identified a 
new mechanism that is different from known cell death: 
cuproptosis [8]. Cuproptosis is a kind of cell death that is 
dependent on mitochondrial respiration. Copper directly 
binds to lipoylated components of the tricarboxylic acid 
cycle. Afterwards, aggregation of these copper-bound, 

lipoylated mitochondrial proteins and subsequent Fe-S 
cluster protein loss trigger proteotoxic stress and a dis-
tinct form of cell death [19–22]. Cuproptosis is involved 
in cell death, and the Broad Institute paper suggests that 
drugs that inhibit mitochondrial respiration may be a 
strategy against disease [19–22]. In addition, many mito-
chondrial proteins have a high degree of respiration func-
tion in various cancer cells [23]. Thus, copper ion metal 
carriers may be a new method for cancer treatment.

To the best of our knowledge, this study was the 
first paper to comprehensively analyze the association 
between copper-induced cell death and GBM by combin-
ing scRNA-seq and bulk RNA-seq data. First, we identi-
fied two sample subgroups based on the characteristic 
genes of cuproptosis. We found that immune checkpoint 
genes (PD-1, IDO1 and LAG3) and cancer hallmarks 
(fatty acid metabolism, KRAS, P53, NOTCH, and PI3K/
AKT/MTOR signaling pathway) showed significant dif-
ferences between the two subgroups. Immune check-
point is a kind of immunosuppressive molecule, which 
can regulate the intensity and breadth of the immune 
response, to avoid the damage and destruction of nor-
mal tissues. In the process of tumor occurrence and 
development, immune checkpoint has become one of 
the main reasons for immune tolerance. Subsequently, 
we constructed CuAS based on the differential genes of 
subgroups, which contained 11 genes, including 8 cod-
ing genes and 3 non-coding genes. EREG was the gene 
with the largest contribution coefficient to the principal 
component, so we focused on EREG. EREG is a 19-kDa 
peptide hormone that belongs to the Epidermal Growth 
Factor (EGF) family of peptide hormones [24]. Epiregu-
lin binds to the EGF receptor (EGFR/ErbB1) and ErbB4 
(HER4) and stimulates signaling of ErbB2 (HER2/Neu) 
and ErbB3 (HER3) through ligand-induced heterodi-
merization with a cognate receptor [24]. EREG pos-
sesses a range of functions in both normal physiologic 
states as well as in pathologic conditions. EREG con-
tributes to inflammation, wound healing, tissue repair, 
and oocyte maturation by regulating angiogenesis and 
vascular remodeling and by stimulating cell proliferation 
[24]. Deregulated EREG activity appears to contribute to 
the progression of a number of different malignancies, 
including cancers of the bladder, stomach, colon, breast, 

Fig. 7 EREG proliferation analysis. A Viability of cells (U251) after treatment with elesclomol with or without 10 mM of indicated metals. B V iability 
of U251 cells was assessed at the indicated times after elesclomol-Cu (1:1 ratio) treatment. ES, elesclomol. (C) Viability of shNC and shEREG in U251 
cells was assessed at the indicated times after elesclomol-Cu (1:1 ratio) treatment. ES, elesclomol. D Cell viability of U251 cells after knocking down 
EREG was determined using CCK8 assays with or without the presence of 20 nM elesclomol-Cu. E U87 and U251 cells were treated with EdU for 
6 h prior to click reaction. Data analysis was performed to calculate the signal intensity in EdU-positive cells based on individual DAPI signal and is 
displayed in the right graph. F Cell cycle distribution was analyzed by PI staining in U251 and U87 cells of shNC and shEREG. *P < 0.05, **P < 0.01, 
***P < 0.001. Error bars indicate the mean ± SD

(See figure on next page.)
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Fig. 8 Single cell transcriptome analysis of CuAS patterns. A Clustering and annotation of single cell data. B Functional enrichment analysis based 
on hypergeometric tests and functional enrichment network constructed based on term similarity. C Expression distribution of marker genes 
of each cell type in each subpopulation. D Based on the copy number spectrum obtained by inferCNV, the origin of cell clone evolution was 
determined. E The expression distribution of characteristic genes
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Fig. 9 Transcription factors activity analysis with single cell data. A TF module was identified by the connection specificity index (CSI). B Distribution 
of TF module scores in cell subsets. C Significant differences of TF module scores in cell subsets
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Fig. 10 Correlation between CuAS and immune microenvironment composition. KEGG pathway (A) and Go-BP term (B) enriched differentially 
between high CuAS groups and low CuAS groups in TCGA-GBM samples. C Differential enrichment signature between high and low CuAS groups 
based on GSEA enrichment identification. D–G Correlation of CuAS with ESTIMATE score (D), immunity score (E), stromal score (F), and tumor purity 
(G) inferred by ESTIMATE algorithm. H Association of CuAS with immune cell infiltration
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Fig. 11 Cell communication analysis. A A global cellular communication network; B Each cell subpopulation mainly played the role of incoming or 
outgoing; C Intercellular communication based on NMF method can be divided into two modes; D Main signaling pathways (E, F) associated with 
VEGFA + malignant cell subpopulation and their cell communication networks; G, H Primary originators and influencers of key signaling pathways
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lung, head and neck, and liver [2, 7, 24]. EREG is also 
associated with imaging omics as an important prognos-
tic gene and MRI parameters revealed that hemodynamic 
abnormalities were associated with the expression level 
of the mTOR‐EGFR pathway in patients with GBM [25]. 
Rab27b promotes the proliferation of adjacent cells and 
radio-resistance of highly malignant GBM cells through 
EREG-mediated paracrine signaling after irradiation [26]. 
Furthermore, EREG activates the extracellular signaling-
related kinase/MAPK pathway in GBM, suggesting that 
the inhibition of the EREG-EGFR interaction may be a 
strategy for EREG-overexpressing patients with GBM [2]. 
In our study, we detected EREG mRNA expression and 
protein levels in tissues and multiple glioma cell lines. 
IHC staining revealed that the EREG protein expression 
in tumors was higher than that in normal tissues; the 
result of WB also showed similar results. Knockdown of 
EREG can inhibit the proliferation, invasion, and migra-
tion of tumor cells. EGFR and PDL1 expression of pro-
tein were down-regulated after knockdowning of EREG. 
Moreover, we explored if EREG could influence the 
process of cuproptosis. Cell vitality assay demonstrated 
that only the coexistence of  Cucl2 and ES can influence 
the cell vitality and that other metals had no effect. The 
effect of ES-Cu required a specific concentration range 
(5  nM-50  nM). shEREG can revert the cell vitality that 
is influenced by cuproptosis. Therefore, we detected the 
protein expression of FDX1 in the shEREG and shNC 
groups. The results showed that FDX1, the core regula-
tory protein in cuproptosis, was down-regulated in the 
shEREG group.

Combined with the single cell transcriptome, the 
model of cuproptosis was analyzed, and the GBM 
sample cells were divided into seven types, includ-
ing three types of malignant cells (OLIG1 + malig-
nant, VEGFA + malignant, and CENPF + malignant). 
OLIG1 and other oligodendrocyte markers were highly 
expressed in OLIG1 + malignant cells, which may be oli-
godendrocyte progenitor glioma mother cells. VEGFA, 
CHI3L1, and other angiogenesis related markers were 
highly expressed in VEGFA + malignant cells, which may 
have a strong ability to induce local angiogenesis and 
may be associated with invasion/metastasis. CENPF + , 
TOP2A, UBE2C, and other markers are associated with 
the cell cycle and may be mesenchymal glioma blasts, 

which may be associated with tumor proliferation/inva-
sion [27, 28]. Others types observed were microglia, 
fibroblasts, endothelial cells, and oligodendrocytes. High 
CuAS was found in VEGFA + malignant cells. Based on 
CNV [29], OLIG1 + malignant cells were the ancestor 
clones. The function of VEGFA + malignant cells dem-
onstrated that the pathways were mainly enriched in 
those related to hypoxia and stress, which is also con-
sistent with the fact that cuproptosis is mitochondrion-
dependent programmed cell death. Activated cells with 
high CuAS scores based on differences between high 
and low CuAS transcription factors were concentrated 
in the VEGFA + malignant cell subpopulation, reflecting 
the potential association between CuAS scores and Mod-
ule1. The VEGF and CD99 signaling pathways were sig-
nificantly enriched in high CuAS cells. VEGF specifically 
binds to Fltl and KDR/Flkl on the surface of endothelial 
cells, resulting in a variety of biological effects [30]. VEGF 
is closely associated with angiogenesis and development 
[31]. VEGF plays an important role in all stages of tumor 
formation, inducing the production of a large number of 
proteolytic enzymes, reducing the basement membrane 
of the host blood vessels, weakening the barrier effect, 
increasing the permeability of blood vessels, promoting 
a large amount of fibrinogen exudation, and forming a 
new matrix necessary for tumor adhesion and migration 
[30, 31]. Angiogenesis is determined by the growth and 
metastasis of solid tumors. VEGF degrades extracellular 
matrix by inducing endothelial cells to express protease, 
resulting in metastasis, proliferation, and angiogenesis 
[32]. CD99 is abnormally expressed in many different 
types of tumors, and plays an important role in the diag-
nosis, development, metastasis, and prognosis, mainly 
affecting the invasion and metastasis of tumor cells [33]. 
Immunofluorescent detection of tissue samples with 
high and low CuAS showed that VEGFA and CD99 were 
also highly expressed in tissues with high CuAS, and the 
results were opposite in tissues with low CuAS, which 
provided a new idea for us to intervene in cuproptosis-
related tumor cells.

Immunotherapy is essential in tumor treatment. 
Despite the lack of specific immune cohort verification 
for glioma, several other tumor immune cohorts have 
shown the possibility of treatment for patients with high 
CuAS. Considering that EREG may affect the expression 

(See figure on next page.)
Fig. 12 Drug sensitivity between different signature groups of GDSC and CTRP. A Negative correlation between signature score in GDSC and 
drug AUC (P < 0.05); B Positive correlation between signature score in GDSC and drug AUC (P < 0.05); C Differences in signature scores of GDSC cell 
lines with significant negative correlation under different drug treatments; D Differences in signature scores of cell lines with significant positive 
correlation under different drug treatments in GDSC. E Negative correlation between signature score and DRUG AUC in CTRP (P < 0.05); F Positive 
correlation between signature score in CTRP and drug AUC (P < 0.05); G Difference in signature scores of all cell lines in CTRP with significant 
negative correlation under different drug treatments; H Differences in signature scores of all cell lines in CTRP with significant positive correlation 
under different drug treatments
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of PDL1 and the immune process, we believe that immu-
notherapy may have therapeutic opportunities for 
patients with high CuAS. Chemotherapy is also the first 
line of treatment for glioma. We predicted the potential 
targeted drugs for high CuAS GBM cells. Methotrexate 
can be used to treat GBM owing to several factors such as 
the upregulation of CD73 [34]. Pharmacological inhibi-
tion of DNA-PKcs with the DNA-PKcs inhibitor NU7441 
reduced GSC tumorsphere formation [35] mTORC1/2 
inhibitors of KU - 0063794 can inhibit PI3K-Akt-mTOR 
signaling in glioblastoma and reduce cell proliferation 
[36]. The PI3K inhibitor GDC-0941 enhances radio-
sensitization and reduces chemo-resistance to temozo-
lomide in GBM cell lines [37]. Cabozantinib is a potent, 
multitarget inhibitor of MET and VEGF receptor 2 [38]. 
NVP-BEZ235 (PI3K and mTOR a dual inhibitor) can 
inhibit the PI3K pathway to hinder glycolytic metabolism 
in GBM cells [39].

However, there were some limitations of our study. 
First, cuproptosis is a new concept, and there are few 
characteristic genes of cuproptosis, so it may affect the 
stability and applicability of the model on single-cell 

data. Second, the VEGF and CD99 signaling pathways 
were only detected by immunofluorescence, and further 
experiments are needed to prove their correlation with 
cuproptosis. Third, we found that EREG is closely related 
to PDL1 and FDX1, but further direct mechanisms are 
needed to reveal the relationship between them.

Conclusion
Overall, we established a scoring model based on 
cuproptosis-related genes in glioblastoma samples 
(Fig.  14). High CuAS samples show more aggressive 
growth patterns and worse clinical outcomes than low 
CuAS samples. EREG, the core model gene, is an onco-
genic gene that can affect immunity by influencing the 
expression of PDL1 and is closely related to cupropto-
sis by influencing the expression of FDX1. High CuAS 
GBM cells are found in VEGFA + malignant cells, and 
VEGF and CD99 is the differential pathway of spe-
cific cell communication between high and low CuAS 
groups. We assumed that targeting high CuAS samples 
may improve a patient’s prognosis. Moreover, novel 

Fig. 14 Graphical abstract of the CuAS model
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potential compounds and immunotherapy can also be 
predicted. Taken together, CuAS can evaluate glioblas-
toma aggressiveness, modulate the cross-talk between 
VEGF/CD99 signaling, and provide support for immu-
notherapy and chemotherapy.
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