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EREG is the core onco-immunological G

biomarker of cuproptosis and mediates
the cross-talk between VEGF and CD99
signaling in glioblastoma

Yujie Zhou', Dongdong Xiao', Xiaobing Jiang ® and Chuansheng Nie"

Abstract

Background Glioma is the most prevalent primary tumor of the central nervous system. Glioblastoma multiforme
(GBM) is the most malignant form of glioma with an extremely poor prognosis. A novel, requlated cell death form
of copper-induced cell death called “cuproptosis” provides a new prospect for cancer treatment by regulating
cuproptosis.

Methods Data from bulk RNA sequencing (RNA-seq) analysis (The Cancer Genome Atlas cohort and Chinese Glioma
Genome Atlas cohort) and single cell RNA-seq (scRNA-seq) analysis were integrated to reveal their relationships. A
scoring system was constructed according to the cuproptosis-related gene expression, and core genes were experi-
mentally verified using real-time quantitative reverse transcription polymerase chain reaction (QRT-PCR), Western

blot (WB), immunohistochemistry (IHC), and immunofluorescence (IF). Moreover, cell counting kit-8 (CCK8), colony
formation, 5-ethynyl-2"-deoxyuridine (EdU) incorporation, transwell, and flow cytometry cell cycle were performed to
evaluate cell proliferation, invasion, and migration.

Results The Cuproptosis Activation Scoring (CuAS) Model has stable and independent prognostic efficacy, as veri-
fied by two CGGA datasets. Epiregulin (EREG), the gene of the model has the most contributions in the principal
component analysis (PCA), is an onco-immunological gene that can affect immunity by influencing the expres-

sion of programmed death-ligand 1 (PD-L1) and mediate the process of cuproptosis by influencing the expression

of ferredoxin 1 (FDX1). Single cell transcriptome analysis revealed that high CuAS GBM cells are found in vascular
endothelial growth factor A (VEGFA) + malignant cells. Oligodendrocyte transcription factor 1 (OLIGT)+ malignant is
the original clone, and VEGF and CD99 are the differential pathways of specific cell communication between the high
and low CuAS groups. This was also demonstrated by immunofluorescence in the tissue sections. Furthermore, CuAS
has therapeutic potential for immunotherapy, and we predict that many drugs (methotrexate, NU7441, KU-0063794,
GDC-0941, cabozantinib, and NVP-BEZ235) may be used in patients with high CuAS.
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Conclusion EREG is the core onco-immunological biomarker of CuAS and modulates the cross-talk between VEGF
and CD99 signaling in glioblastoma, and CuAS may provide support for immunotherapy and chemotherapy.

Keywords Cuproptosis, Bulk RNA-seq analysis, Single cell RNA-seq, Immunohistochemistry, Transwell assays, Flow
cytometry cell cycle, VEGFA, CD99, Immune microenvironment

Background

Glioma is the most prevalent primary tumor of the
central nervous system [1]. It is classified into grades
I to IV by the World Health Organization based on its
malignant features, wherein grades I, II, and III are low-
grade glioma and grade IV is high-grade glioma, also
known as glioblastoma multiforme (GBM) [1, 2]. GBM
is the most malignant form of glioma with an extremely
poor prognosis. Despite considerable advances in the
development of treatments, including surgical resec-
tion, radiotherapy, and chemotherapy, little progress
toward prolonged survival and better prognosis has
been achieved over the last few decades [3]. The modest
median overall survival (OS) time in GBM is approxi-
mately 14 months, and only 5% to 6.8% of patients with
GBM survive 5 years after diagnosis [1-4]. Multiple
clinical trials, including those on immunotherapy, have
been conducted for patients with GBM; however, the
results did not conclude the expected results [1-4]. In
our previous study, we generated a ferroptosis-related
prognostic risk score model to predict the clinical sig-
nificance and immunogenic characteristics of GBM
[5]. However, the biomarkers and predictors for patient
outcome and the immunotherapy response of GBMs
have not been fully elucidated, and existing predictive
models are far from satisfactory.

Beyond classical apoptosis, several forms of regulated
cell death (RCD) have been identified, such as ferrop-
tosis, necroptosis and pyroptosis [6]. These RCD sub-
routines differ in the initiating stimuli, intermediate
activation events, and end effectors. Various heavy met-
als are essential micronutrients; however, the insuffi-
ciency or excessive abundance of metals can trigger cell
death, which can induce RCD through different subrou-
tines. For example, ferroptosis has been defined as an
iron-dependent form of oxidative cell death caused by
unrestricted lipid peroxidation [7]. A novel RCD form of
copper-induced cell death called “cuproptosis” was pro-
posed by Tsvetkov et al. [8], which is gaining attention in
the field. Cuproptosis differs from oxidative stress-related
cell death (e.g., apoptosis, ferroptosis, and necroptosis).
In contrast, mitochondrial stress, especially the aggre-
gation of lipoylated proteins and destabilization of Fe-S
cluster proteins, results in proteotoxic stress and ulti-
mately cell death. Hence, it may provide a new prospec-
tive for cancer treatment by regulating cuproptosis.

Methods

Data preparation

The omics data of the GBM samples from the TCGA
database, including mRNA expression, Single Nucleo-
tide Variant (SNV), copy number variation (CNA), and
clinical information, were downloaded from UCSC Xena
(https://xenabrowser.net/). The mutation, CNA, and
intracomatous heterogeneity of samples were derived
from previous studies [9]. The sample set from the
CGGA (http://www.cgga.org.cn/) database was used as
an independent validation set, involving 139 (CGGA1-
mRNAseq325) and 124 (CGGA2-mRNA-Array301)
GBM samples. Data for scRNA-seq were downloaded
from the GEO (https://www.ncbi.nlm.nih.gov/geo/)
database (GSE173278). Clinical characteristics of the
three data sets were summarized (see Additional file 1:
Table S1).

Cuproptosis activation scoring model

Ten cuproptosis characteristic genes (FDX1, LIAS,
LIPTI, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and
CDKN2A) were obtained from previous studies [8].
Based on these characteristic genes, consistent cluster-
ing analysis was used to identify two sample clusters in
the TCGA-GBM sample. The gene expression count data
of two sample clusters were calculated based on R packet
DESeq2 to identify differentially expressed genes (DEGs)
[10]. Candidate prognostic genes were identified from
differentially expressed genes based on a univariate Cox
regression analysis, and redundant factors were further
filtered using LASSO Cox analysis. Based on the contri-
bution of the prognostic genes to principal components 1
and 2, CuAS was defined as:

cuproptosis activation score(CuAS)
= Geneyr-1 * (PC1 + PC2)
— Geneyr<1 * (PC1 + PC2)

where HR (hazard ratio) is derived from the Cox analysis.
The CuAS model in the validation cohort was reproduced
with a similar formula. The construction of the cluster and
CuAS models is illustrated in a schematic diagram (Fig. 14).

Biofunction prediction
The GO/KEGG enrichment analysis based on GSVA
calculated the GO/KEGG signature activity scores in
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each sample, and the significant differences in the activ-
ity scores between the sample groups were compared. In
addition, gene set enrichment analysis (GSEA) was used
to calculate the differential expression of genes between
the high and low CuAS groups, and the enrichment sig-
nificance was calculated.

Overall survival outcome prediction

Samples were grouped into the high or low CuAS groups
according to the median value of the CuAS. The OS dif-
ference between the high and low CuAS groups was pre-
dicted with the Kaplan—Meier algorithm. The receiver
operating characteristic (ROC) curve and area under the
curve (AUC) were generated to compare the prognostic
ability within the different models.

GBM immune landscape

The immune and stroma scores and the tumor purity of
the tumor samples were calculated based on the ESTI-
MATE algorithm [11]. The cell composition of the tumor
microenvironment (cellular infiltration) was calculated
based on the CIBERSORT [12] and xCell algorithms [13]
and GSVA score of the 28 immune cell signature genes,
respectively [14].

Tissue sampling from glioma patients

Fresh GBM tissues from histologically confirmed cases
were obtained from the Union Hospital, Tongji Medical
College, Huazhong University of Science and Technol-
ogy. The study was approved by the ethics committee of
the Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology.

Cell culture, real-time polymerase chain reaction,

and immunohistochemistry

The normal human astrocyte cell line HA1800 and
human glioma tumor cell lines U87, U251, LN229 and
A172 were purchased from the Cell Bank of the Chinese
Academy of Sciences. The STR identification reports of
the cancer cell lines are presented in Additional materials
(see Additional materials-cell lines STR identification),
and we also used CCLA, an excellent cell line identifica-
tion database, for secondary identification to ensure no
cross-contamination of cell lines [15]. The cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM)
(Gibco) containing 10% heat-inactivated fetal bovine
serum and 1% penicillin/streptomycin. qRT-PCR was
conducted to compare the gene expression in 20 tumor
samples in adjacent normal tissue. qRT-PCR was per-
formed in triplicate using samples derived from three
independent experiments. Formalin-fixed, paraffin-
embedded GBM tissues were used for IHC staining. The
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primers’ sequence are provided (see Additional file 1:
Table S3).

Lentivirus infection assay

The assay complies with the protocol described in a pre-
vious article [16]. Short hairpin RNA (shRNA) against
EREG (shEREG) and a negative control shRNA (sh NC)
were designed and synthesized by GeneCreate (Wuhan,
China). The lentivirus, pLent-shEREG-Flag-Puro or its
negative control (NC) pLent-Flag-Puro (GeneCreate) was
used to infect GBM cells with enhanced infection solu-
tion (GeneCreate) according to the manufacturer’s proto-
col. Seventy-two hours after the cells were infected with
lentivirus, 2 pg/mL puromycin was added to kill the cells
that had not been transfected. shRNA sequences are pro-
vided (see Additional file 1: Table S2).

Cell counting kit-8 assay

U87 and U251 cells were assessed with the CCK-8
(Biosharp, China) reagent according to the manufactur-
er’s instructions. Cells were inoculated on 96-well plates
at a density of 2000 cells per well with 100 L of medium.
CCKa8 solution (10 pL) was added to each well every 24 h
for a total of 96 h, and the cells were further incubated at
37 °C for 1 h. The absorbance of each well was measured
at 450 nm with a spectrophotometer.

Colony formation assay

U87 and U251 cells were prepared into a single cell sus-
pension and seeded into a six-well plate (200 cells/well)
for a two-week incubation to form colonies. After stain-
ing with 0.01% crystal violet (Sigma), the colonies were
subjected to microscopic examination. The rate of colony
formation was calculated.

Cell invasion and migration assays

After starving the cells for 6-8 h in serum-free DMEM,
a total of 1x 10* cells were seeded in the upper cham-
ber with 200 pl of serum-free medium for the migra-
tion assay. In addition, 2 x 10* cells were added into
Matrigel-coated upper transwell chambers for the inva-
sion assay. The lower chambers were filled with DMEM
containing 10% FBS. After incubation at 37 °C for 24 h,
cells on the lower surface of the membrane were fixed in
100% methanol and stained with 0.1% crystal violet dye
for 20 min at room temperature. Finally, after washing
with phosphate-buffered saline, the cells were imaged in
five randomly selected fields under a light microscope
(Olympus Corporation) at x 100 magnification.

5-ethynyl-2'-deoxyuridine (EdU) incorporation assay
According to the manufacturer’s instructions, the
EdU Kit (Roche, Mannheim, Germany) was utilized to
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monitor the proliferation of transfected cells. A Zeiss
Axiophot Photomicroscope (Carl Zeiss, Oberkochen,
Germany) was used to capture representative images.

Compound

Elesclomol (STA-4783) was obtained from MedChemEx-
press (MCE). CuCl, (Copper (II) chloride, 97%, 222011),
and FeCl; (reagent grade, 97%, 157740) were obtained
from Sigma-Aldrich.

Western blotting

Proteins from tissues and cells were extracted using radi-
oimmunoprecipitation assay (RIPA) (strong) buffer (Bey-
otime, Shanghai, China) containing protease inhibitors.
Subsequently, protein concentrations were determined
using a Bicinchoninic Acid (BCA) Protein Assay Kit (Bey-
otime). A total of 20 or 30 ug of protein was subjected to
sodium dodecyl sulfate—polyacrylamide gel electropho-
resis and transferred to a 0.22 or 0.45 pm polyvinylidene
difluoride (PVDF) membrane (EMD Millipore, Bedford,
USA). PVDF membranes were then blocked in 5% skim
milk for 2 h. Subsequently, samples were incubated with
specific primary antibodies at 4 °C overnight. Follow-
ing this, membranes were incubated with the appropri-
ate secondary antibodies for 2 h at room temperature.
Finally, the protein bands were visualized with enhanced
chemiluminescence (ECL) Western blotting substrate
(New Cell & Molecular Biotech). Information on the
antibodies are provided (see Additional file 1: Table S4).

Flow cytometry cell cycle assay

After transient transfection, U87 and U251 cells were
fixed in 75% ethanol for 12 h. Subsequently, cells were
stained with propidium iodide (Beyotime) for cell cycle
analysis. Finally, the percentage of cells in each cell cycle
phase (GO/G1, S, and G2/M) was assessed, and the
results were analyzed using the ModFit LT software.

RNA velocity and cells communication

The RNA velocity of the tumor cells was calculated using
the package ‘velocity’ and ‘scVelo’ in Python. The vari-
ous states of the GBM cells was mapped to show their
internal transformation. The cross-talk between immu-
nocytes and GBM cells was analyzed using the R pack-
age ‘celltalker; and differential ligand-receptor pairs were
identified.

Transcription factor (TF) regulatory network construction

The RcisTarget human database was downloaded from
https://resources.aertslab.org/cistarget/ for transcription
factor regulatory network construction. The correspond-
ing gene ranking motif database (Hg38_refseq-r80_10kb_
up_and_down_tss.mc9nr.feather, annotations_fname
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motifs-v9-nr.hgnc-m0.001-00.0.tbl) were downloaded
from the human transcription factors list (https:/github.
com/aertslab/pySCENIC/tree/master/resources), which
is based on psSCENIC transcription factor regulation
network. The AUCell algorithm was used to calculate
the activity of each transcription factor, and the regula-
tion module was identified according to the Connection
Specificity Index (CSI). The calculation method of CSI
was based on a previous article [17]. Similarly, we used
the hTFtarget database to predict between TF and tar-
gets, which contains the most comprehensive data on
human TF-target to date [18]. The overall activity score
of the regulatory module was defined as the mean of all
TF activities in the module.

Prediction of potential drug sensitivity

The drug sensitivity information and corresponding
expression level were obtained from Genomics of Drug
Sensitivity in Cancer (GDSC), Cancer Cell Line Encyclo-
pedia (CCLE), and the Cancer Therapeutics Response
Portal (CTRP) (https://portals.broadinstitute.org/ctrp).
The CuAS score of each cell line was calculated and
grouped based on the median. The correlation between
the AUC and IC50 data of multiple drugs in the cell lines
was calculated by using Spearman’s correlation. The dif-
ference of the AUC value between the two groups were
compared by the Wilcoxon test.

Statistical analysis

The significance of the difference between the two groups
of continuous variables was evaluated using the Wilcox
rank-sum test. Spearman’s rank correlation was used to
evaluate the correlation between the variables. Univariate
and multivariate Cox regression and LASSO Cox regres-
sion were used to identify molecules with prognostic effi-
cacy, and the K-M curves and log-rank tests were used
to assess the survival differences between the sample
groups. All computational analyses were performed by R
(version 4.1.2) or Python.

Results

Cuproptosis characteristic gene consistent clustering

to identify sample subgroups

The RNA-seq data of 169 TCGA-GBM samples were
obtained, and the tumor samples were clustered into two
groups based on cuproptosis genes (FDX1, LIAS, LIPT1,
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A)
through consistent cluster analysis (Fig. 1A, B, C). Sig-
nificant differences were not observed in the survival
between the two subgroups of samples, suggesting that
these 10 genes alone may not be able to characterize the
effect of cuproptosis mechanism on patient survival ben-
efit (Fig. 1D). We also observed the expression patterns of
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these 10 characteristic genes in two subgroups of samples
(Fig. 1E). However, significant differences were observed
in the landscape of mutation, immune checkpoint expres-
sion level, and cancer hallmarks between the two sub-
groups. First, the SNV mutation frequencies of TP53 and
other genes showed significant differences between the
two types of samples (Fig. 2A). The map of CNA showed
that both types of patients had significant amplification
on chromosome 7 (Fig. 2B), and significant difference
was not observed in total frequency of CNA (Fig. 2C).
In addition, significant differences were observed in
intratumoral heterogeneity between the two subgroups
(Fig. 2D). Moreover, we observed a significantly differ-
ent expression level of immune checkpoint genes PD-1,
IDO1, and LAG3 in the two subgroups (Fig. 2E). Signifi-
cant differences were observed in the cancer hallmarks of
fatty acid metabolism, KRAS, P53, NOTCH, and PI3K/
AKT/MTOR signaling pathway between the two sub-
groups (Fig. 2F).

Construction of cuproptosis activation scoring

model based on differentially expressed genes

between the sample subgroups

First, the DEGs between the two groups of samples were
identified based on DESeq2 (Fig. 3A). The functions of
these DEGs were enriched in the cell cycle related pro-
cesses, protein kinase activity, P53 signaling pathway, and
TGF-Bsignaling pathway (Fig. 3B, C). In the TCGA-GBM
sample set, we identified 14 candidate prognostic marker
genes that were significantly associated with the OS of
patients based on univariate Cox regression (Fig. 3E) and
further filtered the redundant factors using LASSO Cox
to obtain 11 prognostic marker genes (Fig. 3D). Based on
the PCA of these 11 genes, their contribution to principal
components 1 and 2 were used as coefficients (Fig. 3F) to
construct CuAS.

The prognostic efficacy of CuAS

In the training set, we scored the samples based on
these 11 genes and the results of the PCA (Fig. 4A).
We found that patients with higher CuAS scores had
significantly worse OS (Log-rank P<0.0001, Fig. 4B)
and 6 month AUC (95%CI)=0.625 (0.608-0.643),
1 year AUC (95%CI)=0.69 (0.646-0.732), 2 year
AUC (95%CI)=0.797 (0.735-0.852), 3 year AUC
(95%CI)=0.825 (0.765-0.885) (Fig. 4E). In addition,
two validation sets from the CGGA database showed

(See figure on next page.)
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that CuAS had stable prognostic efficacy (Log-rank
P =0.0075, Fig. 4C, Log-rank P=0.0043, Fig. 4D). Uni-
variate Cox regression analysis was performed on CuAS
and multiple clinical features to evaluate the independ-
ence of the prognostic efficacy of CuAS. The results
showed that CuAS was significantly associated with
patient prognosis (HR (95% CI)=7.51 (3.75, 15.05))
(Fig. 4F). Consistent results were also observed in the
independent validation sets (HR (95% CI)=1.74 (1.133,
2.593)) (Fig. 4G). Furthermore, we constructed a multi-
variate Cox regression model for CuAS and multiple clin-
ical features and found that CuAS could still serve as an
independent prognostic factor (HR (95% CI)=7.35 (3.23,
16.7)) (Fig. 4H), HR (95% CI)=1.90 (1.12, 3.2)) (Fig. 4F)).

Epiregulin (EREG) was an oncogenic gene that can
influence immunity and cuproptosis

The EREG mRNA expression levels were high in tissues
and multiple glioma cell lines (Fig. 5 A, B). We used West-
ern blot (Fig. 5C) and IHC staining (Fig. 5E) to detect the
EREG protein expression levels in tumors and normal
tissues, and we found that the protein expression levels
of EREG in tumors were higher than that in normal tis-
sues. Additionally, we found that the protein expression
levels of EREG in glioma cell lines were higher than that
in normal astrocytic cell lines (Fig. 5G). Subsequently,
we constructed knockdown stable cell lines of EREG and
verified the knockdown effects on mRNA (Fig. 5F) and
protein levels (Fig. 5D). Functional experiments showed
that EREG knockdown (KD) can significantly inhibit the
proliferation detected by Edu exepriments (Fig. 7E), inva-
sion (Fig. 6D), migration (Fig. 6E), and colony forming
ability (Fig. 6C) of tumor cells. Additionally, flow cytome-
try cell cycle assays suggested that EREG KD significantly
inhibited cell cycle progression from the GO/G1 phase to
the S phase (Fig. 7F). To explore the relationship between
EREG and immune infiltration, we detected the expres-
sion level of PDL1 in EREG-KD group and found that
PDL1 also decreased (Fig. 6A). To explore the relation-
ship between EREG and cuproptosis, we performed the
different treatment gradients of Cu-Elesclomol(ES) (1:1)
on U251 cell lines and found that cell viability decreased
with increasing time, and the effect of ES-Cu required
a specific concentration range (5-50 nM) (Fig. 7A, B).
Subsequently, we treated tumor cells with the same con-
centration (30 nM) with ES-Cu, and observed cell viabil-
ity at 0, 12, 24, 36, 48, 60, 72, 84, and 96 h (Fig. 7D). It

Fig. 2 Landscape, immune checkpoint expression, and cancer hallmarks scores among the subgroups of patients with cuproptosis. A SNV and
inDel mutation profiles in subpopulations of patients with cuproptosis. B Copy number variation characteristics of patients with cuproptosis. C
Differences in the frequency of copy number variation in subsets of patients with cuproptosis. D Differences in intratumoral heterogeneity scores
among subgroups of patients with cuproptosis. E Differentially expressed immune checkpoint genes in the two patient subpopulations. F Hallmark
expression scores of cancer were significantly different between the two patient subgroups
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Fig. 3 Cuproptosis Activation Scoring Model (CuAS) was constructed based on differentially expressed genes among the sample subgroups.

A Identification of differentially expressed genes between the two groups based on DESeq2. B Differentially expressed genes were enriched in
function by GO-BP analysis. C The KEGG pathway enrichment of differentially expressed genes. D The redundant factors were filtered by the LASSO
Cox method to obtain the prognostic marker genes. E Univariate Cox regression was used to identify differentially expressed genes significantly

associated with OS. F The contribution of prognostic marker genes to principal components 1

was found that the proliferation rate of the treated cells
decreased significantly compared with the cells that were
not treated with ES-Cu. Then, the same treatment was

and 2 based on a principal component analysis

performed on the shEREG and shNC groups and found
that the proliferation rate of the two treated groups
decreased significantly when compared with the sShEREG
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and shNC groups that were not treated with ES-Cu; how-
ever, the reduction rate of the proliferation of the sShEREG
group was higher than that of the shEREG group with
ES-Cu treatment, indicating that EREG can influence
cell proliferation by affecting the process of cuproptosis
(Fig. 7C, D). Therefore, we detected the protein expres-
sion level of FDX1 in the shEREG and shNC groups. The
results showed that FDX1, the core regulatory protein in
cuproptosis, was down-regulated in the shEREG group
(Fig. 6B). Based on the above results, we believe that
EREG is an oncogenic gene that can affect immunity by
influencing the expression level of PDL1 and is closely
related to the process of cuproptosis.

Single cell transcriptome analysis of CuAS patterns

Based on the downloaded single cell data (GSE173278,
29339 cells, 10X Genomics platform), R Package Seurat
was used to process the data. The expression profile was
transformed by Logl0, and 2,000 highly mutated genes
were identified based on the VST method. Subsequently,
principal component analysis and dimensionality reduc-
tion visualization were performed using UMAP. As a
strong batch effect was observed, Harmony was used for
batch correction (see Additional file 2: Fig. S1). Follow-
up analysis was conducted based on the corrected data.
The default parameters were used for clustering, and the
meaning reference of analysis results based on known
markers (SingleR was BP and HPCA) for cell type annota-
tion (Fig. 8A). The cells in the GBM samples were divided
into 7 categories, three malignant cell (OLIG1 + malig-
nant, n=11637; VEGFA + malignant, n=6446;
CENPF + malignant, n=>5363), microglia (n=3219),
fibroblasts (n=1020), endothelial cells (n=919), and oli-
godendrocytes (n="735) (Fig. 8C). CuAS was calculated
by using the previous model coefficients, but several
cuproptosis characteristic genes were not detected in sin-
gle cell data, and the expression level of many character-
istic genes was undetectable (see Fig. 8E and Additional
file 2: Fig. S2). A small number of cells (approximately
2800 cells) with a high CuAS score accounted for less
than 10% of the whole cells and were distributed in mul-
tiple cell subpopulations. Most of the subpopulations
contained less than 5% of cells with high CuAS, and 1132
cells with high CuAS were present in VEGFA + malig-
nant cells (hypergeometric test, p value <0.05). Trajectory

(See figure on next page.)
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inference of tumor cells are depicted (see S Additional
file 2: Fig. S3). Moreover, the ancestor clone was deter-
mined based on CNV in combination with the idea of
clone evolution, so as to determine the evolutionary rela-
tionship between cells more accurately. Based on CNV,
we found that the OLIG1+ malignant cell may be the
ancestor clone (Fig. 8D). Furthermore, in order to better
explain the functional role of CuAS at the single cell level,
the functions of VEGFA + malignant cells were observed
and functional enrichment analysis was conducted based
on specific up-regulated genes obtained by differential
expression analysis. Pathways are mainly enriched in
pathways related to hypoxia and oxidative stress (Fig. 8B).

Differential activation of transcription factors

between high and low CuAS

Annotated files of human transcription factors were
obtained from the RcisTarget database and the list of
human transcription factors were downloaded. Tran-
scription factor regulatory network was constructed
using pySCENIC. Subsequently, the AUCell algorithm
was used to calculate the activity of each transcription
factor, and according to the CSI between the different
transcription factors, four regulatory modules were iden-
tified (Fig. 9A). Module score was performed for each
cell sample. We explored the association between cell
type and module score, which revealed that the score of
Modulel was significantly higher in VEGFA + malignant
cells, while the score of Module2 was significantly higher
in the endothelial cell subset. The score of Module3 was
significantly higher in the microglia cell subset, while the
score of Module4 was higher in the CENPF + malignant
cells and partial OLIG1 + malignant cells, which reflected
the differences of TF activated by different malignant cell
subsets (Fig. 9B, C). Similarly, the results of the hTFtar-
get database showed that transcription factors such as
FOSL2, JUND, NFIC and PBX3 were highly active in the
VEGFA + malignant subgroup (see Additional file 2: Fig.
S4). In particular, we previously observed that cells with
high CuAS scores were concentrated in VEGFA + malig-
nant subsets, showing the potential association between
CuAS scores and Modulel.

Correlation between CuAS and immune microenvironment
First, GO/KEGG enrichment analysis based on GSVA
algorithm was performed on TCGA-GBM tumor

Fig. 4 Prognostic efficacy verification of CuAS. A Expression patterns of 11 prognostic marker genes in TCGA samples. B Differences in overall
survival among CuAS score groups in TCGA samples. C Significant differences in overall survival among CuAS score groups in validation set CGGA1.
D Significant differences in overall survival among CuAS score groups in validation set CGGA2. E The predictive efficacy of CuAS scores in TCGA
samples for patient survival. Univariate Cox regression was used to evaluate the prognostic efficacy of CuAS scores and clinical features in (F) TCGA
samples and (G) validation set CGGA2. Multivariate Cox regression was used to evaluate the independence of prognostic efficacy of CuAS scores

and clinical features in (H) TCGA samples and (1) validation set CGGA2
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samples, and immune-related pathways were differ-
ently enriched between the high and low CuAS groups,
including T cells, NK Cell, B cell signal, chemokine sig-
nal, cytokine interaction, and other pathways (Fig. 10A).
GO enrichment also showed that the activation differen-
tiation and proliferation of T cells, NK cell proliferation,
cytotoxic reaction, and other characteristics were highly
enriched when CuAS scores were high (Fig. 10B). In
addition, we identified differentially enriched signatures
between the high and low CuAS groups based on GSEA
enrichment analysis and also captured immune reaction
processes such as leukocyte adhesion migration and T
cell activation (Fig. 10C), indicating that the mechanism
of cuproptosis is closely related to immune reaction pro-
cess. Further, we calculated the immune and stromal
components by using ESTIMATE, and it was observed
that CuAS was significantly positively correlated with
the stromal, immune, and ESTIMATE scores, while it
was significantly negatively correlated with tumor purity
(Fig. 10D-G), which suggested the association between
cuproptosis and immunity. By using GSVA to calculate
immune cell infiltration, we found that cuproptosis was
significantly correlated with various types of immune
cell infiltration, including activated DC and NK cells.
(Fig. 12H). In addition, CIBERSORT and xCell methods
were used to calculate various immune cell infiltrates,
which revealed similar results (see Additional file 2: Fig.
S5).

Specific cell communication was different between high
and low CuAS groups

As the high CuAS cells were significantly enriched in
VEGFA + malignant cells, we mainly analyzed the dif-
ference in communication and function between the
VEGFA + malignant and other cells. Extensive cell
communication was observed in each cell subpopu-
lation (Fig. 11A). Furthermore, by distinguishing
between the incoming and outgoing signals, we found
that fibroblasts are the dominant signaler of outgo-
ing signaling, and VEGFA + malignant cells are the sig-
nal receivers (Fig. 11B). Furthermore, we identified two
patterns of cell subpopulations in outgoing signaling,
in which VEGFA + malignant cells belonged to Pattern
2 and corresponding pathways included VEGEF, FGE
CDAM, CD22, ADGRES5, and other malignant progres-
sion related pathways (Fig. 11C). Meanwhile, we analyzed
the dominant signaling pathway of each cell and found

(See figure on next page.)
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that VEGFA + malignant cells are not only involved in
the signaling pathway of VEGE, but also in the CD99
signaling pathway, which was not proposed in the non-
negative Matrix Factorization (NMF) analysis (Fig. 11D).
The CD99 signaling pathway plays an important role in
tumor progression and transendothelial migration of
cancer cells. VEGF and CD99 signaling pathways were
further analyzed, and it was found that VEGFA + malig-
nant cells are the dominant signalers of VEGF sig-
nals, and the cell subsets that were affected are mainly
the endothelial cells and fibroblasts, both of which are
important components of angiogenesis (Fig. 11 E, Q).
In addition, VEGFA + malignant cells are the dominant
signaler, receiver, and influencer of CD99 signaling path-
ways, indicating that CD99 signaling pathways can occur
as feedback loops (Fig. 11 F, H). Meanwhile, endothelial
and fibroblast cells are also affected by CD99 signaling
pathways, suggesting that VEGEA + malignant cells can
influence transvascular endothelial migration (Fig. 12).
The immunofluorescence detection of tissue samples
with high and low CuAS showed that VEGFA and CD99
were also highly expressed in tissues with high CuAS. The
results were opposite in tissues with low CuAS (Fig. 13E,
F, G), which provided a new idea for the intervention of
cuproptosis-related tumor cells.

CuAS is associated with prognosis of immunotherapy
Based on all the immunotherapy data searched, we
observed the ability of the CuAS score in predicting the
prognosis and efficacy in the immunotherapy cohort.
Phs001493 (Renal cell carcinoma, Anti-PD1 therapy) and
PRJEB23709_ipiPD1 (Melanoma,anti-CTLA4 & AMP;
Anti-pd1 dual antibody therapy) were significantly asso-
ciated with worse prognosis (see Additional file 2: Fig.
S6B and D). For a patient’s Progression Free Survival
(PES), we found that NCT02684006 (kidney cancer, anti-
PDL1 treatment) was significantly associated with worse
prognosis (see Additional file 2: Fig. S6E). Therefore, high
CuAS patients may benefit from immunotherapy.

Potential targeted drugs for high CuAS glioblastoma cells

The expression data of cell lines were extracted from
three databases: GDSC, CCLE, and CTRP. A lower AUC
value represents a higher sensitivity to drugs. Using the
AUC data provided by these databases, multiple drugs
with a negative correlation between the AUC and sig-
nature were found in GDSC, such as methotrexate,

Fig. 5 mRNA and protein expression of EREG. A mRNA expression of normal and tumor tissues. B mRNA expression of NHA and GBM cell lines. C
Protein expression of normal and tumor tissues. D Western blot was used to detect knockdown inefficiency of EREG in the U87 and U251 cell lines.
E The protein expression of EREG in normal and tumor tissues was detected by immunohistochemistry. F gRT-PCR was used to detect knockdown
inefficiency of EREG in the U87 and U251 cell lines. G Protein expression of NHA and GBM cell lines*P <0.05, **P <0.01, ***P < 0.001. Error bars

indicate the mean£SD
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BMS-708163, YM201636, FR-180204, and NU — 7441
(Fig. 12A). A variety of drugs with positive correlations
were also found, such as cyclopamine (Fig. 12B). These
drugs showed significant differences in the AUC between
the groups of high and low signature (Fig. 12 C, D). No
drugs with an IC50 significantly correlated with signature
were found in CCLE, while drugs with a significant AUC
(KU -0063794, cytochalasin B, GDC — 0941, cabozantinib,
CI—-976, SJ-172550, SGX—523, BRD —K71935468,
temozolomide, AT7867, BRD-K66532283, palmostatin
B, GDC-0879, ETP-46464, and NVP-BEZ235) negatively
correlated with signature were found in CTRP (Fig. 12E,
F). These drugs were found in the AUC values of the high
and low signature groups were significantly different in
CTRP (Fig. 12 J, H). Therefore, high CuAS samples are
likely to be sensitive to these compounds, and these com-
pounds may be novel treatment options for GBM.

Experimental validation of model genes

The genes expression levels in the model were detected
by qRT-PCR, and the results showed that they were
highly expressed in 20 pairs of tumor and normal tis-
sues (UNCX, SLC6A3, AGAP2-AS1, LINC00968, PTX3
and SBSPON), while ITPRID1, DCST2, ETV3L, and
ENSG00000261327 were down-regulated (Fig. 13A).
According to the corresponding PCR results, we divided
the tissue samples into high and low CuAS groups. IHC
staining was performed on UNCX, SLC6A3, and PTX3,
and it was found that the protein expression of the high
CuAS group was higher than that of the low CuAS group
(Fig. 13B, C, D).

Discussion

Copper is an essential cofactor in all organisms; how-
ever, it is toxic for cells when concentrations of copper
exceed thresholds maintained by an evolutionarily con-
served homeostasis mechanism [19, 20]. In fact, it is
not known how excessive copper can induce cell death.
However, the Broad Institute has currently identified a
new mechanism that is different from known cell death:
cuproptosis [8]. Cuproptosis is a kind of cell death that is
dependent on mitochondrial respiration. Copper directly
binds to lipoylated components of the tricarboxylic acid
cycle. Afterwards, aggregation of these copper-bound,

(See figure on next page.)
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lipoylated mitochondrial proteins and subsequent Fe-S
cluster protein loss trigger proteotoxic stress and a dis-
tinct form of cell death [19-22]. Cuproptosis is involved
in cell death, and the Broad Institute paper suggests that
drugs that inhibit mitochondrial respiration may be a
strategy against disease [19-22]. In addition, many mito-
chondrial proteins have a high degree of respiration func-
tion in various cancer cells [23]. Thus, copper ion metal
carriers may be a new method for cancer treatment.

To the best of our knowledge, this study was the
first paper to comprehensively analyze the association
between copper-induced cell death and GBM by combin-
ing scRNA-seq and bulk RNA-seq data. First, we identi-
fied two sample subgroups based on the characteristic
genes of cuproptosis. We found that immune checkpoint
genes (PD-1, IDO1 and LAG3) and cancer hallmarks
(fatty acid metabolism, KRAS, P53, NOTCH, and PI3K/
AKT/MTOR signaling pathway) showed significant dif-
ferences between the two subgroups. Immune check-
point is a kind of immunosuppressive molecule, which
can regulate the intensity and breadth of the immune
response, to avoid the damage and destruction of nor-
mal tissues. In the process of tumor occurrence and
development, immune checkpoint has become one of
the main reasons for immune tolerance. Subsequently,
we constructed CuAS based on the differential genes of
subgroups, which contained 11 genes, including 8 cod-
ing genes and 3 non-coding genes. EREG was the gene
with the largest contribution coefficient to the principal
component, so we focused on EREG. EREG is a 19-kDa
peptide hormone that belongs to the Epidermal Growth
Factor (EGF) family of peptide hormones [24]. Epiregu-
lin binds to the EGF receptor (EGFR/ErbB1) and ErbB4
(HER4) and stimulates signaling of ErbB2 (HER2/Neu)
and ErbB3 (HER3) through ligand-induced heterodi-
merization with a cognate receptor [24]. EREG pos-
sesses a range of functions in both normal physiologic
states as well as in pathologic conditions. EREG con-
tributes to inflammation, wound healing, tissue repair,
and oocyte maturation by regulating angiogenesis and
vascular remodeling and by stimulating cell proliferation
[24]. Deregulated EREG activity appears to contribute to
the progression of a number of different malignancies,
including cancers of the bladder, stomach, colon, breast,

Fig. 7 EREG proliferation analysis. A Viability of cells (U251) after treatment with elesclomol with or without 10 mM of indicated metals. B V iability
of U251 cells was assessed at the indicated times after elesclomol-Cu (1:1 ratio) treatment. ES, elesclomol. (C) Viability of shNC and shEREG in U251
cells was assessed at the indicated times after elesclomol-Cu (1:1 ratio) treatment. ES, elesclomol. D Cell viability of U251 cells after knocking down
EREG was determined using CCK8 assays with or without the presence of 20 nM elesclomol-Cu. E U87 and U251 cells were treated with EdU for
6 h prior to click reaction. Data analysis was performed to calculate the signal intensity in EdU-positive cells based on individual DAPI signal and is
displayed in the right graph. F Cell cycle distribution was analyzed by Pl staining in U251 and U87 cells of shNC and shEREG. *P <0.05, **P < 0.01,

***P <0.001. Error bars indicate the mean 4= SD
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Fig. 11 Cell communication analysis. A A global cellular communication network; B Each cell subpopulation mainly played the role of incoming or
outgoing; C Intercellular communication based on NMF method can be divided into two modes; D Main signaling pathways (E, F) associated with
VEGFA 4+ malignant cell subpopulation and their cell communication networks; G, H Primary originators and influencers of key signaling pathways
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lung, head and neck, and liver [2, 7, 24]. EREG is also
associated with imaging omics as an important prognos-
tic gene and MRI parameters revealed that hemodynamic
abnormalities were associated with the expression level
of the mTOR-EGFR pathway in patients with GBM [25].
Rab27b promotes the proliferation of adjacent cells and
radio-resistance of highly malignant GBM cells through
EREG-mediated paracrine signaling after irradiation [26].
Furthermore, EREG activates the extracellular signaling-
related kinase/MAPK pathway in GBM, suggesting that
the inhibition of the EREG-EGEFR interaction may be a
strategy for EREG-overexpressing patients with GBM [2].
In our study, we detected EREG mRNA expression and
protein levels in tissues and multiple glioma cell lines.
IHC staining revealed that the EREG protein expression
in tumors was higher than that in normal tissues; the
result of WB also showed similar results. Knockdown of
EREG can inhibit the proliferation, invasion, and migra-
tion of tumor cells. EGFR and PDL1 expression of pro-
tein were down-regulated after knockdowning of EREG.
Moreover, we explored if EREG could influence the
process of cuproptosis. Cell vitality assay demonstrated
that only the coexistence of Cucl, and ES can influence
the cell vitality and that other metals had no effect. The
effect of ES-Cu required a specific concentration range
(5 nM-50 nM). shEREG can revert the cell vitality that
is influenced by cuproptosis. Therefore, we detected the
protein expression of FDX1 in the shEREG and shNC
groups. The results showed that FDX1, the core regula-
tory protein in cuproptosis, was down-regulated in the
shEREG group.

Combined with the single cell transcriptome, the
model of cuproptosis was analyzed, and the GBM
sample cells were divided into seven types, includ-
ing three types of malignant cells (OLIG1+ malig-
nant, VEGFA + malignant, and CENPF+ malignant).
OLIG1 and other oligodendrocyte markers were highly
expressed in OLIG1 + malignant cells, which may be oli-
godendrocyte progenitor glioma mother cells. VEGFA,
CHI3L1, and other angiogenesis related markers were
highly expressed in VEGFA + malignant cells, which may
have a strong ability to induce local angiogenesis and
may be associated with invasion/metastasis. CENPF+-,
TOP2A, UBE2C, and other markers are associated with
the cell cycle and may be mesenchymal glioma blasts,

(See figure on next page.)
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which may be associated with tumor proliferation/inva-
sion [27, 28]. Others types observed were microglia,
fibroblasts, endothelial cells, and oligodendrocytes. High
CuAS was found in VEGFA + malignant cells. Based on
CNV [29], OLIG1 + malignant cells were the ancestor
clones. The function of VEGFA + malignant cells dem-
onstrated that the pathways were mainly enriched in
those related to hypoxia and stress, which is also con-
sistent with the fact that cuproptosis is mitochondrion-
dependent programmed cell death. Activated cells with
high CuAS scores based on differences between high
and low CuAS transcription factors were concentrated
in the VEGFA + malignant cell subpopulation, reflecting
the potential association between CuAS scores and Mod-
ulel. The VEGF and CD99 signaling pathways were sig-
nificantly enriched in high CuAS cells. VEGF specifically
binds to Fltl and KDR/FIkl on the surface of endothelial
cells, resulting in a variety of biological effects [30]. VEGF
is closely associated with angiogenesis and development
[31]. VEGF plays an important role in all stages of tumor
formation, inducing the production of a large number of
proteolytic enzymes, reducing the basement membrane
of the host blood vessels, weakening the barrier effect,
increasing the permeability of blood vessels, promoting
a large amount of fibrinogen exudation, and forming a
new matrix necessary for tumor adhesion and migration
[30, 31]. Angiogenesis is determined by the growth and
metastasis of solid tumors. VEGF degrades extracellular
matrix by inducing endothelial cells to express protease,
resulting in metastasis, proliferation, and angiogenesis
[32]. CD99 is abnormally expressed in many different
types of tumors, and plays an important role in the diag-
nosis, development, metastasis, and prognosis, mainly
affecting the invasion and metastasis of tumor cells [33].
Immunofluorescent detection of tissue samples with
high and low CuAS showed that VEGFA and CD99 were
also highly expressed in tissues with high CuAS, and the
results were opposite in tissues with low CuAS, which
provided a new idea for us to intervene in cuproptosis-
related tumor cells.

Immunotherapy is essential in tumor treatment.
Despite the lack of specific immune cohort verification
for glioma, several other tumor immune cohorts have
shown the possibility of treatment for patients with high
CuAS. Considering that EREG may affect the expression

Fig. 12 Drug sensitivity between different signature groups of GDSC and CTRP. A Negative correlation between signature score in GDSC and
drug AUC (P < 0.05); B Positive correlation between signature score in GDSC and drug AUC (P < 0.05); C Differences in signature scores of GDSC cell
lines with significant negative correlation under different drug treatments; D Differences in signature scores of cell lines with significant positive
correlation under different drug treatments in GDSC. E Negative correlation between signature score and DRUG AUC in CTRP (P < 0.05); F Positive
correlation between signature score in CTRP and drug AUC (P < 0.05); G Difference in signature scores of all cell lines in CTRP with significant
negative correlation under different drug treatments; H Differences in signature scores of all cell lines in CTRP with significant positive correlation

under different drug treatments
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40X

Fig. 13 Experimental validation of model genes. A The genes of model expression were detected by gRT-PCR. Immunohistochemistry was
performed on UNCX (B), SLC6A3 (C), and PTX3 (D) in high or low CuAS group. Immunofluorescence detected the expression of VEGFA (E) and CD99
(F) in tissue samples with high and low CuAS group. G Coexpression of VEGFA and CD99 in tissue samples with high and low CuAS group. *P <0.05,

**P<0.01, **P<0.001. Error bars indicate the mean 4= SD
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of PDL1 and the immune process, we believe that immu-
notherapy may have therapeutic opportunities for
patients with high CuAS. Chemotherapy is also the first
line of treatment for glioma. We predicted the potential
targeted drugs for high CuAS GBM cells. Methotrexate
can be used to treat GBM owing to several factors such as
the upregulation of CD73 [34]. Pharmacological inhibi-
tion of DNA-PKcs with the DNA-PKcs inhibitor NU7441
reduced GSC tumorsphere formation [35] mTORC1/2
inhibitors of KU-0063794 can inhibit PI3K-Akt-mTOR
signaling in glioblastoma and reduce cell proliferation
[36]. The PI3K inhibitor GDC-0941 enhances radio-
sensitization and reduces chemo-resistance to temozo-
lomide in GBM cell lines [37]. Cabozantinib is a potent,
multitarget inhibitor of MET and VEGF receptor 2 [38].
NVP-BEZ235 (PI3K and mTOR a dual inhibitor) can
inhibit the PI3K pathway to hinder glycolytic metabolism
in GBM cells [39].

However, there were some limitations of our study.
First, cuproptosis is a new concept, and there are few
characteristic genes of cuproptosis, so it may affect the
stability and applicability of the model on single-cell
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data. Second, the VEGF and CD99 signaling pathways
were only detected by immunofluorescence, and further
experiments are needed to prove their correlation with
cuproptosis. Third, we found that EREG is closely related
to PDL1 and FDX1, but further direct mechanisms are
needed to reveal the relationship between them.

Conclusion

Overall, we established a scoring model based on
cuproptosis-related genes in glioblastoma samples
(Fig. 14). High CuAS samples show more aggressive
growth patterns and worse clinical outcomes than low
CuAS samples. EREG, the core model gene, is an onco-
genic gene that can affect immunity by influencing the
expression of PDL1 and is closely related to cupropto-
sis by influencing the expression of FDX1. High CuAS
GBM cells are found in VEGFA + malignant cells, and
VEGF and CD99 is the differential pathway of spe-
cific cell communication between high and low CuAS
groups. We assumed that targeting high CuAS samples
may improve a patient’s prognosis. Moreover, novel
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potential compounds and immunotherapy can also be
predicted. Taken together, CuAS can evaluate glioblas-
toma aggressiveness, modulate the cross-talk between
VEGEF/CD99 signaling, and provide support for immu-
notherapy and chemotherapy.
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