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Abstract 

Background  Alternative splicing (AS) of RNA is a fundamental biological process that shapes protein diversity. Many 
non-characteristic AS events are involved in the onset and development of acute myeloid leukemia (AML). Abnormal 
alterations in splicing factors (SFs), which regulate the onset of AS events, affect the process of splicing regulation. 
Hence, it is important to explore the relationship between SFs and the clinical features and biological processes of 
patients with AML.

Methods  This study focused on SFs of the classical heterogeneous nuclear ribonucleoprotein (hnRNP) family and 
arginine and serine/arginine-rich (SR) splicing factor family. We explored the relationship between the regulation pat‑
terns associated with the expression of SFs and clinicopathological factors and biological behaviors of AML based on 
a multi-omics approach. The biological functions of SRSF10 in AML were further analyzed using clinical samples and 
in vitro experiments.

Results  Most SFs were upregulated in AML samples and were associated with poor prognosis. The four splicing 
regulation patterns were characterized by differences in immune function, tumor mutation, signaling pathway activ‑
ity, prognosis, and predicted response to chemotherapy and immunotherapy. A risk score model was constructed 
and validated as an independent prognostic factor for AML. Overall survival was significantly shorter in the high-risk 
score group. In addition, we confirmed that SRSF10 expression was significantly up-regulated in clinical samples of 
AML, and knockdown of SRSF10 inhibited the proliferation of AML cells and promoted apoptosis and G1 phase arrest 
during the cell cycle.

Conclusion  The analysis of splicing regulation patterns can help us better understand the differences in the tumor 
microenvironment of patients with AML and guide clinical decision-making and prognosis prediction. SRSF10 can be 
a potential therapeutic target and biomarker for AML.
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Introduction
Acute myeloid leukemia (AML) is a hematological malig-
nancy derived from hematopoietic stem cells, and its 
pathogenesis is still unclear [1]. Patients with AML have 
a very poor prognosis, with a 5-year survival rate lower 
than 30% [2]. The “7 + 3” chemotherapy with cytarabine 
and anthracyclines is the conventional clinical treatment 
for AML [3]. Targeted therapies for gene mutations, 
such as FLT3 and IDH, and apoptosis-inducing therapies 
for BCL-2 have also been developed successively [4, 5]. 
However, due to the intolerability of chemotherapy and 
the emergence of treatment resistance, the treatment of 
AML is difficult. Therefore, it is very important to thor-
oughly study the molecular biological characteristics of 
AML and explore new therapeutic targets.

Aberrant splicing of genes promotes AML progres-
sion as well as treatment resistance, including the for-
mation of various specific splice variants and the onset 
of non-characteristic alternative splicing (AS) events [6, 
7]. These aberrant tumor alterations can adequately cre-
ate self-serving survival conditions, evade attack by the 
immune system, or induce aberrant energy metabolism. 
For example, splice variants of NOTCH2 and FLT3 genes 
encode functional proteins that exert pro-oncogenic 
effects and generate resistance against targeted inhibi-
tors by affecting key downstream signaling targets (AKT, 
STAT, and ERK) [8]. Among anti-apoptotic BCL-2 pro-
teins, MCL-1 L can promote AML cell survival by isolat-
ing the pro-apoptotic proteins BIM and BID [9]. In AML, 
the production of functional protein products with onco-
genic properties is largely dependent on the regulation of 
transcript expression levels, and aberrant alterations in 
pro-tumor cell survival pathways, oncogenic transcrip-
tion factors, intrinsic and extrinsic apoptotic signaling, 
and death effector molecules can be mediated by splicing 
regulation to establish chemoresistant phenotypes [10, 
11].

AS is a complex biological process that can involve 
coordinated interactions between more than 200 mol-
ecules to support or inhibit splicing regulation at 
specific target sites of precursor messenger RNA (pre-
mRNA) [12]. In this process, splicing factors (SFs) play 
an important role, which are proteins that form part of 
a dynamic complex called the spliceosome with at least 
five small nuclear RNAs (snRNAs) [13]. Like “scissors”, 
it precisely repairs the pre-mRNA, cuts off the redun-
dant part to form a variety of mRNA sequences, and 
then translates to form protein isoforms with different 
biological functions, participating in the life activities of 
the whole body [14]. There are two well-known protein 
families in RNA-binding SFs: serine/arginine-rich (SR) 
proteins, which normally promote exon inclusion, and 

heterogeneous nuclear ribonucleoproteins (hnRNPs), 
which normally promote exon skipping [15]. In hema-
tological tumors, more than half of patients with 
myelodysplastic syndromes (MDS) show mutations in 
functional components of the spliceosome, commonly 
in serine-rich SFs, such as SF3B1, SRSF2, and U2AF1 
[16]. However, mutations in SFs are uncommon in AML 
compared to those in MDS [17], and therefore, aberrant 
splicing regulation of SFs may play a more significant 
role in disease progression in AML. Events in AS may 
be an essential feature of AML biology, and genome-
wide analysis of aberrant splicing patterns in patients 
with AML has revealed differential splicing of approx-
imately one-third of genes in AML cells compared to 
those in CD34+ cells in a normal control population 
[18]. In two study cohorts comprising over 200 patients 
with AML, 135–786 genes that underwent recur-
rent splicing were identified per patient sample [18], 
of which approximately 76–80% of splicing changes 
could be mapped to translated transcriptional regions 
and potentially alter certain functions of proteins. Fur-
thermore, changes occurring in non-translated regions 
could affect transcriptional stability or translation effi-
ciency [18]. Approximately half of the identified splice 
variants have never been reported before, and these 
may be pathological factors specific to AML. However, 
in multiple patient samples, the presence and abun-
dance of some splice variants could only be detected at 
diagnosis and then disappears during remission, only to 
be strongly re-expressed again during relapse.

This study aimed to conduct an in-depth analysis of 
the relationship between SFs of the hnRNP and SR fam-
ilies and the biological features of AML and to enhance 
the understanding of the mechanism by which these 
SFs regulate aberrant AS events in AML. These analy-
ses may help us to better understand the role of AS 
pathogenesis on the development of AML. We applied 
bioinformatics analysis methods to transcriptome 
sequencing data combined with clinical information 
to explore the relationship among SFs, the prognosis 
of patients with AML, and tumor microenvironment. 
The results of these differential features and prognostic 
analysis will also provide reference values for the study 
of molecular mechanisms of AML, clinical prognosis 
prediction, and the design of personalized treatment 
regimens. Finally, we focused on the splicing factor 
SRSF10, a gene that plays an active tumor-promoting 
role in many cancers but whose expression has not 
been reported in AML. We observed that the expres-
sion levels of SRSF10 were significantly upregulated in 
AML samples compared to those in normal blood tis-
sues. Furthermore, we elucidated the mechanism of 
SRSF10 in AML via further experiments.
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Method
Data acquisition and processing
We downloaded transcriptome sequencing data and 
clinical information from the XENA database (https://​
xenab​rowser.​net/​datap​ages/) for 173 patient samples 
in the Cancer Genome Atlas-Acute Myeloid Leukemia 
(TCGA-LAML) and 337 healthy whole blood control 
samples in the Genome Tissue Expression (GTEx). The 
alternative splicing data in TCGA-LAML were down-
loaded in the TCGA SpliceSeq database, including the 
splicing percentage values (PSI) of alternative splic-
ing events in each sample. PSI values ranging from 0 
to 100% represented the occurrence of each AS event. 
Seven types of AS events were recorded, which are 
listed as follows: exon skipping (ES), mutually exclusive 
exon (ME), retained intron (RI), alternative promoter 
(AP), alternative terminator (AT), alternative donor 
site (AD), and alternative acceptor site (AA). Finally, 
we downloaded somatic mutation and copy number 
variation data from the TCGA database for patients 
with AML. RNA-seq data were normalized to tran-
scripts per million (TPM) values and log2 transformed. 
Somatic mutation data and copy number variation data 
were downloaded from the TCGA database (https://​
portal.​gdc.​cancer.​gov/). The microarray data and prog-
nostic information of the validation cohorts for the risk 
score model (GSE14468, GSE37642-GPL96, GSE37642-
GPL570, GSE71014) were downloaded from the Gene 
Expression Omnibus (GEO) database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/). SFs from 20 HNRNP fami-
lies and 12 SR families were analyzed in this study, 
which are listed as follows: SRSF1, SRSF2, SRSF3, 
SRSF4, SRSF5, SRSF6, SRSF7, SRSF8, SRSF9, SRSF10, 
SRSF11, SRSF12, HNRNPA0, HNRNPA1, HNRN-
PA2B1, HNRNPA3, HNRNPAB, HNRNPC, HNRN-
PCL1, HNRNPD, HNRNPDL, HNRNPF, HNRNPH1, 
HNRNPH2, HNRNPH3, HNRNPK, HNRNPL, 
HNRNPM, HNRNPR, HNRNPU, HNRNPUL1, and 
HNRNPUL2. All data were analyzed using the R lan-
guage software R 4.02 and corresponding software 
packages.

Unsupervised cluster analysis of 32 splicing factors
In order to better analyze the overall splicing regulation 
relationship of the 32 splicing factors, we used a consen-
sus clustering algorithm to perform unsupervised clus-
tering according to the expression of splicing factors for 
determining the splicing regulation patterns induced by 
the expression of splicing factors. The “ConsensuCluster-
Plus” package was used to perform the aforementioned 
steps, and this analysis was repeated 1000 times to ensure 
the stability of the clustering results. The t-Stochastic 

Neighbor Embedding (t-SNE) method was used to verify 
the reliability of the splicing regulation patterns identified 
based on SFs.

Gene set variation analysis (GSVA) and functional 
annotation
In order to explore the differences in biological processes 
among different splicing regulatory patterns, we used the 
“GSVA” package to conduct GSVA enrichment analysis. 
In non-parametric and unsupervised analysis methods, 
GSVA is typically performed to calculate enrichment 
scores to estimate the activity levels of pathways and 
biological processes corresponding to gene sets in sam-
ples. We downloaded the “h.all.v7.4.symbols” gene set 
from MSigDB database (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/), and the adjusted P-value < 0.05 was used 
to identify the differences of enrichment scores among 
different groups. To explore the signaling pathways asso-
ciated with differentially expressed genes (DEGs), we per-
formed the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis. The biological functions of these genes 
were annotated via Gene Ontology (GO). These func-
tions were analyzed in the“clusterProfiler” package. Gene 
sets for different types of immune-function related fea-
tures, such as antigen-presenting cell co-stimulation/co-
inhibition and T cell co-stimulation/co-inhibition, were 
collected from previous studies and then analyzed for 
enrichment scores using the GSVA algorithm [19].

Estimation of immune cell infiltration in the tumor 
microenvironment
CIBERSORT uses a support vector regression algorithm 
to infer the proportion of immune cells in a tumor sam-
ple by deconvolution based on the expression of immune 
cell marker genes. These include naive B cells, memory 
B cells, plasma cells, CD8+ T cells, naive CD4+ T cells, 
resting CD4+ memory T cells, activated CD4+ memory 
T cells, follicular helper T cells, regulatory T cells, γδT 
cells, resting NK cells, activated NK cells, monocytes, M0 
macrophages, M1 macrophages, M Macrophages, rest-
ing dendritic cells, activated dendritic cells, resting mast 
cells, activated mast cells, eosinophils, neutrophils and 
other 22 types of immune cells.

Prediction of drug sensitivity and assessment of response 
to immunotherapy
The software package “pRRophetic” was used to pre-
dict the half-maximal inhibitory concentration (IC50) of 
drugs commonly used to treat AML in each sample. IC50 
indicates the effectiveness of a substance in inhibiting a 
specific biological or biochemical function, and a smaller 
value indicates a better effect. The SubMap (s://​cloud.​
genep​attern.​org/​gp) algorithm was used to predict the 
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response of different splicing regulatory patterns to anti-
PD-1 and anti-CTLA4 immune checkpoint inhibitors.

Construction of risk score model for prognostic prediction
Univariate Cox regression analysis was used to identify 
DEGs related to the prognosis of patients with different 
splicing regulation patterns, and LASSO Cox regression 
analysis was used to reduce the dimension to remove 
redundant prognosis-related molecules to prevent over-
fitting of the model. Furthermore, tenfold cross-valida-
tion was performed to determine the penalty parameter 
(λ) of the model. The following formula was used to cal-
culate the risk score for each sample:

where “Coef” represents the non-zero regression coef-
ficient of the model gene, and “ExpGene” specifies the 
expression value of the model gene. All samples were 
divided into low- and high-risk groups according to the 
cut-off value of risk score. Kaplan–Meier analysis with 
log-rank test was used to compare differences in overall 
survival (OS) between low- and high-risk groups. We 
further plotted the time-dependent receiver operating 
characteristic (ROC) curve to evaluate the prognostic 
accuracy of the risk score model. Univariate and multi-
variate Cox analyses were used to determine the inde-
pendent predictive power of the model.

Development of a nomogram for predicting OS
In order to more accurately predict the OS of patients, 
we combined clinical features significantly associated 
with the prognosis of AML patients with the risk scoring 
model and developed a nomogram with three signatures: 
age, cytogenetic risk, and prognostic risk score model. 
Simultaneously, the ROC curve and calibration curve 
were drawn to evaluate the predictive performance of the 
nomogram.

Collection of clinical samples and cell culture
Two batches of AML samples were collected with the 
approval of the Medical Ethics Committee of the Second 
Affiliated Hospital of Nanchang University, and the par-
ticipants were informed at the same time. The first batch 
comprised bone marrow samples from four patients with 
AML and peripheral blood samples from eight healthy 
individuals. The second batch comprised peripheral 
blood samples from 22 patients with AML and 23 healthy 
individuals, and mononuclear cells were isolated. The 
mononuclear cells we obtained were left over from the 
necessary medical tests of the participants and would not 

Risk score =

i∑

1

(Coefi ∗ ExpGenei),

affect their benefits. AML cell line THP1 was cultured 
in the RPMI1640 medium containing 10% fetal bovine 
serum and 1% penicillin–streptomycin in an incubator at 
37 °C in a humidified atmosphere with 5% CO2. A len-
tivirus containing SRSF10 siRNA was purchased from 
Hanhsinhsinh (Shanghai, China) to infect THP1 cells 
and select cells for puromycin resistance. Real-time poly-
merase chain reaction (RT-PCR) was performed using 
a Japanese TAKARA kit using the ABI7500 instrument. 
Western blot experiments were performed with rabbit 
anti-β-tubulin (1:10,000, #2146) and anti-SRSF10 (1:1000, 
42267S) antibodies purchased from Cell Signaling Tech-
nology (Danvers, MA, USA).

Detection of cell proliferation, apoptosis, and cell cycle
Cell proliferation was detected by Cell Counting KIT-8 
(CCK-8) and EdU staining. For CCK8, 2 × 104 cells of dif-
ferent treatment groups were seeded in a 96-well plate, 
and each group was repeated three times. A total of 10 
µL of CCK8 was added at 0, 24, 48, and 72  h, respec-
tively. After incubation at 37  °C for 2.5  h, the OD was 
detected at 450  nm using a microplate reader. For EdU 
staining, 1 × 106 cells were incubated with EdU solution 
diluted at a ratio of 1:1000 at 37  °C for 2.5 h, fixed with 
paraformaldehyde at room temperature, and decolorized 
with 2 mg/ml of glycine. After subsequent washing dur-
ing Apollo staining and Hoechst33342 chamber staining, 
fluorescence microscopy was performed. For apoptosis 
assays, cells were stained using the annexin V-PE/7-AAD 
Apoptosis Assay Kit and subsequently analyzed via a flow 
cytometer. For the cell cycle, the cells were fixed with 
75% ethanol precooled at 4 °C for 3–4 h and centrifuged 
at 1000 R for 5 min in a low-speed centrifuge. The super-
natant was discarded and washed once with PBS. Subse-
quently, FITC dye was added, followed by incubation in 
a dark environment for about 15 min, and the cells were 
tested using a flow cytometer.

Statistical analysis
We used the Wilcoxon rank sum test or the Kruskal–
Wallis test to determine differences between groups. A 
two-sided P value of < 0.05 was considered statistically 
significant.

Results
The landscape of genetic variation in SFs of hnRNP and SR 
families
We first analyzed the expression characteristics of two 
splicing family regulators in AML samples. The expres-
sion of 31 out of the 32 SFs was detected in both AML 
and normal samples. Compared with normal sam-
ples, the expression of 10 SFs (HNRNPH2, SRSF4, 
HNRNPL, HNRNPC, SRSF9, HNRNPK, HNRNPUL1, 
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HNRNPF, HNRNPUL2, HNRNPM) was significantly 
down-regulated in AML samples. The expression of 17 
SFs (HNRNPD, HNRNPH3, SRSF8, HNRNPU, SRSF5, 
SRSF2, HNRNPDL, HNRNPAB, SRSF7, HNRNPA1, 
SRSF1, HNRNPR, SRSF6, SRSF11, HNRNPH1, SRSF10, 
SRSF12) was up-regulated in AML samples. The expres-
sion of SRSF3, HNRNPA2B1, HNRNPA3, and HNRNPA0 
did not demonstrate significant differences (Fig. 1A). We 
further analyzed their somatic mutation characteristics, 
and the results showed that the mutation rate of SFs 
was low in AML samples. Only 6 out of 134 mutations 
remained changed, and two of the HNRNPK mutations 
were frameshift DEL and multihit mutations, respec-
tively. Missense mutations were observed in SRSF2, 
SRSF11, HNRNPF, and HNRNPH1 in four different sam-
ples, and the base changes in these mutations primarily 
involved conversion from C to T (Fig.  1B). We further 
conducted copy number variation analysis of SFs to 
explore the relationship between copy number changes 

and mRNA expression levels. We observed that the fre-
quency of the increase in the copy number of HNRNPU, 
HNRNPR, SRSF10, and SRSF8 was upregulated, which 
may be related to the up-regulation of corresponding 
mRNA levels. The copy number deletion of HNRNPK 
and HNRNPC may be one of the reasons for their down-
regulation in AML samples (Fig.  1C). Figure  1D shows 
the positions of the 32 SFs in the chromosome. These 
results suggest that SFs of hnRNP family and SR family 
exhibit heterogeneous genetic and expression landscapes 
in AML samples and may be involved in the onset and 
progression of AML.

Regulatory patterns of splicing mediated by 32 SFs
The abnormal changes in the genetic and expression of 
SFs may be constituted as the signatures of the malig-
nant development of AML. In order to better identify the 
relationship between splicing factors and the biological 
process of AML, we aimed to elucidate the relationship 

Fig. 1  Genetic characteristics of SFs in hnRNP and SR families in AML samples. A The heatmap depicts the difference in SFs expression between 
AML samples and normal samples. B Somatic mutations in SFs in 134 TCGA-LAML patient samples; Each column in the waterfall plot represents the 
mutation type for each patient, the tumor mutation burden (TMB) for each patient is shown in the top half, the mutation frequency and mutation 
type ratio of SFs are shown on the right, and the proportion of different base transitions is shown below. C Copy number variation frequency of SFs. 
D The position of SFs on 23 chromosomes (*P < 0.05; **P < 0.01; ***P < 0.001)
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between SFs and AML based on the overall expression 
pattern. The correlation in expression and prognos-
tic characteristics of SFs were analyzed. We found that 
almost all SFs of the SR family were prognostic risk fac-
tors, and hazard ratio (HR) > 1 and a high expression of 
these genes predicted poor prognosis of patients. How-
ever, the 20 SFs of hnRNP family comprised 12 risk fac-
tors and 8 protective factors (HR < 1) (Additional file  1: 
Fig. S1A). Survival analysis showed that the expression 
of 13 SFs was significantly correlated with prognosis 
(P < 0.05), and patients with high expression of SRSF12 
and HNRNPA1 had a better prognosis. Patients with 
high expression of SRSF4, HNRNPAB, HNRNPH2, 
HNRNPUL1, HNRNPF, HNRNPC, HNRNPR, SRSF11, 
HNRNPL, SRSF6, and SRSF1 showed a significantly 
worse prognosis (Additional file 1: Fig. S1B). Correlation 
analysis of the co-expression relationships of these genes 
showed that they were positively correlated (P < 0.001) 
(Additional file 1: Fig. S1A).

We further performed unsupervised clustering based 
on the expression of SFs. The results showed that patients 
with AML could be stably divided into four groups, 
which were termed clusters A–D (Fig.  2A, B). The 
expression of SFs was generally low in cluster A and high 
in cluster B, while the overall expression level in cluster C 
was between that of cluster A and cluster B. The expres-
sion of Cluster D was not as uniform as that of the first 
three clusters (Fig. 2C). Further survival analysis showed 
that patients in cluster D had the best prognosis, those in 
cluster C had the worst prognosis, and those in clusters A 
and B were in the middle (Fig. 2D). Figure 2E further con-
firms the differential expressed characteristics of SFs in 
the four clusters. Somatic mutation analysis showed that 
the TP53 mutation frequency was the highest in cluster 
A. The percentage of patients with somatic mutations in 
cluster B was higher, and many patients have multiple 
mutated genes that may be associated with abnormally 
activated expression of SFs in this group. The mutant 
genes in cluster c were concentrated. These genes mainly 
included DNMT3A, NPM1, FLT3, and TP53 (Fig. 2F).

Differences in biological characteristics with respect 
to different splicing regulation patterns
To better analyze the biological differences with respect 
to splicing regulation patterns, we used the GSVA algo-
rithm to analyze the enrichment differences in KEGG 
signaling pathways and cancer-related hallmark gene 
sets associated with different splicing regulation patterns 
(Fig. 3A, B). In cluster A, the activities of the KRAS sign-
aling pathway mediated up-regulated/down-regulated 
gene set, IL2/STAT5 signaling pathway, TNF-α signal-
ing pathway via NF-κB, and immune-related pathways, 
such as coagulation and complement cascade, and the 

inflammatory response were highly enriched (Fig.  3B), 
which mainly activates more cell signaling, leading to 
the continuous release of signals in the pro-cancer path-
way. This may be related to a higher proportion of NRAS 
gene mutations in cluster A. Moreover, cluster B showed 
increased activity of proliferation-related pathways, such 
as E2F target, cell cycle G2/M checkpoint, MYC-targeted 
variant 1/2, mitotic spindle, protein regulatory signaling 
pathways, such as protein secretion and unfolded pro-
tein response, and multiple DNA damage repair path-
ways (Fig.  3A,  B). These findings indicate that cluster B 
showed a significant promotion in cell proliferation, pro-
tein expression, and genetic regulation of the genome. 
Increased activity of DNA damage repair pathways also 
favors cell survival. Cluster C showed high activity of a 
large number of immune- and inflammation-related 
signaling pathways, such as B/T cell receptor signaling 
pathway, chemokine signaling pathway, NOD-like recep-
tor cell pathway, Toll-like receptor signaling pathway 
(Fig.  3A), complement cascade, interferon α/γ signaling 
pathway, IL6-JAK-STAT3 signaling pathway, and inflam-
matory response (Fig.  3B). Interestingly, the activity of 
these pathways was lowest in Cluster D. A high activity of 
these pathways in tumor cells can promote the develop-
ment of chronic inflammation and immune escape in the 
tumor microenvironment and may lead to deterioration, 
which may be an important reason for the poor progno-
sis of cluster C patients. Cluster C also showed abnormal 
metabolic reprogramming, with elevated activities of 
fatty acid metabolism, oxidative phosphorylation, adipo-
genesis, reactive oxygen species pathway, and heterolo-
gous metabolism pathway (Fig.  3B). Abnormal immune 
and metabolic changes were the main biological charac-
teristics of cluster C.

Apparent differences were observed in biological pro-
cesses, immune characteristics, and clinicopathological 
factors among different splicing regulation patterns. 
We further examined whether different regulation pat-
terns are associated with AS events. We compared four 
groups pairwise and via veen diagram analysis (Fig. 3C). 
We found that Cluster A showed the highest number 
of overlapping differentially expressed AS events with 
the other three clusters. The heatmap showed that 
the expression trend of these differential AS events 
in cluster A was in contrast to that of the other three 
clusters, with the differences with cluster B being the 
most apparent (Fig.  3D). We observed that most of 
the genes in cluster A have a high and a low expressed 
AS event, which have opposite expression trends, but 
their splicing types are the same, only the splice sites 
are different. Further statistical analysis revealed that 
the splicing types of these events were concentrated at 
AP and AT (Fig. 3E). AT and AP are different in the last 
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or first exon of the two transcripts, respectively, indi-
cating that different splicing regulation patterns have 
different effects on the 5′ or 3′ end of the transcript. 
These differential AS events were observed correspond-
ing to 209 genes. We performed the KEGG enrichment 
analysis. Results show that these genes were mainly 
associated with RNA transport, RIG-I-like recep-
tor signaling pathway, Chemokine signaling pathway, 

ribosome, mRNA surveillance pathway, oxidative phos-
phorylation, MAPK signaling pathway, NF-kappa B 
signaling pathway, Toll-like receptor signaling pathway, 
cytosolic DNA-sensing pathway, and acute myeloid 
leukemia. Most of these pathways are the same as the 
significant enrichment pathways of each cluster. SFs are 
largely involved in the regulation of these AS events. 
Therefore, the abnormal expression of SFs may be one 

Fig. 2  Identification of SFs related regulatory patterns. A AML patients were divided into four clusters by consistent clustering algorithm. B t-SNE 
algorithm verifies the clustering ability based on SFs expression. C The heatmap shows the expression of SFs in the four clusters. D Survival analysis 
of patients with different clusters. E Expression differences of SFs in the four clusters. F Differences in somatic mutations among the four clusters 
(*P < 0.05; **P < 0.01; ***P < 0.001)
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of the reasons why different clusters have significant 
differences in biological characteristics.

Differences in immune‑related features among different 
splicing regulation patterns
Pathway enrichment analysis showed significant dif-
ferences in immune-related pathways among different 
splicing regulation patterns. We further analyzed the 
proportion of immune cell infiltration, immune func-
tional activity, and immune checkpoint expression 
corresponding to different patterns. We observed that 
cluster C contained more inflammatory immune cells, 
including monocytes, M2 macrophages, and neutro-
phils, and the infiltration ratio of CD8+ T cells was the 
lowest. The infiltration of naive B cells, CD8+ T cells, 

follicular helper T cells, resting mast cells, and eosino-
phils was significantly increased in cluster D (Fig. 4A). 
Cluster A and cluster B showed no significant immune 
infiltration characteristics. In terms of the expression 
activity of immune function (Fig. 4B), cluster A showed 
high activity of antigen-presenting cell (APC) costim-
ulatory molecules, C-C-motif chemokine receptor 
(CCR), para-inflammation, T-cell costimulatory mol-
ecules, and type I interferon (IFN) response. In cluster 
C, the expression of APC coinhibitory/costimulatory 
molecules, CCR, and para-inflammation molecules 
was high. Compared with other clusters, most immune 
functions were less potent in cluster D, and only T-cell 
costimulatory molecules show high activity. Differential 

Fig. 3  Differences in signaling pathways between different splicing regulation patterns. A Difference in enrichment scores of KEGG gene sets 
related to cancer development in Cluster A and Cluster B, Cluster C and Cluster D. B Difference in enrichment scores of cancer-related hallmark 
gene sets related to cancer development in Cluster A and Cluster B, Cluster C and Cluster D. C The Veen diagram shows the intersection of the 
difference AS events between pairs of comparison in the four clusters. D Overlapping AS events after differential expression between cluster A and 
other clusters. E The Upset plot displays the type and number of AS events. F Functional analysis of AS event genes
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expression analysis of immune checkpoints showed that 
the expression levels of HAVCR2, PD-L2, and CD86 in 
cluster C were significantly higher than those in other 
clusters (Fig.  4C). Moreover, the overall expression of 
immune checkpoints was downregulated in cluster D. 
The characteristics of high infiltration of inflammatory 
immune cells, high activity of immune cell function, 
such as APC inhibition, proinflammatory response, 
and high expression of immune checkpoints in cluster 
C reflect the possible presence of chronic inflammatory 
and highly immunosuppressive microenvironment. 
Hence, these may be the reasons for the poor prognosis 
of patients in cluster C. In contrast, T cells may play an 
immune role in cluster D, which may be the reason why 
patients in cluster D had a better prognosis.

Prediction of therapeutic sensitivity with different splicing 
regulation patterns
We predicted the therapeutic sensitivity of common 
AML drugs based on global gene expression with differ-
ent splicing regulation patterns. These drugs included 
cytarabine, doxorubicin, and midostaurin, the first two 
of which are chemotherapy drugs, and the last one is 
a targeting agent of FLT3 gene mutation. The results 
showed that the IC50 of the three drugs was the highest 
in cluster A and the lowest in cluster B, and cluster D 
exhibited higher sensitivity to cytarabine than the other 
three clusters (Fig. 4D). We further compared the four 
splicing regulation patterns with the expression dataset 
of patients with melanoma who responded to immuno-
therapy, notably the potential therapeutic value of anti-
PD-1 treatment for cluster C patients (Fig. 4E).

Fig. 4  Differences in immune-related features and prediction of treatment sensitivity among different splicing regulation patterns. A Differences 
in infiltration of 22 immune cells among the four clusters. B Differences in immune function activity scores among the four clusters. C Differences 
in immune checkpoint expression among the four clusters. G, H IC50 prediction of the four clusters for cytarabine, doxorubicin, and midostaurin 
treatment. I Prediction of response to anti-PD-1 and anti-CTAL4 immunotherapy by different splicing regulation patterns (*P < 0.05; **P < 0.01; 
***P < 0.001)
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Construction and validation of prognostic risk score model
Splicing regulation patterns reveal the pathological char-
acteristics and potential treatment modalities of patients 
with AML, and we further explored their prognostic 
value. The expressed difference of SFs between cluster 
A and cluster B was the largest, and the prognosis of 
patients in custer C and cluster D was significantly dif-
ferent. We performed differential expression analysis 
for cluster A and cluster B, cluster C and cluster D, and 
identified 1261 and 754 DEGs (|logFC| > 1, adjusted 
P value < 0.05), respectively, of which 53 contains both 
in two groups of DEGs (Fig.  5A). We believe that these 
genes are closely related to SFs and the prognosis of 

AML. Cox regression analysis showed that 21 genes were 
significantly associated with the prognosis of patients 
with AML (P < 0.05) (Fig.  5B). These prognostic genes 
were used to construct the prognostic risk model. To 
prevent overfitting of the model, LASSO regression 
analysis was used to reduce their dimensionality and 
eliminate redundant prognostic genes. After tenfold 
cross-validation, we determined the penalty param-
eter (λ) of the model and the corresponding eight genes 
involved in model construction (Fig.  5C), LST1, SSBP2, 
ETS2, TRIM16, TM7SF3, PLXNB1, AUTS2, and MAP7. 
We identified the corresponding correlation coeffi-
cients of model genes according to the λ value (Fig. 5D) 

Fig. 5  Construction of risk scoring model. A Identification of DEGs with different splicing regulation patterns. B Identification of DEGs significantly 
associated with prognosis by Cox regression analysis. C Calculate log(λ) of the minimum tenfold cross-validation error point and determine the 
corresponding model gene. D Determine the coefficients of model genes. E Survival analysis between high-risk score and low-risk score subgroups. 
F Time-dependent ROC curve analysis of risk score. G Univariate Cox regression analysis of clinicopathological factors and risk score. H Multivariate 
Cox regression analysis of clinicopathological factors and risk score. I Alluvial diagram showing the changes of splicing regulation patterns, risk score 
groups, survival status groups. J Differences in risk scores among different splicing regulation patterns and survival status groups
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(Additional file 2: Table S1). Finally, we calculated the risk 
score for each sample using the model formula. Based 
on the cut-off value, patients with AML were divided 
into high-risk and low-risk groups. Log-rank test results 
showed that the prognosis of patients in the high-risk 
group was significantly worse than that in the low-risk 
group (P < 0.001) (Fig.  5E). The time-dependent ROC 
curve analysis showed that the AUC values of the risk 
scores in predicting the 1-year, 3-year and 5-year over-
all survival (OS) of patients with AML were 0.774, 0.729, 
and 0.772, respectively, indicating that the prognostic risk 
score model had high predictive accuracy (Fig. 5F). Uni-
variate and multivariate Cox analysis showed that the risk 
score could be used as an independent prognostic factor 
(P < 0.001) (Fig. 5G, H). Attributable changes in patients 
with AML were visualized using the alluvial diagram 
(Fig. 5I). The risk score further quantified the prognostic 
characteristics of different splicing regulation patterns. 
For example, cluster C had the worst prognosis and the 

highest risk score, while cluster D showed contrasting 
results (Fig. 5J). Meanwhile, significant differences in risk 
scores were observed among patients with different sur-
vival status (Fig. 5J).

Next, four validation cohorts confirmed the prognostic 
value of the risk score. The OS of patients with high-risk 
scores was significantly shortened (Fig.  6A–D), and the 
ROC curve also indicated the predictive robustness of 
the risk score model (Fig. 6E–H).

Construction of a nomogram to predict OS
In order to predict the OS of patients more accurately, 
we combined the clinicopathological factors (age and 
cytogenetic risk) significantly related to the prognosis of 
patients with AML with the risk score model to construct 
a nomogram (Fig.  6I). By calculating the total score of 
each patient in the nomogram, the corresponding 1-, 3-, 
and 5-year survival rates were observed. The 1-, 3-, and 
5-year calibration curves also proved that nomograms 

Fig. 6  Validation of risk score model and construction of nomogram. A–D Survival analysis between the high- and low-risk score groups in the 
Validation cohorts. A GSE14468; B GSE37642-GPL96; C GSE37642-GPL570; D GSE71014. Log-rank test. E–H Time-dependent ROC curve analysis 
of the risk score in the Validation cohorts. E GSE14468; F GSE37642-GPL96; G GSE37642-GPL570; H GSE71014. I Nomogram to predict OS in AML 
patients. J Time-dependent calibration curve to validate the predictive power of the nomogram. K ROC curve analysis of nomogram and other 
prognostic factors
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could accurately predict OS (Fig.  6J). The time-depend-
ent ROC curve showed that the nomogram had the high-
est AUC value (Fig.  6K). Taken together, these results 
indicate that the nomogram we constructed can further 
improve the accuracy of OS prediction in patients with 
AML. Furthermore, it also provides a new method for 
clinical prognosis evaluation.

Expression of the splicing factor SRSF10 was up‑regulated 
in AML
Among the 32 SFs, we observed that the expression of 
SRSF12 and SRSF10 was most significantly upregulated 
in AML. Based on the low expression of SRSF12 and its 
prognostic protection factor, we only conducted an in-
depth study on the risk factor SRSF10 to explore its rela-
tionship with the onset and development of AML. The 
up-regulated expression of SRSF10 in AML samples of 
the TCGA database and normal blood samples of the 
GTEx database is shown in Fig. 7A. Meanwhile, we ana-
lyzed the expression level of SRSF10 in the pan-cancer 
atlas of the TCGA database and found that the expres-
sion of SRSF10 was most up-regulated in AML and acute 
lymphoblastic leukemia (ALL), indicating that it may be 
involved in hematological tumorigenicity and develop-
ment (Fig.  7B). We further verified the expression of 
SRSF10 in AML clinical samples. PCR results showed 
that the expression of SRSF10 in AML bone marrow 
samples and peripheral blood samples was significantly 
higher than that in normal control samples (Fig. 7C, D).

Splicing factor SRSF10 plays a cancer‑promoting role 
in AML cells
To further clarify the biological role of SRSF10 in the 
development of AML, we obtained cDNA containing 
SRSF10 sequence and a plasmid targeting shRNA, which 
were packaged with lentivirus, followed by infection of 
the AML cell line THP-1. Stably transfected cell lines 
with SRSF10 overexpression (oeSRSF10) and knockdown 
(shSRSF10) were screened. As shown in Fig.  7E, F, the 
transfection efficiency was more than 80% and was veri-
fied by PCR and WB experiments.

The proliferation of THP-1 cells was detected by CCK8 
assay and EdU assay after SRSF10 overexpression and 
knockdown. CCK8 assay showed that compared with 
the control-oeSRSF10 group, the proliferation ability of 
THP-1 cells in the SRSF10-oe group was significantly 
enhanced. Compared with the control-shSRSF10 group, 
the proliferation of THP-1 cells in the SRSF10-SH1 and 
SRSF10-SH2 groups was significantly reduced (Fig. 7G). 
EdU staining also showed that more cells underwent 
DNA replication in the SRSF10-oe group than in the con-
trol-oeSRSF10 group. However, fewer cells underwent 
DNA replication in the SRSF10-SH1 and SRSF10-SH2 
groups than in the control-ShSRSF10 group (Fig. 7H, I). 
All these results demonstrated that SRSF10 overexpres-
sion promoted THP-1 cell proliferation, while SRSF10 
knockdown inhibited THP-1 cell proliferation.

We used Annexin V-FITC/PI staining to label apoptotic 
cells. Apoptosis in control-shSRSF10, SRSF10-SH1, and 
SRSF10-SH2 groups were detected by flow cytometry. 
The apoptosis rate of the SRSF10-SH1 and SRSF10-SH2 
groups was higher than that of the control group (Fig. 7J). 
The apoptosis trend was consistent with the results of 
CCK8 method and EdU staining, which were performed 
to detect cell proliferation ability in different transfection 
groups. A stronger proliferation of cells corresponded 
to weaker apoptosis. We further detected the changes in 
the cell cycle of THP-1 after SRSF10 knockdown by flow 
cytometry. The results showed that compared with con-
trol-ShSRSF10, the arrest of THP-1 cells in the G1 phase 
was more apparent in the SRSF10-SH1 and SRSF10-SH2 
groups (Fig. 7K).

Discussion
Examination of the mechanism and treatment of AML 
remains a challenging issue [20]. Although many studies 
have revealed the abnormal characteristics and carcino-
genic effects of AML with respect to multiple aspects, 
such as genomic mutation, immunosuppression, and 
metabolic reprogramming field [21–23], a systematic 
understanding of the pathogenesis is lacking, which 
is the goal of all tumor studies. Meanwhile, the drug 

Fig. 7  Expression characteristics of SRSF10 in AML and its relationship with malignant phenotypes of AML cells. A Differences in mRNA expression 
of SRSF10 between TCGA-LAML samples and GTEx normal blood samples. B Differences in mRNA expression of SRSF10 between 34 cancer samples 
and normal control samples in GDC database and GTEx database, with AML in yellow. C Differences in mRNA expression of SRSF10 between bone 
marrow (BM) samples from 4 AML patients and peripheral blood (PB) samples from 8 healthy controls. D Differences in mRNA expression of SRSF10 
in peripheral blood samples from 22 AML patients and 23 healthy controls. E, F mRNA and protein expression levels of SRSFF10 in THP-1 cells in 
SRSF10 overexpression group (SRSF10-oe) and Control group (Control-oeSRSF10), and two knockdown groups (SRSF10-SH1, SRSF10-SH2) and 
Control group (Control-shSRSF10). G Absorbance at 450 nm wavelength after CCK8 treatment in different SRSF10 treatment groups at different 
time nodes. The more absorbance increased, the more cell proliferation. H EdU staining was performed on different SRSF10 treatment groups. Top 
to bottom were all cells in the field of view, S-phase proliferating cells, and the composite of the above two images. The more pink cells, the more 
proliferating cells. I The ratio of cells in proliferative phase to all cells in a single field observed by fluorescence microscopy after EdU staining in 
different SRSF10 treatment groups. The larger the ratio, the more cells in proliferative phase. J Apoptosis levels in different SRSF10 treatment groups. 
K Cell cycle changes in different SRSF10 treatment groups (*P < 0.05; **P < 0.01; ***P < 0.001)

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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resistance of treatment is also accompanied by the com-
plex pathological changes in the disease, correspond-
ing to a dilemma of “while the priest climbs a post, the 
devil climbs ten” [7]. Therefore, it is of great significance 
to explore new pathogenic mechanisms and therapeutic 
targets.

The role of abnormal splicing of genes in AML pro-
gression and drug resistance has garnered interest, and 
studies have shown that recurrent SF mutations are 
important drivers of hematological malignancies [24]. 
AS is an important component of normal hematopoie-
sis and is necessary for cell differentiation and rapid 
response to external stimuli [14]. However, the imbalance 
in splicing mechanisms can lead to abnormal patholo-
gies related to malignancies such as MDS and AML [25], 
for instance, affecting the apoptotic sensitivity of AML 
cells and induction of drug resistance [26]. Patients with 
AML with the highest SF mutation rate have common 
ontogenetic characteristics of the disease, one of which 
is the high incidence of treatment failure [21]. Although 
splicing classification is not a widely used method of 
classification or risk stratification in AML, the potential 
for the analysis of these characteristics required further 
evaluation. With a growing understanding of AML splic-
ing dysregulation, new therapeutic targets may gradually 
emerge, and therapeutic strategies that target key spli-
ceosome elements (such as SF3B1) or specific oncogenic 
splice variants in a manner that circumvents resistance 
mechanisms may prove invaluable in eradicating these 
types of AML clones [27].

This study explored SFs with the most extensive and 
prominent functions in the hnRNP and SR families. 
Mutations and abnormal expression of SFs can influence 
the expression changes of different subtypes of many 
genes, which may have completely different functions. 
For example, the Bcl-2 family generates pro-apoptotic 
and anti-apoptotic components through AS [28]. We 
explored the genomic and transcriptomic changes in 32 
SFs from hnRNP and SR families in AML samples from 
the TCGA database by bioinformatics analysis. Consist-
ent with previous studies, the mutation rate of SFs in 
patients with AML was not high [17]. However, com-
pared with normal samples, the transcriptome of SFs 
in AML samples changed significantly, with most SFs 
showing up-regulated expression. This suggests that the 
overexpression of SFs may contribute to the develop-
ment of AML by significantly increasing the splicing dur-
ing AS events. In subsequent analysis, we also observed 
that most of the up-regulated SFs, such as HNRNPAB, 
HNRNPR, SRSF1, SRSF6 and SRSF11, were significantly 
associated with poor prognosis in patients with AML. As 
an oncogenic SF, SRSF1 can regulate the splicing of sev-
eral proteins in the apoptotic pathway, including Bcl-2 

like protein 11 (BIM)-promoting AS, producing subtypes 
lacking pro-apoptotic function [29]. Overexpression of 
SRSF1 can induce tumor formation in epithelial cells and 
inhibit apoptosis of breast cancer cells [29]. In addition, 
SRSF1 expression is associated with mTORC1 activation 
[30], a signaling pathway associated with AML progres-
sion and clonal selection during minimal residual disease 
repropagation [31].

Tumor classification is a method used to distinguish 
the degree of malignancy and heterogeneity of tumors. 
Classification according to the individual characteris-
tics of different patients is helpful for clinical diagnosis, 
treatment, and prognosis evaluation. We performed a 
clustering analysis based on the expression of SFs and 
identified four splicing regulation patterns in different 
patients with AML. Moreover, the biological processes 
of these four splicing regulation patterns are significantly 
different. In the pattern with generally low expression of 
SFs, a variety of oncogenic signal transduction pathways 
are significantly activated, such as KRAS, IL2/STAT5, 
NF-κB/TNF-α, and WNT-β/catenin pathways. There-
fore, the typically low expression of SFs can be used as a 
signature to indicate abnormal changes in the oncogenic 
pathway. However, in the pattern with high expression of 
SFs, we observed a significant enhancement of cell pro-
liferation signals, both the cell cycle-related pathways 
and the expression of genetic information, showing a 
highly active state, which can also be used as a signature 
of disease development. It is well understood that SFs are 
themselves involved in the regulation of transcriptome, 
and their high expression and proliferation-induction 
activity are mutually promoting. In addition, with potent 
cell life activities, this splicing regulation pattern also 
fully activates DNA damage repair-related signal path-
ways to ensure the normal expression of genetic infor-
mation. The expression of SFs in the other two splicing 
regulation patterns was not as consistent as the first two 
patterns, but the difference in prognosis between the two 
groups was the most apparent. When the expression level 
of SFs is between the first two patterns, the prognosis of 
patients was the worst. In this splicing regulation pat-
tern, we observed a significant increase in the infiltration 
rate of inflammatory immune cells such as monocytes, 
M2 macrophages, and neutrophils, and a high expres-
sion level of immune checkpoints, suggesting a tumor 
microenvironment with chronic inflammatory develop-
ment and immunosuppression, corresponding to various 
pro-inflammatory and immune-related signaling path-
ways, such as B-cell receptors, chemokines, NOD-like 
receptors, and Toll-like receptors signaling pathways. 
In the splicing regulation pattern with the best prog-
nosis, most of the prognostic risk-associated SFs were 
underexpressed, while SFs with protective effects and 
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association with a positive prognosis, such as SRSF12 
and HNRNPH1, were significantly overexpressed. These 
expressive features indicate the benefits of survival. In 
this pattern, the anti-tumor immunity mediated by T 
cells may play an important role, which is more condu-
cive to the survival of patients.

Splicing regulation patterns can be used for tumor clas-
sification to better elucidate the pathological status and 
tumor microenvironment characteristics of patients with 
AML. To better guide the development of personalized 
treatment plans and prognosis evaluations of patients 
with AML, we also predicted the treatment sensitivity 
of patients with different splicing regulation patterns. 
Patients with splicing regulation patterns with generally 
high expression of SFs were more sensitive to cytarabine, 
doxorubicin, and midostaurin. Patients with the best sur-
vival splicing regulation pattern also benefited from cyta-
rabine. In the prediction of immunotherapy response, 
patients with splicing regulation pattern with moderate 
expression level of SFs and showing the worst prognosis 
had a higher response to anti-PD-1 treatment. In addi-
tion, the prognostic risk score model can accurately pre-
dict the prognosis of patients with AML. The nomogram 
constructed by combining age and cytogenetic risk can 
better predict the OS of patients, which can be used as a 
prognostic prediction tool to help clinicians better evalu-
ate the prognosis of patients.

Finally, we investigated the cancer-promoting mecha-
nism of SRSF10 in AML. SRSF10 is highly expressed in 
many cancers and plays a cancer-promoting role. For 
instance, it promotes the production of the cancer-pro-
moting splice variant BCLAF1-L [32]. It regulates the 
alternative splicing of cancer-related transcripts MDM4 
and SLK in HCT116 cells [33]. SRSF10 upregulates the 
production of a circular RNA (CIRC-ATXN1) that plays 
a role in glioma angiogenesis by sequestrating mir-
526b-3p, which normally inhibits the expression of pro-
angiogenic MMP2 and VEGFA [34]. Our study showed 
that the knockdown of SFSF10 could inhibit the prolifer-
ation of AML cells and increase the apoptosis, and more 
cells were arrested in G1 phase compared with the con-
trol group. Overexpression of SRSF10 significantly pro-
moted the malignant phenotype of AML cells, indicating 
that SRSF10 promoted the development of AML. A pre-
vious study identified SRSF10 as an important RNA bind-
ing protein for AML cell survival through CRISPR/Cas9 
technology. Our experiment also confirmed that SRSF10 
can promote the malignant phenotype of AML cells [35]. 
Therefore, SRSF10 can be used as a potential biomarker 
for AML. It also provides a new direction to elucidate the 
mechanism of AML from the perspective of AS.

In summary, this study analyzed the expression land-
scape of SF families represented by hnRNP and SR 

through multi omics data. The splicing regulation pat-
terns identified based on SF expression are significantly 
different in many biological processes and immune 
characteristics. The recognition of these patterns has 
potential reference value for the evaluation of tumor 
microenvironment and clinical results of patients with 
AML. These findings provide a new perspective for the 
establishment of personalized therapy. However, this 
study also has some limitations. First, there is a lack of 
larger sample data and clinical reality cohort to verify the 
characteristics of splicing regulation patterns. Second, we 
only explored the relationship between SRSF10 and the 
malignant phenotype of AML cells. More efforts are still 
needed to explore broader SFs and more detailed splicing 
regulation mechanisms.

Conclusion
This study revealed the expression characteristics of 
hnRNP and SR families SFs in AML, as well as the dif-
ferences in biological processes and clinicopathologi-
cal factors of different splicing regulation patterns. The 
analysis based on splicing regulation patterns can pro-
mote our understanding of the relationship between 
tumor microenvironment and AS in AML, which can 
aid in the development of clinical personalized treatment 
plans. Meanwhile, the prognostic risk score model can 
accurately predict the prognosis of patients with AML. 
In subsequent experimental analysis, we confirmed that 
SRSF10 promoted the development of malignant pheno-
type in AML cells, suggesting that SRSF10 could be used 
as a potential therapeutic target and biomarker for AML.
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