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Abstract 

Background:  Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease that 
lacks known pathogenesis, distinctive diagnostic criteria, and effective treatment options. Understanding the genetic 
(and other) risk factors associated with the disease would begin to help to alleviate some of these issues for patients.

Methods:  We applied both GWAS and the PrecisionLife combinatorial analytics platform to analyze ME/CFS cohorts 
from UK Biobank, including the Pain Questionnaire cohort, in a case–control design with 1000 cycles of fully random 
permutation. Results from this study were supported by a series of replication and cohort comparison experiments, 
including use of disjoint Verbal Interview CFS, post-viral fatigue syndrome and fibromyalgia cohorts also derived from 
UK Biobank, and compared results for overlap and reproducibility.

Results:  Combinatorial analysis revealed 199 SNPs mapping to 14 genes that were significantly associated with 91% 
of the cases in the ME/CFS population. These SNPs were found to stratify by shared cases into 15 clusters (communi-
ties) made up of 84 high-order combinations of between 3 and 5 SNPs. p-values for these communities range from 
2.3 × 10–10 to 1.6 × 10–72. Many of the genes identified are linked to the key cellular mechanisms hypothesized to 
underpin ME/CFS, including vulnerabilities to stress and/or infection, mitochondrial dysfunction, sleep disturbance 
and autoimmune development. We identified 3 of the critical SNPs replicated in the post-viral fatigue syndrome 
cohort and 2 SNPs replicated in the fibromyalgia cohort. We also noted similarities with genes associated with multi-
ple sclerosis and long COVID, which share some symptoms and potentially a viral infection trigger with ME/CFS.

Conclusions:  This study provides the first detailed genetic insights into the pathophysiological mechanisms under-
pinning ME/CFS and offers new approaches for better diagnosis and treatment of patients.
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Background
Myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) is a debilitating chronic disease that presents 
with diverse symptoms including post-exertional malaise, 
chronic pain, and cognitive impairment [1]. It affects 
approximately 0.2% of the UK population [2]. There are 
currently no approved disease modifying therapies for 
ME/CFS, and patients are managed via prescription of 

drugs and other therapies for symptomatic relief, includ-
ing pain relief, anti-depressants, and cognitive behav-
ioural therapy [3].

The breadth of symptoms and severities experienced 
by ME/CFS patients is likely indicative of the heteroge-
neous nature of the disorder, with a variety of metabolic, 
immunological, neuroendocrine and central nervous sys-
tem dysfunctions underlying an individual patient’s pat-
tern of onset and development of the disease [4]. ME/
CFS development has been associated with prior viral 
infection such as with Epstein-Barr Virus (EBV) [5] and 
other pathogens [6–9], however there is also evidence 
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that stress and non-viral infection may also contribute to 
triggering ME/CFS onset [10].

The multi-factorial spectrum of ME/CFS triggers and 
symptoms [11] invites the question whether ME/CFS 
may represent multiple patient subgroups with a range 
of potentially overlapping underlying biological drivers. 
If so, better characterization of the etiology of disease in 
these subgroups may lead to improved understanding of 
ME/CFS and identification of personalized treatments 
that are most effective for specific subgroups.

Previous ME/CFS population studies have performed 
Genome-Wide Association Studies (GWAS) with the 
aim of identifying significant genetic factors underlying 
disease risk [12]. While there is a demonstrable heritable 
component to the disease [13], no significant single-gene 
association to ME/CFS has been identified using analy-
sis of whole exome sequences, and given the limited sta-
tistical power associated with the small ME/CFS genetic 
datasets available, GWAS approaches have been unable 
to detect disease-associated SNPs that exhibit sufficiently 
large effect sizes across the whole of the patient popula-
tion [14].

ME/CFS is clearly not a simple monogenic disease 
caused by single nucleotide variants (SNVs) with large 
effect sizes but is likely caused by complex interactions of 
many genetic, epidemiological and environmental factors 
that GWAS-based approaches are not able to fully iden-
tify [15]. This requires a different analytical approach.

Combinatorial analysis
Although GWAS has helped to transform the treat-
ment of many relatively monogenic diseases by reveal-
ing clinically relevant single SNP genetic associations, it 
has been less successful in complex, chronic diseases [16, 
17]. These are more polygenic and heterogeneous with 
patients presenting in a spectrum, and they may include 
high-resolution signals such as disease-associated vari-
ants occurring within linkage disequilibrium (LD) blocks 
[18].

Notably, inclusion of patients with different mecha-
nistic  etiologies under the same “case” classification 
weakens SNP-disease associations in GWAS, causing 
the method to potentially overlook the genetic variants 
responsible for disease in subsets of the population. More 
fundamentally, GWAS is not designed to detect epistatic 
and other non-linear effects caused by the interactions of 
multiple variants [19, 20]. As such it struggles to identify 
variants that are strongly associated with different patient 
subgroups in a heterogeneous patient population with 
multiple diverse disease etiologies that may be further 
influenced by non-linear interactions across and between 

multiple genes and transcription/expression control 
regions.

This however is exactly the challenge presented by ME/
CFS and other complex, chronic diseases [21]. Under-
standing of how the range of disease etiologies affects 
different patient subgroups requires the identification of 
combinations of SNPs (and other clinical, transcriptomic 
and/or epidemiological or environmental features) that 
together are co-associated with a specific phenotype [22].

The PrecisionLife combinatorial analysis platform ena-
bles hypothesis-free identification of such high-order 
combinatorial multi-modal features (known as disease 
signatures) at scale on modest computational hardware. 
These combinatorial disease signatures capture both 
linear and non-linear effects of genetic and molecular 
interaction networks in a way that is complementary to 
GWAS analysis [23].

The combinatorial approach is more sensitive than 
GWAS, enabling identification of novel genetic asso-
ciations and mechanisms that may only be relevant to a 
subgroup of patients, leading to more validated associa-
tions than GWAS when analyzing the same datasets. This 
approach has been validated in multiple disease stud-
ies both by the authors and collaborators, in some cases 
using in vitro and in vivo disease assays to demonstrate 
novel target genes’ disease modification potential, and 
in others by the presence in pharmaceutical companies’ 
R&D pipelines of drug programs targeting mechanisms 
that were identified by combinatorial analysis, but which 
could not be found using GWAS on available patient 
datasets [24–26].

For example, using combinatorial analysis we were 
first to report the association of 156 loci and 68 genes 
with the risk of developing severe COVID-19 [27]. This 
analysis was run on just 725 patients and 1450 controls 
from UK Biobank, and contrasts with the 11 and 13 
loci discovered using a GWAS approach respectively by 
23andMe (16,500 patients/controls) [28] and COVID-19 
HGI consortium (over 2,000,000 patient/controls) [29] in 
similar studies. Of the 68 genes that we reported, 48 were 
subsequently associated with the disease by other groups 
using methods including single-cell analysis and tran-
scriptomic profiling (unpublished literature analysis—
June 2022). This study went on to predict dutasteride as 
a drug repurposing candidate could be useful in signifi-
cantly reducing symptom severity, the need for ICU and 
remission times in a subset of Covid-19 patients; findings 
which have been borne out by subsequent clinical trials 
[30].
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Materials and methods
We analyzed genotype data from 2382 patients reporting 
an ME/CFS diagnosis in the UK Biobank Pain Question-
naire [31] matched against 4764 controls in a case:control 
study design in the PrecisionLife platform.

Data sources
ME/CFS patients with a (self-reported) clinical diag-
nosis in UK Biobank’s Pain Questionnaire (Data-field 
120010) were identified, of whom over 90% were of Euro-
pean genetic ancestry (Additional file  1: Fig. S6). Given 
this proportion, only ME/CFS patients of European 
genetic ancestry were selected as the case cohort for 
this study. To ensure properly characterized control sub-
jects, individuals were selected who had no evidence in 
the Hospital Episodes Statistics (HES), primary care, or 
self-reported data fields indicating diagnoses of chronic 
fatigue, post-exertional malaise, post-viral fatigue syn-
drome or myalgia (see Additional file  1: Table  S5). To 
avoid potential confounding, controls meeting these 
criteria were matched by genetic ancestry and gender 
(Additional file 1: Fig. S7) against the cases in a 2:1 ratio 
(and this was repeated with a separate 4:1 ratio study).

Data about individuals’ diagnosis with autoimmune 
disease (including multiple sclerosis and fibromyalgia), 
self-reported emotional or physical stress, and exposure 
to potential viral triggers (such as EBV seropositivity) 
were used to compare ME/CFS cases against the remain-
der of the UK Biobank to identify any significant differ-
ences between the two cohorts that could be associated 
with ME/CFS onset (see Fig. 2 in Results section).

After quality control (see “Genotype Quality Control” 
in Supplementary Data), the Pain Questionnaire data-
set was comprised of 2382 ME/CFS cases, 4764 controls 

and 519,337 SNPs on autosomal chromosomes. Approxi-
mately 71% of cases (n = 1695) were women (Additional 
file  1: Fig. S7) versus the UK Biobank distribution of 
54.4%. The age and body-mass index (BMI) distributions 
of cases and controls were similar (Additional file 1: Fig. 
S8).

Methods
We applied the PrecisionLife platform to the various ME/
CFS case–control datasets to identify combinations of 
SNP genotypes that when observed together in a sam-
ple were strongly associated with the development of 
ME/CFS. The PrecisionLife platform uses a unique data 
analytics framework that enables efficient combinatorial 
analysis of large, multi-dimensional participant datasets. 
Navigating this data space allows for the identification 
of combinations of features that are significantly associ-
ated with groups of cases in a case–control dataset. The 
PrecisionLife combinatorial analysis is hypothesis free, 
involving a four-stage mining, validation, evaluation and 
annotation process (Fig. 1).

The PrecisionLife platform identifies combinations of 
feature states in ‘layers’ of increasing combinatorial com-
plexity, i.e., singletons, pairs, triplets etc. A feature could 
for example be a SNP, and a feature state would consist 
of the SNP’s base index and its genotype, which would 
typically be encoded ordinally as {0, 1, 2} for homozy-
gous major allele, heterozygous minor allele, homozygous 
minor allele respectively. The platform has considerably 
more flexibility of representation (including alternate 
genotype encodings, extended genetic models, poly-
ploidy and quantitative values) if required by the feature 
or dataset being analyzed.

Fig. 1  Conceptual representation of features, combinations, disease signatures and communities used to build up the disease architecture in the 
PrecisionLife combinatorial methodology. In the case of the ME/CFS study all features were SNP genotypes, but other feature types, e.g., a patient’s 
expression level of a specific protein, medication history or their eosinophil level, can also be used. Circles represent features (in this case SNPs), and 
edges connecting them represent co-association in patients. Shaded circles represent “critical” SNPs as described in the text
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In the mining phase, combinations of feature states that 
are overrepresented (using a Z-score or Fisher’s Exact 
test) in cases are identified and validated (Additional 
file 1: Tables S6 and S7). Multiple feature states are com-
bined iteratively until no additional features can be added 
that will improve the score. Combinations of feature 
states that have high odds ratios, low p-values (p < 0.05) 
and high prevalence (> 5%) in cases are prioritized. The 
mining process is repeated across up to 1000 cycles of 
fully randomized permutation of the case:control labels 
of all individuals in the dataset, keeping the same param-
eters and case:control ratio.

In the validation phase, all combinations generated by 
the original mining run and each of the random permu-
tation iterations of the dataset are compared. These com-
binations are validated using network properties such 
as minimum prevalence (number of cases represented, 
in this case > 5%) as the null hypothesis when compared 
with the combinations generated by the random per-
mutations. Combinations that appear in the random 
permutations above a specified FDR threshold (Benja-
mini–Hochberg FDR of 0.05) after multiple testing cor-
rection [32] are considered to be random and eliminated. 
Combinations passing these tests are reported as vali-
dated disease signatures.

The validated disease signatures are then evaluated. 
The features (which in this case only consisted of SNPs 
due to the limited available dataset) shared by multi-
ple disease signatures (known as ‘critical’ SNPs) are 
identified. Critical SNPs, which can be thought of as 
the canonical features of a cluster comprised of over-
lapping disease signatures, are then scored using a 
Random Forest (RF) algorithm in a fivefold cross-vali-
dation framework to evaluate the accuracy with which 
they predict the observed case–control split in a data-
set (minimizing Gini impurity or the probability of 
misclassification).

We use RF scores in similar ways to rank critical SNPs 
and by association the genes to which they map via the 
process described in the “Functional Genomics Anno-
tation” section below. Disease signatures comprising 
high RF scoring critical SNPs (and their genes) are then 
mapped to the cases in which they were found, and addi-
tional clinical data (such as blood biochemistry data, 
comorbidity ICD-10 codes and medication history) is 
used to generate a patient profile for each combinatorial 
disease signature.

Finally, a merged network (disease architecture) view 
is generated by clustering all validated disease signatures 
based on their co-occurrence in patients in the dataset, 
and annotation of the validated SNPs, genes, and the 

Fig. 2  Forest plot showing percentage of individuals in cases, controls and rest of the individuals in UK Biobank who report each covariate along 
with 95% confidence interval generated using bootstrapping for 1000 iterations. Bold covariate label indicates p < 0.001, regular label indicates 
p < 0.01
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druggability of targets is performed using a semantic 
knowledge graph (see “Functional Genomics Annota-
tion” section).

For these studies, the PrecisionLife platform generated 
statistically significant ME/CFS associated signatures 
containing up to five SNPs for each cohort. Each ME/
CFS dataset analysis took around 7  days (168) hours to 
complete, running on a server with 64 CPU cores and 
4 × Nvidia GPUs.

Replication and validation
No similarly sized ME/CFS cohort is currently available 
for use as an independent replication study cohort. We 
therefore used two alternate approaches to validate the 
results from the Pain Questionnaire study.

In the first approach, we performed the 1000 random 
permutation tests on each combinatorial disease signa-
ture by randomly shuffling cases and controls in the Pain 
Questionnaire dataset and calculating a permutation test 
score (P1000) for all observed SNP combinations across 
the full range of combinatorial order. The P1000 score of 
a combinatorial disease signature indicates the frequency 
of detection of similarly associated combinatorial fea-
tures in the 1000 randomized permutations, as measured 
by odds ratio and number of cases possessing the feature. 
Any feature where P1000 is less than 50 (i.e., 5%) is con-
sidered significant.

In a second approach, we generated three new case 
populations from UK Biobank for fatigue-associated 
conditions and compared the results from these with 
the Pain Questionnaire cohort. These included a new 
CFS case population (Data-Field 20002, Coding 1482) 
reported during Verbal Interview, a post-viral syndrome 
(ICD10: G93.3) case population based on Hospital Epi-
sode Statistics, and a fibromyalgia (ICD10: M79.7) case 
population based on Hospital Episode Statistics.

The Verbal Interview case population comprised of 
2270 individuals whose data had been analyzed in a 
recent GWAS study [33]. As the Verbal Interview cohort 
had 735 individuals in common with the Pain Ques-
tionnaire cohort (Additional file 1: Fig. S17), these over-
lapping cases were removed to create a disjoint Verbal 
Interview dataset (cases = 1273 and controls = 4137 after 
QC) of European ancestry with gender (and ancestry) 
matched controls. Similarly, disjoint post-viral syndrome 
dataset (cases = 510 and controls = 4763) and fibromyal-
gia dataset (cases = 1409 and controls = 4762 after QC) 
of European ancestry were generated.

The three disjoint datasets (Verbal Interview CFS, post-
viral syndrome and fibromyalgia) were also analyzed 
through the PrecisionLife platform to investigate the 
extent to which the results generated from the original 

Pain Questionnaire cohort could be replicated in these 
cohorts.

Two issues contribute to limit the degree of overlap 
that can be expected in a fully independent analysis of 
the disjoint cohorts. Firstly, as the combinatorial search 
space is vast, the sampling of that space is likely to be 
materially incomplete, which will contribute to a poten-
tial high rate of false negatives, i.e. true associations that 
were not tested or reported due to random sampling bias. 
A separate more systematic sampling of the space will be 
run in future studies, but this method was not available 
for this study. Secondly, within the two ME/CFS clinical 
diagnoses, the assignment by a GP of a specific diagnosis 
of “CFS” or “ME/CFS” or “post-viral syndrome” is highly 
variable and cannot be relied upon to distinguish these 
case populations in a clinically meaningful manner.

Due largely to the first sampling issue, it is likely that 
these three studies will differ significantly from the Pain 
Questionnaire study in the reported similarity of their 
genetic associations and clinical characteristics.

We therefore limited the search space for the analysis 
of the three disjoint cohorts by testing only combinations 
involving the 199 SNPs identified in the Pain Question-
naire cohort. Limiting the search space to combinations 
involving these critical SNPs enables us to assess the 
level of replication of the ME/CFS genetic signal in the 
second dataset by eliminating the unavoidable sampling 
bias arising from differences in the heterogeneous patient 
populations exacerbated by the small numbers of case 
available in the huge search space.

Functional genomics annotation
We mapped all SNPs identified in the disease signatures 
using an annotation cascade process to the human refer-
ence genome (GRCh37) [34] to give the best estimate of 
the gene(s) likely to be associated with the SNP. Disease-
associated SNPs that lie within coding regions of gene(s) 
were assigned directly to the corresponding gene(s). 
Remaining SNPs that lie within 2 kb upstream or 0.5 kb 
downstream of any gene(s) were mapped to the closest 
gene(s) within this region. The potentially causality and 
druggability of these genes were evaluated in later steps.

We investigated additional gene assignments for the 
identified SNPs using publicly available eQTL [35] and/
or chromatin interaction data [36] (see Additional file 1: 
Table  S12). Genes with at least one cis-eQTL SNP at 
a false discovery rate (FDR) of ≤ 0.05, with expression 
differences of that gene in single brain tissues or whole 
blood, were reported.

Additionally, promoter capture Hi-C (pcHi-C) interac-
tions that were significantly associated in brain tissues 
and blood cells were used to generate gene assignments. 
Due to the uncertainty about the relevant cells and 
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tissues affected in ME/CFS etiology, genes assigned by 
either eQTL or chromatin interaction data were not spe-
cifically prioritized for further analysis (as they might 
be in other disease studies) to avoid capturing any spu-
rious associations from non-trait-related tissues. Genes 
that could be additionally mapped using only eQTL or 
HiC data from the 25 critical SNPs were observed and 
reported in Additional file  1: Table  S12, although these 
were not further evaluated. The direction of association 
of any eQTLs associated with the disease phenotype was 
however noted.

Critical SNPs (see “Methods” section) were assigned 
an RF score, describing how well the SNP genotype com-
binations predict the observed case–control split. We 
used these scores to rank the critical SNPs to reflect the 
relative importance of the SNP and its combinations. The 
genes assigned to the critical SNPs were prioritized on 
the basis of the cumulative sum of their associated SNP 
scores to identify the most clinically relevant targets, as 
the critical SNPs are those observed to have markedly 
higher association with the disease.

We used a semantic knowledge graph derived from 
over 50 public and private data sources to annotate the 
prioritized genes (see Additional file  1: Table  S13). This 
included information from a variety of data sources 
including basic genomic context, tissue expression, 
chemical tractability, biological function and associated 
scientific literature. We tested each of the genes identi-
fied against the 5Rs criteria [37] of early drug discovery, 
to form and validate hypotheses for their mechanism of 
action and impact on the disease phenotype.

Patient stratification
The output disease signatures generated by the Preci-
sionLife platform contain metadata including the indices 
of all the cases (and controls) in which they were found. 
The available phenotypic and clinical data for the rel-
evant cases were used to evaluate patient profiles associ-
ated with each of the disease signatures. This was based 
on the observed enrichment of an attribute or phenotype 
for a particular group of patients (for example associa-
tion with a prioritized gene) compared against the entire 
case population. Statistical significance was calculated 
using the two proportions Z-test for categorical variables 
such as gender and co-morbidities, whereas we used the 
Mann–Whitney U test for continuous variables such as 
measurements of metabolic biomarkers. p-values cor-
rected for multiple-testing using the Benjamini–Hoch-
berg method to control the FDR were also reported.

Results
UK Biobank ME/CFS (Pain Questionnaire) cohort 
characteristics
We identified significant differences in a variety of covar-
iates (listed in “Cohort Analysis” section in Supplemen-
tary Data) between the ME/CFS case population, and 
the control group, and the remaining individuals in UK 
Biobank (Fig. 2). The plot shows the percentage of indi-
viduals in each group who are positive for each covari-
ate. To test for significance, we calculated 95% confidence 
intervals using bootstrapping (sampling with replace-
ment) for 1000 iterations.

The greatest difference between the ME/CFS popula-
tion in this study and the remainder of the UK Biobank 
was the significantly higher proportion of individuals 
reporting mental distress and stressful events such as 
illness, injury, and bereavement. Individuals with ME/
CFS in this study were also slightly more likely to present 
with at least one autoimmune disease, with the greatest 
co-association with other myalgia and fatigue-associated 
conditions like multiple sclerosis and fibromyalgia. It is 
however impossible to rule out a level of misdiagnosis in 
these complex conditions.

Combinatorial analysis
Following quality control [38], the ME/CFS Pain Ques-
tionnaire cohort (2382 cases, 4764 controls) was used 
to perform a standard GWAS case–control association 
analysis using PLINK [39]. No SNPs were reported to be 
significant below a genome-wide significance threshold 
of p < 5 × 10–8 (Additional file 1: Fig. S9(a)).

Combinatorial SNP analysis performed using the Pre-
cisionLife platform on the same Pain Questionnaire data-
set generated 84 statistically validated combinations of 
199 SNPs that together are strongly associated with ME/
CFS diagnosis (Table 1; Additional file 1: Table S7). None 
of the SNPs identified were observed to be in linkage dis-
equilibrium (LD) with each other (Additional file 1: Fig. 
S10). 192 SNPs identified in the disease signatures were 
in non-coding regions of the genome and 9 SNPs (7 mis-
sense and 2 synonymous) were identified in the coding 
regions (Additional file 1: Fig. S11).

All SNPs were found in combinations with 3 or more 
SNPs, and so would not have been found using standard 

Table 1  Summary of the results of PrecisionLife combinatorial 
analysis run on the Pain Questionnaire cohort

Validated disease signatures (SNP combinations) 84

Total disease associated SNPs in disease architecture 199

Critical SNPs 25

Prioritized genes 14

Cases represented by disease architecture (%) 91%
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GWAS analysis methods (Additional file 1: Fig. S12). No 
single SNPs or SNP pairs were reported as significant 
by the method. The locations of the SNPs identified is 
shown in Additional file 1: Fig. S13.

As a negative validation check, runs using the same 
mining and validation parameters as used above were 
performed on 7146 random samples, comprising 2382 
UK Biobank randomly sampled participants as ‘cases’ 
compared against 4764 randomly sampled ‘controls’. This 
analysis yielded no significant results.

These 84 combinatorial disease signatures all had 
P1000 values of 0, indicating they were not detected in 
any of the 1000 random permutation runs, and are there-
fore very unlikely to result from random chance. The 
odds ratios of the SNP combinations were found to be 
around 3.7 on average (Additional file 1: Fig. S12b). Addi-
tional file 1: Fig. S12c represents an example of a disease 
signature identified in this analysis containing five SNPs 
that were mapped to five genes.

Patient stratification
The disease architecture (Fig.  3), generated by cluster-
ing [40] the SNPs in the disease signatures on the basis 
of patients in which they co-occur, reveals the genetic 

heterogeneity of the ME/CFS Pain Questionnaire patient 
population, providing useful insights into patient strati-
fication. These clusters (‘communities’) represent patient 
subgroups that (by definition) have shared disease etiol-
ogy, and are therefore likely to share disease phenotypes, 
including severity, progression rate, clinical presentation, 
and, ultimately, therapy response.

There are 15 distinct communities of SNPs shown in 
the ME/CFS Pain Questionnaire disease architecture 
comprising between 142 to 744 of the 2382 cases (Addi-
tional file  1: Table  S8). Odds ratios of the communities 
range from 2.16 to 4.47 and p-values from 10–10 to 10–72. 
These share low (< 20%) patient overlap with each other 
(Additional file  1: Fig. S14), indicating they are distinct 
patient subgroups with different genetic drivers underly-
ing their disease. Odds ratios of the communities range 
from 2.16 to 4.47 and p-values from 10–10 to 10–72.

The analysis identified 25 critical disease associated 
SNPs (see the “Methods” and “Functional Genomics 
Annotation” sections) which are identified in multiple 
disease signatures. One of these SNPs—rs16947237, an 
intronic variant in GPC5—has previously been associ-
ated with self-reported chronic fatigue syndrome in a UK 
Biobank GWAS analysis [41].

Fig. 3  a Disease architecture diagram demonstrating the 15 communities of SNPs that make up the structure of the Pain Questionnaire patient 
sub-populations generated by the PrecisionLife platform. Each circle represents a disease-associated SNP genotype, edges represent their 
co-association in patients in disease signature(s), and colours represent distinct patient sub-populations. b The same disease architecture view 
coloured to show the critical SNPs associated with each community (light green). Community numbers represent the communities described 
further in Additional file 1: Table S8
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The critical SNPs (Additional file  1: Fig. S13) were 
mapped to 14 protein coding genes strongly associated 
with the ME/CFS Pain Questionnaire case population 
(Table 2). Investigation of the function and mechanisms 
of action of these genes (and encoded proteins) revealed 
associations with one or more of five disease mechanisms 
that have been associated with ME/CFS development—
viral/bacterial susceptibility, autoimmune development, 
metabolic dysfunction, vulnerability to stress, and sleep 
disturbance.

Enrichment analysis of available phenotypic and clini-
cal data for the ME/CFS patients was used to generate 
additional insights into the clinical characteristics of each 
SNP community and prioritized gene.

This analysis revealed 11 genes from 6 different patient 
communities with a level of enrichment with a particu-
lar phenotypic or clinical feature, such as increased inci-
dence of clinical diagnosis of fibromyalgia or increased 
phenylalanine levels in plasma (Additional file  1: 
Table  S12), when compared against the rest of the case 
population. These associations, however, did not reach 
statistical significance (p < 0.05) after multiple testing cor-
rection which may be due to the limited statistical power 
from the small dataset (Additional file  1: Tables S9 and 
S10).

Replication in three disjoint fatigue‑associated cohorts
We tested for replication of the 25 critical SNPs associ-
ated with ME/CFS in the pain questionnaire in three 
additional disjoint cohorts of patients. Overall, 7 of the 
critical SNPs exhibited significant association with dis-
ease in at least one other cohort, with 2 replicated across 
multiple cohorts (Fig. 4).

Disjoint CFS (Verbal Interview) cohort
We analyzed the disjoint UK Biobank CFS Verbal Inter-
view cohort (1273 cases, excluding individuals that were 

common to the Pain Questionnaire cohort, and 4137 
controls) using GWAS and combinatorial analysis.

No SNPs were reported to be significant (p < 5 × 10–8) 
for the Verbal Interview cohort in a standard GWAS 
case–control association analysis (Additional file  1: Fig. 
S9b), however, the genomic loci showing modest associa-
tion values around p = 1 × 10–5 were found to be differ-
ent than for the Pain Questionnaire cohort (Additional 
file 1: Fig. S9a). This is likely due to the low power of the 
two GWAS and could mean either that these are not true 
associations or, less likely, that the two populations sim-
ply yield different sets of true associations.

Comparison of the results validating the 199 SNPs 
from the Pain Questionnaire cohort in the Verbal Inter-
view cohort showed that five (rs2304725, rs2904106, 
rs9444564, rs10420798 and rs11695478) of the 25 criti-
cal SNPs identified in the Pain Questionnaire cohort 
were replicated in this analysis. Two of these critical 
SNPs mapped to the SLC6A11 (rs2304725) and ATP9A 
(rs2904106) genes, which were identified in this cohort. 
This suggests that these five critical SNPs (and two genes) 
are particularly strongly associated with ME/CFS. None 
of the replicated SNPs has significant direct GWAS asso-
ciations to the disease or traits.

Disjoint post‑viral syndrome cohort
Three critical SNPs (rs56218501/Affx-16805420, 
rs12530627 and rs2499908) identified in the Pain Ques-
tionnaire cohort were replicated in the fibromyalgia 
cohort analysis. Two of these critical SNPs mapped to the 
genes SULF2 (rs56218501/Affx-16805420) and USP6NL 
(rs2499908).

Disjoint fibromyalgia cohort
Two critical SNPs (rs10420798 and rs2499908) and the 
gene USP6NL (mapped to rs2499908) identified in the 
Pain Questionnaire cohort were replicated in the fibro-
myalgia cohort analysis. This suggests that these two crit-
ical SNPs and the gene USP6NL are particularly strongly 
associated with fibromyalgia cases.

Disease mechanisms and genetic functions
We used a detailed analysis of the metabolic context, 
exploiting an integrated semantic knowledge graph draw-
ing from different data sources including Open Targets 
[109] associations, known gene-disease associations from 
scientific literature, mouse phenotypes etc., to annotate 
the 14 genes identified in the analysis of the Pain Ques-
tionnaire cohort.

While acknowledging annotation bias and an inevita-
ble degree of subjectivity, we applied consistent heuris-
tics to the available knowledge around a target, enabling 
us to identify that variants in these genes might impact 

Fig. 4  ME/CFS Pain Questionnaire critical SNPs and genes that were 
replicated in three disjoint fatigue-associated cohorts—CFS Verbal 
Interview, Post-viral syndrome and Fibromyalgia
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different cellular processes. The five cellular processes or 
biological systems identified have previously been asso-
ciated with ME/CFS—namely, susceptibility to infection, 
autoimmune and chronic inflammation development, 
metabolic dysfunction, increased vulnerability to stress 
and sleep disturbance—and it is possible to form plausi-
ble disease phenotype hypotheses for them (Table 3).

Furthermore, critical SNPs found in the same disease 
signature and/or patient community may be mapped to 
genes with shared biological functions or pathways. Path-
way enrichment analysis [68] was performed on each 
of the 199 disease signatures using the genes that were 
associated to any constituent SNP (see section “Pathway 
Enrichment Analysis” in Supplementary Data). Analy-
sis of the enrichment results indicated that two large 
communities containing multiple disease signatures 
and critical SNPs—Community 1 and Community 15 
(Table 4)—may be implicated in common biological pro-
cesses (Additional file 1: Table S14).

Community 1 contains three critical SNPs; rs41306603, 
a 3 prime UTR variant mapping to S100PBP, and two 

intronic variants, rs2904106 and rs237475, found in 
ATP9A and KCNB1 respectively. The genetic variants 
in ATP9A and KCNB1 were found co-occurring in six 
common disease signatures (Additional file 1: Table S9), 
which shows significant enrichment linked to regula-
tion of exocytosis and negative regulation of secretion by 
cell (GO annotations, Additional file 1: Table S14). Using 
additional evidence from the scientific literature, both 
ATP9A and KCNB1 are expressed in pancreatic beta cells 
and are involved in the regulation of insulin secretion 
(Table 4) [36, 38]. This could suggest a combined biologi-
cal effect of these two co-associated SNPs in causing dys-
regulated insulin signalling in this subgroup of ME/CFS 
patients.

Community 15 contains two critical SNPs co-occurring 
in two disease signatures; rs2304725, a synonymous vari-
ant in SLC6A11, and rs56218501/ Affx-16805420, a mis-
sense variant in SULF2 (Additional file 1: Table S9). This 
disease signature shows enrichment for GABA synthe-
sis and release and synaptic vesicle cycle (Reactome and 
KEGG annotations, Additional file  1: Table  S14). This 

Table 3  Genes and communities identified in the Pain Questionnaire cohort and their proposed mechanism of action (MoA) in ME/
CFS development (accounting for eQTL directionality)

Gene Community MoA category MoA evidence

S100PBP 1 Viral/bacterial susceptibility Identified as a differentially expressed gene (DEG) in response to RSV infection [42]

ATP9A 1 Metabolic Exhibits P4-ATPase activity in beta cells and ATP9A knockdown results in reduction in glucose-
stimulated insulin release [43]

Autoimmune Splicing region in ATP9A associated with multiple sclerosis risk in whole-exome sequencing 
analysis [44]

KCNB1 1 Metabolic Regulates insulin exocytosis from pancreatic beta cells [45]

CLOCK 2 Sleep Key regulator of circadian rhythm [46]

Metabolic Disruption to circadian clock results in mitochondrial dysfunction and insulin resistance [47, 48]

SLC15A4 3 Autoimmune SLC15A4 mediates type 1 interferon production and generation of autoantibodies in systemic 
lupus erythematosus (SLE) [49]

Metabolic Knock down of SLC15A4 decreases mitochondrial membrane potential and impairs AMPK 
activation [50, 51]

TMEM232 6 Autoimmune The promoter region of TMEM232 is differentially methylated in a study of multiple sclerosis 
patients [52]

GPC5 7 Autoimmune Polymorphisms in GPC5 have been associated with multiple sclerosis risk in GWAS [53, 54]

PHACTR2 8 Autoimmune Identified as a multiple sclerosis risk gene in a GWA analysis [55]

AKAP1 9 Metabolic AKAP1 is an AMPK substrate that regulates mitochondrial respiration [56]

Viral/bacterial susceptibility AKAP1-/- mice exhibit increased inflammation and immune cell infiltration in lungs [57]

USP6NL 12 Viral/bacterial susceptibility Plays a role in HSV-1 virion assembly [58]

CDON 13 Metabolic Cdon depletion results in impaired muscle regeneration and increased cell stress [59]

Autoimmune Cdon is involved in differentiation and myelination of oligodendrocytes [60]

Viral/bacterial susceptibility GWAS indicates CDON plays a role in complicated Staphylococcus aureus bacteremia [61]

INSR 14 Metabolic Receptor tyrosine kinase which mediates insulin signalling [62]

SULF2 15 Viral/bacterial susceptibility Genome-wide environmental interaction study indicates an association between a locus in 
SULF2 and HSV-1 seropositivity and depression [63]

Metabolic Overexpression of SULF2 observed in subjects with type 2 diabetes and obesity [64]

SLC6A11 15 Sleep Associated with depression, sleep disturbance and neuropathic pain in mouse models [65, 66]

Autoimmune Expression decreased in the hippocampus of mouse model of multiple sclerosis (EAE) [67]
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enrichment can be supported by further literature evi-
dence that indicates the association of these genes with 
CNS-related pathways (Table 4) [56, 58, 59].

Many of the identified patient communities contain 
genes that could be categorized into more than one of 
these mechanisms and there was no clear distinction in 
biological pathways when communities were compared 
(Fig. 5). This supports the hypothesis that development of 
ME/CFS is caused by the interaction and subsequent dys-
regulation of multiple immune, metabolic and neuronal 
pathways in combination.

We used the additional phenotypic and clinical data 
available in the UK Biobank to generate a patient profile 
for each patient community. However, the validation and 
significance of these findings are limited by the scope and 
depth of disease related data collected in UK Biobank 
(and other sources) that is available and relevant to ME/
CFS patients, and the paucity of disease models.

Viral/bacterial susceptibility
ME/CFS onset is often thought be linked to viral infec-
tion in patients, although no specific single viral or bacte-
rial trigger has yet been confirmed [69]. There have been 
reports of shared pathophysiological, clinical, and tran-
scriptomic features between viral and/or bacterial dis-
eases and ME/CFS [70, 71].

We identified five genes—S100PBP, AKAP1, USP6NL, 
CDON and SULF2—in five different patient subgroups 
that have been associated with viral and/or bacterial 
infection in the literature (Table 4).

These may represent a subset of ME/CFS patients 
with increased susceptibility to infection, or differential 

response to infection that leads to ineffectual viral clear-
ance. We therefore evaluated the clinical records of the 
ME/CFS case population included in this study to iden-
tify any evidence of prior infection of the most com-
mon ME/CFS-associated infective triggers, including 
infectious mononucleosis, and EBV and/or Herpesvi-
ruses’ seropositivity. Unfortunately, the total numbers of 
patients and clinical reports with any of these was too 
small (approximately 2% of cases) and incomplete to gen-
erate any statistically significant gene/patient subgroup 
associations, so the question of whether any such signifi-
cant associations exist remains unanswered.

Autoimmune and chronic inflammation
Our analysis identified seven genes that have been asso-
ciated with diseases that have autoimmune components 
in both the literature and in other disease studies that 
we have undertaken, including COVID-19, rheumatoid 
arthritis and Sjögren’s syndrome (unpublished results).

ME/CFS shares several characteristics with autoim-
mune diseases, including the increased level of pro-
inflammatory cytokines and higher prevalence in 
females, with as many as 60% of ME/CFS patients also 
reported to be diagnosed with an autoimmune disease 
[72, 73]. This co-association with other autoimmune dis-
eases was also evident in our analysis of ME/CFS patients 
when compared against the rest of the UK Biobank popu-
lation (Fig. 2). Whether this reflects a real association or 
misdiagnosis of patients remains unclear.

We speculate that increased susceptibility to viral 
infection in ME/CFS patients, resulting in recurrent or 
chronic infections, may also drive chronic inflammation 

Table 4  Genes identified in the Pain Questionnaire cohort with their tractability as drug targets using annotations from OpenTargets 
[109]

Gene Small molecule 
tractable

Small molecule 
clinical

Antibody 
tractable

Existing drugs Development 
compounds

PDB 
structures

S100PBP 0 0 0 0 0 0

ATP9A 0 0 1 0 0 0

KCNB1 0.3 1 1 7 28 0

CLOCK 0 0 0 0 0 2

SLC15A4 0 0 1 0 0 0

TMEM232 0 0 0 0 0 0

GPC5 0 0 0.3 0 0 0

PHACTR2 0 0 0.3 0 0 0

AKAP1 0 0 0 0 0 0

USP6NL 0 0 0.3 0 0 0

CDON 0 0 0.3 0 0 3

INSR 1 0.7 0.3 20 891 62

SULF2 0 0 0 0 0 0

SLC6A11 0.3 0 0.3 6 126 0
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and autoimmune development [74]. Furthermore, pro-
inflammatory cytokines associated with autoimmune 
development have also been shown to contribute to 
mitochondrial dysfunction and decreased respiratory 
capacity, and there is evidence that patients with other 
autoimmune diseases also display mitochondrial dys-
function [75–77].

Solute carrier family member 15 (SLC15A4) is found 
in the lysosomal membrane and has enriched expres-
sion in immune cells. Genetic variants in SLC15A4 have 
been associated with increased risk of developing inflam-
matory diseases like systemic lupus erythematosus [78]. 
Interestingly, SLC15A4 has been shown to play a cru-
cial role in immune cell tolerance to metabolic stress via 
AMPK and mTORC1 and maintenance of respiratory 

homeostasis in innate immune cells [51] and SLC15A4 
knock down results in decreased mitochondrial function 
under cell stress [50]. No eQTL associations were found 
for the ME/CFS SNP linked to SLC15A4.

A specific variant—associated to GPC5 (glypican 5)—
was found in 17% (408) of ME/CFS cases in the Pain 
Questionnaire study. Glypican 5 is a cell surface proteo-
glycan that has been identified in many different multiple 
sclerosis genetic studies [53, 79, 80]. A further four—
ATP9A, TMEM232, PHACTR2 and SLC6A11—out of the 
seven autoimmune genes identified in this study can also 
be linked to multiple sclerosis development (Table 4). MS 
and ME/CFS are believed to have a viral trigger compo-
nent, such as Epstein-Barr virus (EBV), and their patients 

Fig. 5  Biological pathways and processes known to be associated with the genes identified by the Pain Questionnaire study. Each border color 
represents a different patient community
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share similar symptoms, including fatigue, pain, sleep 
disturbance and cognitive dysfunction [81].

Metabolic dysfunction
Reductions in reserve capacity and inability to raise mito-
chondrial respiration in response to stress compared with 
controls indicates that ME/CFS patients are less able to 
meet energy demands, resulting in increased fatigue and 
exercise intolerance [82].

Combinations of genes including a variant in AKAP1 
were found in 27% (648) of the Pain Questionnaire 
cases—the highest proportion for any RF-scored genetic 
variant identified in the study—and no more than 1.5% of 
controls. AKAP1 (A kinase (PRKA) anchor protein 1) is 
a scaffold protein in the mitochondrial membrane, regu-
lating mitochondrial respiration via AMPK. A study has 
demonstrated that phosphorylation of AKAP1 by AMPK 
was crucial for AMPK-induced increase in mitochondrial 
respiration in human muscle post-exercise [83]. Further-
more, knockout of AKAP1 in mice resulted in reduced 
skeletal muscle capillary density and functional recovery 
impairment in addition to increased mitochondrial dys-
function and cellular stress in endothelial cells [56]. The 
identification of a disease associated AKAP1 variant in 
this study provides a strong genetic link to mitochon-
drial dysfunction and the reduction in energy capacity 
observed in biochemical analysis of ME/CFS patients 
[84].

We also identified a series of genes involved in other 
metabolic processes such as insulin sensitivity and lipid 
metabolism.

ATP9A is a member of the Type IV P-type ATPases 
(P4-ATPases) family involved in the process of lipid flip-
ping. ATP9A may regulate intracellular levels of cera-
mide and sphingosine [85], which have been shown to be 
altered in patients with chronic fatigue and in the skeletal 
muscle of fatigue-associated conditions [86–88]. ATP9A 
is also expressed in pancreatic beta cells and has a role 
in driving glucose-stimulated insulin release [43]. Moreo-
ver, a variant in ATP9A has been associated with multiple 
sclerosis in a homozygosity haplotype analysis [44].

Finally, 348 (15%) ME/CFS patients (and 4% of con-
trols) from this study were most associated with the com-
munity of genetic variants including the gene encoding 
the insulin receptor (INSR). A study has found that insu-
lin levels in ME/CFS patients were higher than in healthy 
controls [89], which is hypothesized to be as a results of 
insulin resistance and ischemia–reperfusion damage in 
skeletal muscles of patients with ME/CFS [90].

These 348 ME/CFS patients also presented with rela-
tively higher blood levels of lactate from the UK Biobank 
NMR metabolomics data (p < 0.017, Additional file  1: 
Table  S11) compared to the entire case population. 

Lactate is implicated in insulin resistance, resulting in 
reduced insulin-dependent glucose uptake in skeletal 
muscle and dysregulated insulin signaling [91, 92]. Dys-
regulation of insulin and lactate in ME/CFS patients may 
also have an impact on mitochondrial function, decreas-
ing mitochondrial size and respiratory function [93].

Response to stress
Three of the genetic variants that were significant in the 
Pain Questionnaire analysis—located in genes SLC6A11, 
SULF2 and CDON—were identified in communities of 
ME/CFS patients more likely (p = 0.003, Additional file 1: 
Table  S9) to report the occurrence of illness and psy-
chosocial factors (injury, bereavement, stress) in the last 
3–8  years. These could represent a subset of ME/CFS 
patients with combinations of variants involving these 
genes that confer vulnerability to psychological stress.

SLC6A11 (GAT3) is a sodium-dependent trans-
porter involved in GABA reuptake at presynaptic termi-
nals. Altered levels of GAT3 have been associated with 
increased neuroinflammation and cognitive impairment 
[94], in addition to sleep disturbance, juvenile stress 
and depression in animal models [66, 95–97]. Further-
more, patients with SNP combinations including those 
in SLC6A11 show increased levels of phenylalanine 
(p = 0.022) in the metabolomics data compared to other 
ME/CFS subgroups identified in our analysis (although 
this is not significant after multiple testing correction). 
Phenylalanine is a precursor for monoamine neurotrans-
mitters, such as dopamine, epinephrine and serotonin. 
Finally, two further SNPs in SLC6A11 were also identified 
to be significant in the Verbal Interview ME/CFS case 
dataset, providing additional evidence for the importance 
of this gene in ME/CFS development.

Sulfatase 2 (SULF2) is an enzyme that regulates the 
effects of heparan sulfate. A variant in this gene is found 
in combinations with SLC6A11 and is therefore also 
associated with the patient community with raised phe-
nylalanine levels. Sulfatase 2 plays a role in a wide vari-
ety of biological process and is expressed in most tissues 
(Additional file 1: Fig. S16). Sulfatase 2 is crucial for brain 
development, contributing to processes such as neurite 
outgrowth and responsiveness to growth factors [98–
100], and there is an association between SULF2 variants 
and HSV-1 and depression risk, and also with malaise 
and fatigue in UK Biobank studies [63, 101]. The direc-
tionality of the specific observed SULF2 association, i.e. 
whether this is a ‘risk’ allele or a ‘protective’ allele, is not 
however clear from this study or the literature. Although 
there is a known association with sex hormone globulin 
levels, we did not find any difference in male:female dis-
tribution for this community.
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CDON (cell adhesion associated, oncogene regulated) 
encodes a cell surface receptor that is highly involved 
in muscle regeneration [63]. In muscle cells, depletion 
of CDON results in impaired muscle regeneration and 
senescence, as well as increased cell stress [102]. How-
ever, CDON has also been associated with complicated 
bacteremia [61] and development of midbrain dopamine 
pathways [103]. This indicates that CDON has a diverse 
range of functional roles that could impact ME/CFS 
development.

Sleep disturbance
We identified two genes that could play a role in the 
sleep disturbance often reported by ME/CFS patients, 
SLC6A11 and CLOCK. The CLOCK (Circadian Locomo-
tor Output Cycles Kaput) gene is one of the key regula-
tors of circadian rhythm. Altered circadian rhythm is 
hypothesized to contribute to many of the symptoms 
experienced by patients with ME/CFS, including insom-
nia, pain and post-exertional malaise [82]. This is because 
disruptions in the circadian clock have far reaching bio-
logical consequences beyond sleep disruption, including 
disturbed mitochondrial function, dysregulated cellular 
stress responses and insulin sensitivity [47, 104, 105]. 
Furthermore, transcriptomic analysis of peripheral blood 
mononuclear cells indicated that several genes involved 
in circadian rhythm were elevated in ME/CFS patients 
[106].

We also found significant enrichment in patients with 
variants in CLOCK who also had been diagnosed with 
fibromyalgia. ME/CFS and fibromyalgia patients exhibit 
similar symptoms, including fatigue, cognitive function-
ing impairment and pain, which could indicate similar 
underlying biological drivers of disease (or a degree of 
misdiagnosis). Interestingly, a study investigating the dif-
ferences between the two conditions found that patients 
with both ME/CFS and fibromyalgia also presented with 
sleep disruption, in contrast to CFS only patients and 
healthy controls [107]. These results could reveal further 
insights into the cause of this symptom.

Drug target evaluation
There are currently no specific pharmacological treat-
ment options for ME/CFS patients. The detailed insights 
generated by this combinatorial analysis of the UK 
Biobank population may be used to inform the develop-
ment of novel drug targets guided by patient stratifica-
tion biomarkers associated with each of the ME/CFS 
subgroups.

In other studies, for example in motor neuron disease/
amyotrophic lateral sclerosis (ALS), we have at this stage 
identified known pharmacological modulators of several 

novel targets discovered using the approach described 
above. We tested these in a patient-derived human 
induced neuronal progenitor cells (iNPC) cellular assay 
with a co-culture of motor neurons, microglia and astro-
cytes [108] to provide biological validation of the disease 
modification potential of modulating several novel tar-
gets identified using this methodology (manuscript in 
preparation). We are further developing direct CRISPR 
derived knock-in/knock-outs for those targets in iPSC-
derived neurons.

However, in ME/CFS, not only are there no assays or 
model systems available, but we also do not understand 
the tissues involved in various aspects of the disease. 
Before we can use such in vitro/in vivo tools to evaluate 
the effects of modulating novel targets either pharmaco-
logically or via direct genetic manipulation, further work 
on identifying cell types, phenotypic readouts and animal 
models will have to be undertaken.

Each gene identified in this study was nonetheless eval-
uated for drug tractability (Table 4), indicating that seven 
of the targets exhibit potential small molecule or anti-
body tractability. Moreover, three of the genes are tar-
geted by drugs in clinical development, suggesting their 
potential as drug repositioning candidates, which might 
offer a faster and derisked route to approval, especially 
in the absence of in vitro/in vivo tools, if their safety and 
efficacy can be demonstrated.

Discussion
After decades of study, the genetic contributions to 
the etiology of ME/CFS and the different mechanisms 
underpinning the disease remain poorly understood. 
It is unsurprising therefore that our analysis demon-
strates that ME/CFS at a genetic level is polygenic and 
heterogeneous.

This is confirmed both by the genetic association and 
patient stratification results generated using combi-
natorial analysis techniques in this study, as well as the 
consistent failure of previous GWAS analyses to find rep-
licable signal within this cohort and/or between ME/CFS 
population datasets, which would be expected if clinically 
relevant monogenic signals were present [6].

Using a hypothesis-free combinatorial analytics 
approach based on the PrecisionLife platform, we identi-
fied 199 SNPs in 84 high-order combinations that were 
highly associated with 91% of the ME/CFS cases in the 
UK Biobank Pain Questionnaire cohort. These variants 
could be mapped to 14 genes, which appear to be com-
patible with the major cellular mechanisms suspected 
by other groups working in the field [51, 63, 64, 68] and 
show a level of overlap with diseases sharing similar 
symptoms, such as MS [110] and long Covid [111, 112].
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We further used these findings to stratify the ME/CFS 
patients genetically and correlated this stratification with 
clinical criteria. There is a degree of evidence of replica-
tion of several SNPs and two of those genes being identi-
fied in a second UK Biobank cohort, and the consistency 
of results from internal cross-validation replication runs 
is also encouraging.

Biological analysis of these genes indicates that many of 
them are directly linked to the key cellular mechanisms 
hypothesized to underpin ME/CFS, including vulner-
abilities to stress and infection, mitochondrial dysfunc-
tion, sleep disturbance and autoimmune development. 
This has revealed several potential novel drug targets that 
could be the basis of targeted therapy development for 
ME/CFS patients.

Study limitations
There are however a number of limitations with this 
study. Analysis of ME/CFS data is complicated by several 
logistical factors impacting data availability and qual-
ity, including low reporting rates, inaccurate diagnosis, 
limited cohorts with genetic information, and limited 
longitudinal clinical, psychosocial, epidemiological, and 
environmental data. This is exacerbated by the nature of 
the disease with its complex interactions of multiple eti-
ologies, mechanisms, and influences.

The UK Biobank cohort, while essential to enabling this 
analysis, represents a small cohort of atypically older ME/
CFS patients with predominantly white, European ances-
try who have self-reported their clinical diagnosis. The 
lack of detailed ME/CFS-specific supporting clinical and/
or phenotypic data makes it hard to evaluate individual 
clinical experiences and assess potential triggers of dis-
ease onset, recovery or relapse.

While we have tried to replicate the analysis and results 
between two different ME/CFS UK Biobank cohorts, 
a high rate of false negatives, the self-reporting of the 
clinical diagnosis, which in some cases may be misdiag-
nosed, and other variations in the case criteria between 
the cohorts make expectation of a complete correlation 
of results unrealistic in these small datasets. It is none-
theless encouraging that five critical SNPs and two of the 
genes identified do in fact appear in both cohorts, even 
allowing for the shared genetic ancestries of the cohorts.

Although it can occur at any time of life, the average 
age at onset of ME/CFS is in the 30s [9], perhaps with 
an earlier secondary peak [113], whereas the average age 
of the UK Biobank population is 56 years [114] and the 
population has a selective participation bias to ‘healthy 
volunteers’ [115]. In the Pain Questionnaire study, the 
average age of cases was 69  years, indicating an even 
greater bias to a more elderly population. This might 
cause the associations identified to be skewed away from 

causes that could be more prevalent in a more age inclu-
sive population or towards comorbidities that exerted a 
larger influence. On the other hand, an older population 
may be more accurately diagnosed. A better distribution 
of ages and longitudinal follow-up data would enable 
analysis of differences in etiology, clinical presentation or 
comorbidities and prescriptions.

ME/CFS is clearly a complex disease with multiple 
endogenous and exogenous triggers, potentially ranging 
from metabolism, autoimmune and infection, to stress 
and environmental impacts. Not all of these factors are 
recorded consistently and accurately in the available 
dataset, making their influence across one of more of the 
patient subgroups hard to determine definitively.

Finally, there is a considerable bias in the makeup of the 
patients both in UK Biobank and in this study. All of the 
participants in this study have a European ancestry due 
to their predominance in the source data [31]. There may 
well be different and additional mechanisms influencing 
the disease in cohorts with other ancestries and geogra-
phies (including different triggering pathogens).

Similarities with other diseases
MS and ME/CFS patients share a number of similar 
symptoms, including pain, sleep disturbance and cogni-
tive dysfunction [81], and both can have a viral trigger 
such as Epstein-Barr virus (EBV) [4, 116]. There is also 
increasing evidence that many patients diagnosed with 
long COVID share similar symptoms, such as chronic 
fatigue and ‘brain fog’, with individuals with ME/CFS. It is 
also believed that some patients may be developing ME/
CFS as a direct result of having a COVID-19 infection 
[11, 117, 118].

This suggests that the two diseases may share similar 
etiologies with possible overlap in the biological driv-
ers and risk genes. Our analysis of the first UK Biobank 
COVID-19 population identified four genes out of 68 
associated specifically with the risk of severe COVID that 
we had previously identified as having strong association 
with neurodegenerative processes [23], including ATXN1, 
SORCS2 and STH and MAPT from loci on chromosome 
17 that were subsequently validated by the results from 
the COVID-19 Host Genetics Initiative [119]. This analy-
sis also revealed several other disease and symptom asso-
ciated mechanisms, such as viral host response factors 
and pro-inflammatory cytokine production.

We are in the process of analyzing two populations in 
long COVID-19 (Sano Genetics, GOLD study) and mul-
tiple sclerosis (UK Biobank) to identify any shared genes 
and biological mechanisms underpinning ME/CFS, mul-
tiple sclerosis and long COVID-19 development. Pre-
liminary findings from our long COVID analysis have 
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indicated that three of the genes identified in this study 
are also significant in the long COVID patient group 
(albeit with different SNPs, but again none of these are in 
LD). These will be subject of further validation in a future 
publication.

Conclusion/future perspectives
The hypothesis-free combinatorial analytics approach 
implemented in the PrecisionLife platform identified 14 
novel genetic associations with ME/CFS in a UK Biobank 
cohort. Several previous attempts at GWAS approaches 
[12] have failed to validate single SNP associations or 
highlight significant risk genes in this ME/CFS cohort.

This study has produced further evidence of the poly-
genic and heterogeneous nature of the disease and pro-
duced patient stratification results that describe the 
mechanistic etiology of the disease. This also suggests a 
set of novel potential drug targets that may be relevant 
for the major ME/CFS patient subgroups.

There are a number of limitations with this study dis-
cussed above, and a larger, more detailed longitudi-
nal patient dataset is likely to significantly improve the 
results. For this reason, we aim to replicate and extend 
the results from this UK Biobank study with combina-
torial analysis of a future DecodeME study. DecodeME 
is the largest current genetic ME/CFS study, with over 
20,000 participants involved [120, 121], and the more 
detailed patient survey data collected is likely to allow 
deeper insights into the different subgroups and targets 
involved with the disease.

The findings of this study nonetheless provide some 
indicators of useful areas of study in terms of diagnostics, 
novel drug targets, and potentially precision reposition-
ing opportunities. As a first step, simply identifying and 
validating patient stratification biomarkers that could be 
used to create an accurate risk model or diagnostic test 
for ME/CFS would be a huge step forward towards rec-
ognition and treatment of the disease.

Discovery of drug candidates for ME/CFS has been 
limited in progress not just due to lack of plausible tar-
gets (and disease involved tissues), but also access to 
accurate models of the various aspects of the disease. 
Biological validation of the disease modification poten-
tial of the identified targets in vitro or in vivo is the next 
obvious step, but the lack of ready access to validated 
assays and disease models, or even a specific cell type to 
target is a barrier.

We hope that with a smaller set of genes on which to 
focus, genetic interventions (e.g., CRISPR knock in/out) 
or transient siRNA modulation might enable us to gener-
ate cell lines that capture features of the disease biology 
and to investigate in a cellular system the role that each 

target gene plays. We could further use these modified/
modulated cell lines as assays to evaluate recovery of a 
normal phenotype in the presence of active molecules to 
accelerate the discovery and validation of novel and/or 
precision repositioned therapeutics.

We have identified known active compounds acting at 
three of the targets found in this study using precision 
repositioning approaches [122], and there is the poten-
tial to evaluate the likely impact of these retrospectively 
via analysis of real-world data collections with longitudi-
nal prescription information, and also pharmacologically 
in the new assay systems using known active drugs and/
or development candidates as tool compounds. Given a 
good safety profile for these compounds or their deriva-
tives, this may provide sufficient evidence in the future 
for the design of first in man studies.

Finally, understanding the drivers of ME/CFS and dis-
orders with similar symptoms such as long COVID and 
MS, and establishing the similarities and differences 
between them in more detail is likely to have profound 
implications for patients. Accurate diagnosis and effec-
tive treatment options are limited in all of these diseases, 
and we hope that uncovering of the disease etiologies, 
better patient stratification, and identification of novel 
drug targets will yield rapid progress in approval of better 
diagnostic tools and drugs for patients.
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