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Abstract 

Features of the gut microbiota have been associated with several chronic diseases and longevity in preclinical models 
as well as in observational studies. Whether these relations underlie causal effects in humans remains to be estab-
lished. We aimed to determine whether the gut microbiota influences cardiometabolic traits as well as the risk of 
chronic diseases and human longevity using a comprehensive 2-Sample Mendelian randomization approach. We 
included as exposures 10 gut-associated metabolites and pathways and 57 microbial taxa abundance. We included as 
outcomes nine cardiometabolic traits (fasting glucose, fasting insulin, systolic blood pressure, diastolic blood pres-
sure, HDL cholesterol, LDL cholesterol, triglycerides, estimated glomerular filtration rate, body mass index [BMI]), eight 
chronic diseases previously linked with the gut microbiota in observational studies (Alzheimer’s disease, depression, 
type 2 diabetes, non-alcoholic fatty liver disease, coronary artery disease (CAD), stroke, osteoporosis and chronic kid-
ney disease), as well as parental lifespan and longevity. We found 7 associations with evidence of causality before and 
after sensitivity analyses, but not after multiple testing correction (1198 tests). Most effect sizes (4/7) were small. The 
two largest exposure-outcome effects were markedly attenuated towards the null upon inclusion of BMI or alcohol 
intake frequency in multivariable MR analyses. While finding robust genetic instruments for microbiota features is 
challenging hence potentially inflating type 2 errors, these results do not support a large causal impact of human gut 
microbita features on cardiometabolic traits, chronic diseases or longevity. These results also suggest that the previ-
ously documented associations between gut microbiota and human health outcomes may not always underly causal 
relations.
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Introduction
The human gut microbiota is the microbial symbiotic 
organ residing in the gut. It is involved in key metabolic 
and immunological processes including host immu-
nity, food digestion, intestinal endocrine function and 
intestinal permeability [47]. Several observational stud-
ies revealed that the gut microbiota is associated with a 
wide range of cardiometabolic risk factors and human 
diseases [32]. The systemic effects of the gut microbiota 
is partly mediated through its by-products. These micro-
bial metabolites can reach the peripheral circulation via 
the portal vein [6], or diffuse readily and be taken up by 
the gut mucosa [24], where they can reach organs and 
act as substrates or signalling molecules. This bidirec-
tional crosstalk between the gut microbiota and differ-
ent organs occurs via the gut-liver axis [2], the gut-brain 
axis [15], the gut-bone axis [66], the gut-kidney axis [22], 
the gut-lung axis [48] and the gut-heart axis [4]. Specific 
classes of microbiota-derived metabolites, notably short-
chain fatty acids [19], branched-chain amino acids [3], 
trimethylamine N-oxide [58], and derivatives of tryp-
tophan [5] have been implicated in the pathogenesis of 
metabolic disorders [1], lifespan [72], neurological and 
cardiovascular diseases [49].

Over the past few years, the gut microbiota emerged 
as a therapeutic target of great interest to prevent and/
or treat chronic diseases and improve human lifespan 
and healthspan. An overwhelming amount of support-
ive evidence from preclinical models contributed to the 
widely accepted view that a large number of diseases and 
pathological processes could be influenced by the micro-
biome, from early metabolic perturbations to full-blown 
diseases and premature mortality. Fecal transplanta-
tion studies in rodents have provided promising results 
for the treatment of obesity [51], type  2 diabetes (T2D) 
[71], depression and chronic stress [42], liver injury [44], 
myocarditis [33] and aging [16]. Human microbiota-asso-
ciated (HMA) studies, consisting of the transplantation 
of feces from human patients into germ-free mice while 
control mice receive feces from healthy humans, further 
supported these associations. A systematic review con-
ducted in 2019 on the HMA method to study the impact 
of the microbiota on chronic diseases reported that 95% 
of such studies (36/38) concluded that fecal transplan-
tation from a sick human donor resulted in at least one 
worsened symptom compared to healthy controls [69].

This finding was deemed “implausible” by the authors 
of this systematic review [69]. According to Walter et al., 
in the vast majority of cases, these studies lacked ade-
quate replication and they had statistical and methodo-
logical flaws that artificially inflated the odds of obtaining 
positive findings [69]. Together with the “file-drawer 
effect” (whereby positive studies are more likely to be 

published compared to negative studies), these caveats 
may distort the odds of translating findings from pre-
clinical models into microbiota-targeting therapies to 
prevent or treat human diseases. Observational studies in 
humans with various diseases have identified relevant dif-
ferences in intestinal microbiota composition [59]. How-
ever, they are subject to biases such as reverse causality 
and confounding (through unmeasured confounders) 
and cannot, by design, assess causality. Obesity, phar-
macotherapy, diet, alcohol intake and many other factors 
appear to be important confounders in the microbiota-
health relationships [67]. Given these limitations, Walter 
et al. suggested that novel and innovative methods such 
as Mendelian randomization (MR) should be used to 
investigate the causal role of the gut microbiota in human 
disease etiology.

MR is an epidemiological approach that mitigates many 
of the biases of observational studies such as reverse 
causality or confounding. Under specific assumptions, 
it has the potential to evaluate potential causal effects 
between multiple exposures (gut microbiota features) 
and outcomes (cardiometabolic traits, chronic diseases 
and human longevity). Briefly, MR uses genetic variants 
strongly associated with an exposure (gut microbiota 
features) to infer causality with an outcome (cardiometa-
bolic traits, chronic diseases or human longevity). Twin 
studies have shown that heritability of the abundance of 
different bacterial taxa is on average 20%, although some 
variation exists between taxa [26, 27]. This is consistent 
with the view that genes play a non-negligible role in 
determining gut microbiota composition, making MR a 
valuable tool to assess the potential causal role of the gut 
microbiota in human diseases.

Here, we used a 2-sample MR study design to inves-
tigate the potential causal links between gut microbiota 
features and nine cardiometabolic traits (fasting glu-
cose, fasting insulin, diastolic blood, systolic blood pres-
sure, HDL cholesterol, LDL cholesterol, triglycerides, 
estimated glomerular filtration rate, body mass index 
[BMI]) eight chronic disease outcomes encompassing 
different body systems (coronary artery disease [CAD], 
T2D, ischemic stroke [IS], nonalcoholic fatty liver dis-
ease [NAFLD], chronic kidney disease [CKD], osteo-
porosis, Alzheimer disease [AD] and depression), and 
human lifespan (as defined by parental lifespan and living 
beyond the 90th percentile). In this large-scale MR study, 
we first investigated the potential causal effect of micrio-
biota associated metabolites on diseases, metabolic risk 
factors and lifespan. Second, we leveraged summary sta-
tistics from two large genome-wide association studies 
(GWAS) of gut microbiota abundance to investigate the 
causal effect of genetically predicted taxa abundance on 
chronic diseases and human longevity.
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Fig. 1  Overview of the Mendelian randomization framework used to investigate the causal effect of gut microbiome features (blood and 
gut-derived metabolites and microbial taxa abundance) on cardiometabolic traits, chronic diseases and human longevity
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Results
The conceptual framework of this MR analysis as well 
as the datasets used to derive the study exposures and 
outcomes are presented in Fig.  1 and Additional file  1: 
Table  S1. Briefly, the objective of this MR analysis was 
to test the hypothesis that the gut microbiome caus-
ally impacts chronic diseases and longevity and to pro-
vide estimates for each exposure/outcome association. 
We performed two sample MR on microbiota features 
as exposures and relevant outcomes of cardiometa-
bolic risk factors, chronic diseases and human longev-
ity. We used publicly available genome-wide association 
study (GWAS) summary statistics to extract 67 traits 
related to the microbiome including 10 fecal and plasma 
metabolites associated with the gut microbiota, micro-
bial abundance of 57 taxa partly under genetic control, 
nine cardiometabolic risk factors and 10 disease-related 
outcomes and human longevity (see Methods). The 
ten metabolites were selected based on the existence 
of taxa that metabolize them and based on their previ-
ous association with chronic diseases, as described in 
Additional file  1: Table  S2. Analyses were restricted to 
participants from European ancestry except for a frac-
tion of participants included in the study of microbial 
abundance (MiBioGen) consortium and CAD (CARDIo-
GRAMplusC4D). Samples from exposures and outcomes 

overlapped to a minor extent and at different degrees 
depending of data sources. We selected only exposures 
that had at least three independent (r2 < 0.01) genetic 
instruments at minimum p-value < 1e-5 (the threshold 
differed between data source depending on the availabil-
ity of genetic instruments [Additional file  1: Table  S3]) 
with mean F statistics  > 10, resulting in 67 microbiota-
related exposures available for MR. These criteria were 
chosen to minimize weak instrument bias and allow the 
use of sensitivity analysis to assess the validity of the MR 
assumptions. The harmonized dataset of the associa-
tions between genetic variant and exposure, and between 
genetic variant and outcome is presented in Additional 
file 1: Table S4.

Effect of gut microbiome‑related metabolites on chronic 
diseases and longevity
We first sought to determine whether 10 blood metab-
olites associated with the gut microbiota and fecal 
microbial metabolites or their functional pathways 
could influence cardiometabolic risk factors, chronic 
diseases and longevity. We selected genetic instru-
ments for short-chain fatty acids such as fecal propion-
ate, a gut metabolite linked with T2D in a recent MR 
study, from a GWAS of 898 participants [56] and ace-
tate [36]. We included the microbial pathway involved 

Fig. 2  Balloon plot of the association of microbial fecal metabolites, microbial pathway and plasma metabolites with all 19 health outcomes. LDL 
cholesterol is included as positive control. Non-available (NA) associations stem from a lack of overlapping SNPs or proxies between exposure 
and outcome data resulting in fewer than three genetic instruments in the harmonized data set. Associations at P-value  > 0.05 are depicted with 
crosses. For readability, the effect of LDL on LDL was forced to be non-available
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in 4-aminobutanoate (GABA) degradation (PWY-5022 
pathway) acting as a proxy for butyrate production by 
the gut [56]. We also included trimethylamine N-oxide 
[54], branched chain amino acids (leucine, isoleucine 
and valine) [46] and derivatives of tryptophan produced 
by the gut microbiota, namely indole 3-propionate [54], 
serotonin and kynurenin [46]. We performed IVW-MR 
for each of the health outcomes under study (Fig. 2). A 
total of 190 exposure-outcome associations were tested. 
The mean absolute effect size was 0.04, meaning that 
a 1-SD deviation increase in a microbiota associated 
metabolites would only increase by 0.04 SD a risk fac-
tor or by ~ 4% the risk of a disease. Seven associations 
passed a nominal p-value significance threshold of 0.05 
(including the propionate-T2D association) but none 
of the gut microbiota metabolites were associated with 
chronic diseases and longevity after multiple testing 
correction. Figure 2 also reports the association of LDL 
cholesterol, used as positive control, with the outcomes 
of interest. As expected, each SD increase in LDL cho-
lesterol was positively associated with cardiovascular 
diseases (OR = 1.5 95% CI 1.4–1.6, P = 1.4e-31) and 
negatively associated with human longevity (OR = 0.64 
95% CI 0.56–0.74, P = 8.4e-11). Altogether, this analysis 
identified some blood and gut-derived metabolites that 
may be associated with cardiometabolic traits, chronic 
diseases and human longevity but their effect sizes were 
small. Spurious associations also cannot entirely be 
ruled out since none of the metabolites were associated 
with outcomes of interest after correction for multiple 
testing.

Effect of gut microbial abundance on chronic diseases 
and longevity
We explored the impact of different taxa abundance on 
health-related outcomes. We included available genetic 
information on 57 microbial taxa abundance from the 
two recent GWAS studies of Kurilshikov et al., and Rüh-
lemann et  al. [40, 55]. We then performed IVW-MR 
on each of the 19 health outcomes (Fig.  3). Similar to 
microbiota associated metabolites, the mean absolute 
effect size was 0.04. Out of 1008 exposure-outcome 
tests, 69 passed a significance threshold of 0.05, but no 
association remained after Benjamini-Hochberg cor-
rection for multiple testing. Altogether, this analysis 
identified some microbes that may be associated with 
cardiometabolic traits, chronic diseases and human 
longevity but, as observed with blood and gut-derived 
metabolites, reported effect sizes were small.

Exploration of promising findings and tests for pleiotropy
One of the key assumptions underlying MR is that 
genetic instruments affecting gut microbiota features 

do not affect diseases or longevity by other mechanisms 
than the one associated with gut microbiota features 
(Davies, Holmes, and Davey Smith 2018). This phenom-
enon is known as horizontal pleiotropy [43]. We per-
formed robust MR analysis on all 76 potentially causal 
relationships (primary analysis P-value  < 0.05) to esti-
mate the robustness of our primary causal estimates to 
pleiotropy. We used four different methods that make 
different assumptions about the nature of the underly-
ing pleiotropy: the weighted median, the MR-PRESSO 
or when it could not be performed the MR-Radial and 
the contamination mixture approaches. Consistency 
across the estimates of the methods provides support 
to causality. The MR-Egger intercept was also used to 
assess robustness to horizontal pleiotropy. We removed 
the MR results that were not supported by robust MR 
analyses (weighted median method P > 0.05, MR-Egger 
intercept P < 0.05, MR PRESSO outliers-adjusted test 
or MR-Radial test (P > 0.05), contamination mixture 
(P > 0.05). Of the 76 associations tested, 7 remained as 
they were consistent with a true causal effect unlikely 
to be confounded by pleiotropy (Fig.  4 and Additional 
file  1: Table  S6). Genetic instruments of these associa-
tions were located outside the ABO, HLA and APOE 
gene window (± 1  Mb), which may represent genetic 
regions potentially causing pleiotropy and hence were 
less likely to be pleiotropic. Genetic instruments did 
not display evidence of reverse causality as indicated 
by Steiger filtering tests. Most (4/7) causal effects were 
low (abs(b)  < 0.1). Notably, the causal effect of circulat-
ing serotonin levels on CAD and the causal effect of the 
order lactobacillales on T2D were strong (OR = 1.23 
95% CI 1.07–1.42, P = 4.0e-03) and (1.26 95% CI 1.11–
1.44, P = 3.6e-04) respectively. This analysis identified 
some gut microbiota associated features that may be 
worth exploring in further studies.

Exploration of BMI and alcohol intake as potential 
confounding factors
Obesity and alcohol intake frequency were recently 
identified as major confounding factors in microbiome-
disease associations [67]. We performed multivariable 
MR on the 7 promising associations to determine if 
the causal effects were robust to the inclusion of obe-
sity and alcohol intake frequency. This analysis provided 
evidence that the two aforementioned largest reported 
associations might, to a certain extent, be confounded 
by BMI or alcohol consumption (Fig. 5 and Additional 
file 1: Table S7). For example, the causal effect of sero-
tonin plasma level on CAD attenuated towards the null 
to (1.13 95% CI 0.94–1.36, P = 2.0e-01) upon inclusion 
of alcohol intake frequency as covariate and the causal 
effect of the order Lactobacillales on type 2 diabetes risk 
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Fig. 3  Balloon plot of the association of gut microbial taxa abundance with all 19 health outcomes. LDL cholesterol is included as positive control. 
Non-available (NA) associations stem from a lack of overlapping SNPs or proxies between exposure and outcome data resulting in fewer than three 
genetic instruments in the harmonized data set. Associations at P-value  > 0.05 are depicted with crosses. For readability, the effect of LDL on LDL 
was forced to be non-available
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Fig. 4  Forest plot of the associations that were consistent across robust MR analyses. Dichotomous traits are reported on a log(OR) scale. 
Continuous are reported on 1-SD scale. Dots depicts the point estimate. Horizontal bars depicts 95% confidence interval (CI)

Fig. 5  IVW-MR results before and after correcting for BMI and alcohol intake frequency using multivariable MR framework
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attenuated towards the null to (OR = 1.14 95% CI 0.95–
1.37, P = 1.6e-01) upon inclusion as BMI as covariate.

Discussion
In order to determine whether previously reported 
studies using preclinical models or observational study 
designs in humans were consistent with causal effects, we 
assessed the roles of a wide range of microbial factors and 
nine cardiometabolic risk factors, eight chronic diseases 
as well as human longevity using MR. We found 7 asso-
ciations with evidence of causality before and after sen-
sitivity analyses, but not after multiple testing correction.
Most effect sizes were small. The causal effect of seroto-
nin levels on CAD and of the Lactobacillales order abun-
dance on T2D were strong, but their effect substantially 
decreased upon inclusion of BMI and alcohol intake fre-
quency in multivariable MR analyses. Altogether, results 
of this study suggest that previously reported associa-
tions between the human gut microbiome and human 
disease might have been due to biases such as reverse 
causality or confounding and that the impact of the gut 
microbiota on cardiometabolic traits, chronic diseases 
and human longevity may not be as prominent as previ-
ously suggested.

Comparisons with other studies
Our results generally contrast with those from previ-
ous observational studies. Microbial metabolites have 
been associated with health and disease such as neuro-
logical disease, NAFLD, cardiovascular disease, survival 
and T2D (Agus, Clément, and Sokol 2020; [49, 72]. In a 
prospective study of apparently healthy participants with 
eight-year follow-up, elevated plasma TMAO (4th quar-
tile vs. 1st quartile) predicted CAD even after adjust-
ments for traditional risk factors (adjusted odds ratio 
(OR) 1.58 [95% confidence interval (CI) 1.21–2.06], 
P < 0.001) [62]. This result was similar in another study 
cohort [29]. In mice, increasing through dietary sup-
plementation the level of TMAO accelerated athero-
sclerosis [39]. By contrast, our MR analysis does not 
support causality of TMAO on CAD (0.99 95% CI 0.98–
1, P = 9.9e-02), despite precisely estimating the effect 
size, as previously suggested in another MR investigation 
on CAD [34]. Dietary factors could arguably act as con-
founding factors, since meat intake increases TMAO lev-
els [39].

Several differences in the microbial composition of dis-
eased and healthy individuals have been identified, but 
causality remains to be elucidated. RCT of fecal micro-
biome transfer (FMT) in humans are currently employed 
to establish causality between microbiome and health, 
but few have been attempted, and even fewer have been 
conclusive [20, 50]. To date, most successful randomized 

control study of FMT on humans has been applied to the 
treatment of recurrent or refractory  Clostridioides dif-
ficile  infections [73] and some to ulcerative colitis [17]. 
Mice FMTs are a valuable exploratory tool, but inference 
to human subjects is hazardous. Particularly, a substan-
tial proportion of species in the human gut are not pre-
sent in mice [37]. For example, several FMT in mice from 
lean to obese mice resulted in improved cardiometabolic 
profile [41, 76], but these findings failed to replicate in 
humans. A systematic review of all three randomized 
placebo-controlled studies to treat obesity published to 
date found no impact of FMT on obesity, fasting plasma 
glucose, hepatic insulin sensitivity, or cholesterol mark-
ers across all included studies [75]. For human observa-
tional studies, multiple confounding factors could create 
spurious correlation between microbiome and chronic 
diseases, including antibiotic use, age, sex, diet, geogra-
phy, BMI and alcohol intake [38]. Moreover, alteration of 
the gut microbiota could potentially be a consequence of 
disease states rather than a causal factor [14].

Altogether, the large proportion of null findings (i.e., 
human gut-related traits may not cause chronic disease) 
is in line with recent literature showing an overwhelm-
ing positive publication bias in the microbiome literature 
[69]. Publication bias can occur if studies are not ade-
quately corrected for multiple testing and can be iden-
tified with attempt and failure to replicate (i-e winners 
curse bias) [57]. For example, it was originally published 
that individuals with obesity were more likely to have 
lower bacterial diversity and relative abundances of  the 
phylum Bacteroidetes [63], but this result failed to repli-
cate in 9 independent cohorts [23, 61, 70]. This highlight 
the importance of triangulating with different methods 
such as MR to address a causal research question.

Strengths and limitations
An important strength of this study is the use of the MR 
design with the largest publicly available GWAS datasets. 
Because alleles are randomly assigned and fixed at con-
ception, biases due to confounding and reverse causality 
are mitigated in an MR analysis [18]. A further strength is 
that sample was mostly restricted to individuals of Euro-
pean ancestry to reduce bias due to population stratifica-
tion. However, it also restricts the generalizability of the 
results to this ethnic group.

Our study, however, has limitations. Robust genetic 
instruments for microbial species are challenging to 
find. First, microbiome heterogeneity and interindividual 
variability are high, substantially reducing the statistical 
power of microbiome GWAS analyses. Second, the phe-
notype is distal from individual genes making it a com-
plex polymorphic trait with many variants of small effect 
size which could be prone to pleiotropy. Lastly, the twin 
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heritability for gut microbiota taxa abundance is only 
on average 20% [26, 27]. This heritability estimate repre-
sents the upper ceiling that variance explained by genetic 
instruments can attain, reducing power. These factors all 
contributed to the fact that the number of mbQTLs iden-
tified to date is rather modest. For these reasons, we used 
a less stringent p-value cut-off to include a greater num-
ber of genetic variants to allow the use of sensitivity anal-
ysis and increase power. However, a less stringent p-value 
cut-off has the trade-off to potentially increase the 
chance of including false-positive effect variants which 
induce biases. The most important bias it introduces, the 
winner’s curse bias, refers to the fact that the genetic hits 
in discovery samples are more likely to be false positive, 
adding noise to the analysis which will typically bias MR 
results towards the null. Second in importance, the weak 
instrument bias occurs when the variance explained by 
the instrument and the sample size are low [13]. In the 
two sample MR setting, it will bias towards the null [11]. 
Third in importance, invalid instruments are pleiotropic 
variants that affect the outcome via another pathway 
than the one going through the exposure. Since genetic 
variants are derived from the host, instruments for the 
microbiome as exposure have a high chance of being 
pleiotropic. In general, pleiotropy is more likely to bias 
estimates away from the null [60]. Therefore, our null 
results are generally more robust to horizontal pleiot-
ropy. We minimized weak instrument biases by including 
only exposures with genetic instruments with an average 
F-statistic above 10. We minimized the propensity of the 
results to be biased by pleiotropic variants by systemati-
cally including sensitivity analyses.

The Steiger test we performed can be biased in the 
presence of a difference in measurement error between 
the exposure and the outcome [30]. Typically non-
differential measurement error will decrease variance 
explained hence will bias the Steiger test towards lower 
measurement error to higher measurement error direc-
tionality [30]. Since microbiota features (our expo-
sures) are arguably measured less precisely than the 
health phenotype (our outcomes), one can assume that 
Steiger filtering will be biased towards the reverse direc-
tion. This bias should have little impact on our results 
since no genetic instruments were removed by Steiger 
filtering.A second limitation is that the microbiome 
GWAS included in the current analysis did not target 
the entire 16S RNA gene, which greatly diminished their 
ability to achieve a sufficient taxonomic resolution to 
identify potential therapeutic targets. The meta-analysis 
by Ruhlemann targeted the V1-V2 subregion while the 
meta-analysis by Kurilshikov et  al. included mostly the 
V4 subregion and to a lesser extent the V1-V3 subregion. 
Targeting only 16S subregions such as V4 leads to lower 

taxonomic resolution achieved compared to sequencing 
the full V1-V9 16S RNA gene [35]. Indeed, using a vari-
able region as a surrogate for the entire 16S RNA gene 
only allows for the identification of taxa at the genus level 
or above [35]. Being confident at the genus level provides 
little to inform disease treatment. Indeed, within a high-
level taxon such as a phylum, some species may have a 
positive correlation with a disease, but some neutral or 
negative. For example, in our study, the phylum Actino-
bacteria was potentially protective for CAD, while the 
subsequent level, the class Actinobacteria was a poten-
tial risk factor for the same disease. Employing third-
generation technologies has the potential to allow the 
sequencing of the full 16S RNA gene in a high through-
put manner, and improve taxonomic discrimination.

A third limitation is the difference in ancestry from 
data in the MiBioGen and CARDIoGRAMplusC4D con-
sortium that could potentially violate the independence 
assumption through population stratification. Population 
stratification occurs in the advent that population sub-
groups have different disease rates or different distribu-
tions of continuous traits and have different frequencies 
of alleles. This phenomenon could violate the independ-
ence MR assumption. However, this bias is likely to be 
minimal as principal components were included and par-
ticipants were mostly from European descent.

Conclusions
Using MR, an approach less subject to reverse causal-
ity and confounding factors in comparison to traditional 
methods, we showed that several features of human gut 
microbioata including plasma metabolites and micro-
bial taxa abundance had no evidence of causal effect on 
nine cardiometabolic traits, eight chronic diseases and 
human longevity. While finding robust genetic instru-
ments for microbiota features is challenging potentially 
inflating type 2 errors, these results do not support large 
causal effects of the human gut microbiota and microbial 
metabolites on human chronic diseases and longevity. As 
the microbiome field matures, the use of larger micro-
biome GWAS study taking advantage of discriminatory 
potential of the full 16S RNA gene is warranted to fully 
elucidate the association of the human gut microbiota in 
the etiology of chronic diseases.

Methods
Study exposures (gut microbiota‑derived metabolites)
We derived our ten gut microbiota-derived exposures of 
interest from five different publicly available data sources 
(Additional file  1: Table  S1). We selected independent 
(r2 ≤ 0.01) SNPs (for all studies: P-value  < 1e-5; except 
Lotta et  al.: P-value  < 1e-6) as genetic instruments. 
Genetic instruments for fecal propionate and PWY-5022 
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were obtained from a GWAS on 952 normoglycemic 
participants of the LifeLines-DEEP cohort, a population-
based cohort from northern Netherlands (age ranges 
18–84 years) [56]. Fecal propionate levels were measured 
by gas chromatography-mass spectrometry (GCMS). 
The functional pathway  PWY-5022 was obtained with 
HUMAnN2 (v 0.4.0) [25] and MetaCyc metabolic-path-
way database [64]. Genotyping was carried out with 
two Illumina arrays, HumanCytoSNP-12 BeadChip and 
ImmunoChip.

Genetic instruments for plasma TMAO and indole-
3-propionate were extracted from a GWAS conducted 
in 2076 participants from European ancestry from the 
Framingham Heart Study (FHS) offspring cohort [54]. 
The FHS offspring cohort is a prospective community-
based cohort from Framingham, Massachusetts, USA. 
Children of the spouse of the FHS study were recruited 
in 1971. Metabolites profiling was performed by liquid 
chromatography-mass spectrometry  63. Genotyping was 
conducted using the Affymetrix 500 K mapping array and 
the Affymetrix 50 K gene-focused MIP array. The partici-
pants all provided their informed consent and the study 
was approved by the Boston University Medical Center.

Genetic instruments for acetate were extracted from 
a meta-analysis of GWAS conducted on 10 European 
cohorts totalizing 24,925 individuals [36]. Human blood 
metabolites were quantified with quantitative high-
throughput NMR metabolomics platform. Genetic 
instruments or plasma branched-chain amino acids 
(leucine, isoleucine and valine) and tryptophan derived 
metabolites kynurenine and serotonin were extracted 
from a meta-analysis of seven cohorts on up to 86,401 
participants [46]. Human blood metabolites were quan-
tified with quantitative high-throughput NMR metabo-
lomics platform.

Study exposures (gut‑microbiata abundance)
We first identified 4 recent GWAS on gut microbe 
abundance with available summary statistics [40, 45, 
53, 55]. We filtered all microbiota quantitative trait 
loci (mbQTLs) with P-value  < 1.0e-6 for all taxa abun-
dance present in their analysis and kept only expo-
sures with at least three shared mbQTLs with mean 
F statistics  > 10. The study of Lopera-Maya et al., and 
Qin et  al., were removed as none of the exposures 
satisfied our criteria (≥ 3 independent mbQTLs at a 
P-value  < 1e-6, with mean F-statistics  > 10). In total, 
we derived our microbiota taxa abundance exposures 
of interest from two different publicly available data 
sources (Additional file  1: Table  S1). Genetic instru-
ments for bacterial taxon were extracted from a GWAS 
of bacterial taxon abundances of 8,956 German indi-
viduals from the PopGen (population-based cohort), 

the FoCus (population registry based), the KORA FF4 
(population-based adult cohort initiated in 1984) 
and the SHIP cohort (longitudinal population-based 
cohort)67. Human Genotyping and fecal microbial 
16S rRNA gene surveys were performed using multi-
ple arrays. Additionally, other genetic instruments for 
bacterial taxon were extracted from a meta-analysis 
conducted by the MiBioGen consortium on 16S fecal 
microbiome data from 18,340 individuals (24 cohorts) 
[40]. All cohorts implemented the standardized 16S 
processing pipeline that uses SILVA as a reference 
database, with truncation of the taxonomic resolution 
of the database to genus level. Cohorts were Middle 
Eastern, East Asian, American Hispanic/Latin, African 
American and admixed, although the majority of the 
sample (more than 72%) came from European descent. 
Notably, The two studies shared the PopGen (n = 721), 
the FOCUS (n = 960), and the SHIP (n = 1901) cohorts 
for a total of 3582 individuals or approximately half 
the samplesize of the study by ruhlemann et  al. For 
this reason, we only sourced genetic instruments in 
the study by Ruhlemann et al., for exposures that were 
absent from Kurilshikov.

Study outcomes
We used publicly available GWAS summary statistics 
of the largest GWAS of nine cardiometabolic traits, 
eight chronic diseases, parental lifespan and longevity. 
Relevant information on the GWAS summary statistics 
are presented in Additional file 1: Table S1.

Selection of genetic variants and variants harmonization
We first identified all SNPs associated with exposures. 
Summary parameters for genetic instrument selec-
tion can be found at Additional file  1: Table  S7. These 
SNPs were then clumped using the 1000Genomes Pro-
ject Phase 3 European LD reference panel to make sure 
instrumental variables were independent with a 10 Mb 
window and pairwise linkage disequilibrium (LD) 
r2 < 0.01. This step was implemented with the gwwasvcf 
package in R [21]. Instrument strength was quantified 
using the F-statistic [13], and the variance explained was 
quantified using the r2 [52]. Variant harmonization was 
performed by aligning the betas of different studies on 
the same effect allele with the TwoSampleMR package 
[31]. When a particular exposure SNP was not present 
in the outcome dataset, we used proxy SNPs instead 
(r2 > 0.8). We used the LD matrix of the 1000 Genomes 
Project-European sample of the Utah residents from 
North and West Europe. We kept only the results based 
on at least three independent shared SNPs with mean F 
statistics  > 10 to reduce weak instrument bias and allow 
for robust MR analyses.
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Primary Mendelian randomization analyses
We conducted primary MR analysis on each outcome 
and exposure association. As primary method for causal 
inference, we performed the IVW method with multipli-
cative random effects with a standard error correction for 
under dispersion as recommended by recent MR guide-
lines [10]. The IVW-MR combines the ratio estimates 
from each genetic instrument in a meta-analysis model 
by giving more weight to the ratio estimates with lower 
variance [12]. A total of 1198 primary analyses  were 
performed: 67 exposures * 19 outcomes—75 exposures/
outcomes with fewer than three overlapping genetic 
instruments or proxies. We applied a Benjamini Hoch-
berg correction for multiple testing using a false discov-
ery rate of 5% to reduce the propensity of false positive 
finding. For dichotomous traits, we transformed ORs 
and CIs to effect sizes and standard error when it was 
not already done. Lifespan, blood pressure, fasting glu-
cose, fasting insulin, and glomerular filtration rate were 
reported in years, mmHG, log(pmol/L), log(pmol/L) 
and log(eGFR) respectively. For better interpretability 
and comparability, these summary statistics were trans-
formed to a one standard deviation scale using the sdY.est 
function in the coloc package [68]. The other continuous 
variables were already inverse-rank normal transformed 
in the GWAS.

Sensitivity analyses
For associations with IVW-MR P-value  < 0.05, we per-
formed sensitivity analyses to estimate the robustness 
of our primary causal estimate. We used 5 different 
robust methods that make different assumptions about 
the nature of the underlying pleiotropy. As a general 
test of the presence of pleiotropy, we used the intercept 
term from MR-Egger regression), MR-Egger is similar 
to the IVW method except the regression model esti-
mates an intercept [7]. An intercept significantly dif-
ferent from zero gives indication of pleiotropy. The 
contamination mixture provides consistent estimate 
under the plurality valid assumption [60]59. It assumes 
that not all genetic variants are valid IVs and runs a 
likelihood function to categorize genetic instruments as 
valid or invalid. As a general test of robustness of the 
IVW-MR estimates, we used the weighted median. The 
weighted median estimates an unbiased causal effect 
if the “majority valid” assumption is upheld, that is if 
up to 50% of the weights comes from variants that are 
valid IVs [8]. Finally, as a general test to the presence 
of outliers, we used the outlier-robust method MR-
PRESSO, which is a simulation approach where genetic 
variants are removed based on their contributions to 
heterogeneity [65]. This method provides consistent 

estimates under the same assumptions as the IVW-MR 
method for the set of genetic variants that are not iden-
tified as outliers [60]. When the MR-PRESSO could not 
be performed because there was less than four instru-
ments, we performed MR-Radial as an outlier robust 
test instead. The MR-Radial uses a simulation-based 
approach to detect and remove outlier variants to re-
estimate the exposure-outcome relation [9].

As additional sensitivity analysis, we excluded vari-
ants from known pleiotropic gene regions and per-
formed Steiger filtering. Because of their known 
association with pleiotropic pathways, we excluded 
from the analysis all SNPs of the HLA, ABO and APOE 
genetic regions. We also performed Steiger filtering to 
remove variants with evidence of a stronger association 
with the outcome than its association with the expo-
sure. The Steiger test provides a p-value under the null 
hypothesis that the difference in variance explained is 
null [30].

Obesity and alcohol intake frequency were recently 
identified as major confounding factors in the gut-dis-
ease associations [67] because they are both to some 
extent associated with the health outcome under study 
while potentially simultaneously influencing microbi-
ome composition. Although other confounding factors 
may exist, adding BMI and alcohol intake frequency are 
the most important predictors of microbiota composi-
tion and health and adding them as covariates in linear 
mixed-effect models reduced the numbers of spuri-
ous microbiome health associations [67]. To account 
for this, we performed multivariable MR as a sensitiv-
ity analysis to correct for measured confounders [28]. 
BMI and alcohol intake frequency GWAS from the UK 
biobank were obtained from publicly accessible source 
(Additional file  1: Table  S1). Multivariable MR IVW 
estimates were computed using the MendelianRand-
omization package [74].
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