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Abstract 

Background:  Although lipid metabolite dysfunction contributes substantially to clinical signs and pathophysiology 
of Alzheimer’s disease (AD), how dyslipidemia promoting neuropathological processes and brain functional impair-
ment subsequently facilitates the progression of AD remains unclear.

Methods:  We combined large-scale brain resting-state networks (RSNs) approaches with canonical correlation analy-
sis to explore the accumulating effects of lipid gene- and protein-centric levels on cerebrospinal fluid (CSF) biomark-
ers, dynamic trajectory of large-scale RSNs, and cognitive performance across entire AD spectrum. Support vector 
machine model was used to distinguish AD spectrum and pathway analysis was used to test the influences among 
these variables.

Results:  We found that the effects of accumulation of lipid-pathway genetic variants and lipoproteins were signifi-
cantly correlated with CSF biomarkers levels and cognitive performance across the AD spectrum. Dynamic trajectory 
of large-scale RSNs represented a rebounding mode, which is characterized by a weakened network cohesive con-
nector role and enhanced network incohesive provincial role following disease progression. Importantly, the fluctuat-
ing large-scale RSNs connectivity was significantly correlated with the summative effects of lipid-pathway genetic 
variants and lipoproteins, CSF biomarkers, and cognitive performance. Moreover, SVM model revealed that the 
lipid-associated twenty-two brain network connections represented higher capacity to classify AD spectrum. Pathway 
analysis further identified dyslipidemia directly influenced brain network reorganization or indirectly affected the CSF 
biomarkers and subsequently caused cognitive decline.

Conclusions:  Dyslipidemia exacerbated cognitive decline and increased the risk of AD via mediating large-scale 
brain networks integrity and promoting neuropathological processes.

These findings reveal a role for lipid metabolism in AD pathogenesis and suggest lipid management as a potential 
therapeutic target for AD.
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Background
Lipids are important components of the brain that play a 
critical role in the membrane formation of neuronal cells, 
and participate in essential physiological functions such 
as cellular transport, energy storage, in addition to act-
ing to modulate transmembrane proteins and signaling 
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molecules, promoting effective signal transduction, and 
regulating gene expression [1–3]. In recent years, grow-
ing evidence from both animal models and humans’ stud-
ies has identified that abnormal lipid metabolites were 
associated with the molecular mechanisms underlying 
Alzheimer’s disease (AD) pathophysiology beyond amy-
loid plaques and neurofibrillary tangles [4–9]. In fact, 
altered plasma lipid profiles have appeared to exacerbate 
cognitive decline, subsequently increasing the risk of the 
incidence of AD in nondemented elderly adults [7, 10–
14]. Specifically, recent biological and neuroimaging data 
have indicated that the dysfunctional composition of lipid 
rafts, primarily located in membrane microdomains and 
serving as an important platform for signal processing, 
may contribute to AD pathophysiology [2, 11]. Choles-
terol, as a major component of lipid rafts, is thought to be 
involved in amyloid precursor protein (APP) processing 
and β-amyloid (Aβ) overproduction characterized as a 
key feature of AD pathophysiology [12], while gemfibro-
zil, a fibric acid agent commonly used to treat hyperlipi-
demias in clinic, significantly reduces amyloid pathology 
and reverses memory deficits in APP-PSEN1ΔE9 mice 
[15], a murine model that mimics AD-like pathology and 
cognitive decline. As changes of lipoprotein in the blood 
can be detected prior to cognitive decline, it is of con-
siderable interest to know whether lipid pathway-based 
metabolites substantially contribute to AD pathophysiol-
ogy [16]. However, to date, it remains unclear how lipid 
metabolites, cerebral spinal fluid (CSF) biomarkers, and 
brain function are linked or interacted with the progres-
sion of cognitive decline in preclinical or clinical AD 
patients.

Brain network integrity plays an instrumental role in the 
regulation of high-order cognitive function. Resting-state 
networks (RSNs), which measure temporal correlation 
depend on intrinsic blood oxygenation level dependent 
(BOLD) signals within large-scale systems and provide 
a powerful tool to investigate network integrity between 
structurally segregated and functionally specialized brain 
regions at the system level [17]. Importantly, the spatial–
temporal evolution of RSNs has been found to be tightly 
associated with neural correlates of cognitive impairment 
observed in preclinical and clinical AD patients [18–21], 
including default mode network (DMN), executive con-
trol network (ECN), salience network (SAN), attention 
network (AN), and visuospatial network (VIS), suggest-
ing that changes in distributed networks at a large-scale 
system level could predict clinical progression and neu-
rodegeneration [18, 22, 23]. Recently, particular attention 
to network integrity has shifted towards investigation 
of molecular pathological changes invoked in intrinsic 
large-scale network dynamics supporting diverse cogni-
tive function [24]. Specifically, increasing evidence has 

demonstrated that neural correlates of the disrupted con-
nectivity of RSNs in cognitively healthy individuals with 
brain amyloidosis or AD-related genetic risk factors were 
similar to abnormalities observed in symptomatic AD 
[25–27]. As such, it may be possible that RSNs could be 
used as an intermediate phenotype linking downstream 
cognitive decline and upstream molecular cascading 
events underlying AD pathophysiology. Dysregulation of 
lipids is substantially associated with the disrupted archi-
tecture of RSNs and is directly involved in the molecular 
and cellular changes underlying AD pathophysiology [28, 
29]. For example, high serum cholesterol has been associ-
ated with decreased cortical and hippocampal volumes in 
cholesterol-fed rabbits [30] and disrupt functional con-
nectivity of the SAN in the non-demented elderly [28]. 
Increased low-density lipoprotein cholesterol (LDL-C) 
levels causes a detrimental effect to posterior cingulate 
gray matter volumes and verbal memory [31], while ele-
vated high-density lipoprotein cholesterol (HDL-C) pro-
vides protection against hippocampal atrophy and AD 
[32, 33]. From our previous work, we previously reported 
that the effects of the accumulation of genetic variants 
of cholesterol-pathway molecules produces widespread 
effects on cortico-subcortical-cerebellar spontaneous 
brain activity in amnestic mild cognitive impairment 
(aMCI) patients [34]. These findings suggest that several, 
distinct lipidomic signatures influence brain network 
integrity and subsequently contribute to AD. However, 
it remains unclear how altered lipid metabolites impinge 
on the dynamic spatiotemporal patterns of RSNs as AD 
progresses. Indeed, in the context of lipid-centric gene 
and protein changes, evaluation of the potential effects 
of lipid abnormalities that affect dynamic brain network 
trajectory and CSF biomarkers, subsequently leading 
to cognitive decline, are beneficial in order to capture a 
more holistic picture of the processes of AD.

In the present study, a new approach was used that 
combining large-scale brain networks with canonical 
correlation analysis (CCA) to explore the effects of lipid 
metabolic disturbance on the dynamic trajectory of ten 
RSNs changes and molecular biomarkers that promote 
cognitive decline following AD progression. Firstly, the 
relationship between lipid-centric gene variants and pro-
teins, CSF biomarkers, and cognitive performance across 
the AD spectrum (ADS) was examined. Secondly, the 
dynamic trajectory of large-scale network changes was 
identified both within- and between ten predefined RSNs 
from cognitive normal (CN) healthy to mild AD stage 
individuals. Thirdly, the potential associations between 
lipid-related gene variants and proteins, and the dynamic 
trajectory of large-scale network connectivity, CSF bio-
markers, and cognitive performance were explored using 
CCA. Fourth, a support vector machine (SVM) model of 
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machine learning was used to distinguish ADS patients 
from CN subjects. Finally, path analysis with structural 
equation modeling (SEM) was used to test the effects of 
lipoproteins on large-scale RSNs, CSF biomarkers, and 
cognitive performance. Taken together, these findings 
provided an integrated view of lipid metabolite abnor-
malities exacerbated cognitive decline and increased the 
risk of AD occurrence via mediating large-scale brain 
network integrity and promoting neuropathological 
processes.

Methods
Participants
All data at baseline were extracted from the Alzhei-
mer’s disease Neuroimaging Initiative (ADNI) database 
(http://​adni.​loni.​usc.​edu) prior to January 20th, 2020. 
Data for lipid gene and protein expression, CSF bio-
markers and that of imaging quality control of a total of 
124 subjects incorporating 51 cognitive normal (CN), 

26 early amnestic mild cognitive impairment (EMCI), 
26 late mild cognitive impairment (LMCI) and 21 mild 
Alzheimer’s disease (AD) subjects were included in the 
present study (Table  1). Detailed inclusion and exclu-
sion criteria were provided in Additional file 1.

Demographic data such as age, gender and years of 
education were enrolled in this study. Based on the 
cholesterol metabolism pathway, nine candidate genes 
were selected: CLU, LDLR, LRP1, PICALM, SORL1, 
CETP, ABCA1, BIN1 and APOE (Tables  1 and 2). 
Hardy–Weinberg equilibrium test for each allele was 
calculated with chi-square test. In addition, thirty-eight 
lipid metabolic biomarkers were obtained. The detailed 
acquisition and selection procedures of plasma lipids 
were available in the Additional file  1. Further, CSF 
biomarkers including Amyloid-β 1 to 42 peptide (Aβ), 
total tau (Tau) and tau phosphorylated at the threonine 
181 (pTau) were collected. The MMSE and Alzheimer’s 

Table 1  Demographic data, lipid pathway-based genotypes, cerebrospinal fluid biomarkers, and global cognitive performance across 
the AD spectrum

*, p values were obtained using a Chi-square test; other p values were obtained from a one-way ANOVA. Unless indicated, data are presented as means ± standard 
deviation. Post hoc analyses were used with least significance difference correction (p < 0.05): a: statistical difference detected between CN group and EMCI group; b: 
statistical difference was detected between CN group and LMCI group; c: statistical difference was detected between CN group and AD group; d: statistical difference 
was detected between EMCI group and AD group; e: statistical difference was detected between LMCI group and AD group. CN cognitively normal, EMCI early mild 
cognitive impairment, LMCI late mild cognitive impairment, AD Alzheimer’s disease, M/F male/female, CLU clusterin, LDLR low density lipoprotein receptor, LRP1 low 
density lipoprotein receptor-related protein 1, PICALM phosphatidylinositol-binding clathrin assembly protein, APOE apolipoprotein E, SORL1 sortilin-related receptor 
1, CETP cholesterol ester transfer protein, ABCA1 ATP-binding cassette transporter A1; BIN1 bridging integrator 1, Aβ amyloid-1 to 42 peptide, Tau total tau, pTau tau 
phosphorylated at the threonine 181 position, MMSE mini-mental state examination, ADAS-Cog Alzheimer’s Disease Assessment Scale-Cognitive Subscale

Items CN EMCI LMCI AD P values
(n = 51) (n = 26) (n = 26) (n = 21)

 Age (years) 74.08 ± 5.79 70.04 ± 6.87 70.81 ± 7.14 71.81 ± 7.77 0.051

 Gender (F/M) 30/21 14/12 11/15 9/12 0.447*

 Education (years) 16.31 ± 2.59 15.27 ± 2.51 16.31 ± 2.51 15.14 ± 2.76 0.157

Multiple protective genes

 CLU T status (TC + TT/CC) 38/13 17/9 18/8 13/8 0.710*

 LDLR A status (AG + AA/GG) 38/13 16/10 15/11 11/10 0.240*

 LRP1 T status (TC + TT/CC) 15/36 8/18 5/21 10/11 0.214*

 PICALM A status (AG + AA/GG) 27/24 15/11 16/10 11/10 0.884*

Multiple risk genes

 APOE ε4 status (+ / −) 15/36 14/12 12/14 15/6 0.008*

 SORL1 G status (TG + GG/TT) 19/32 12/14 12/14 6/15 0.548*

 CETP A status (AG + AA/GG) 46/5 24/2 23/3 19/2 0.974*

 ABCA1 G status (AG + GG/AA) 45/6 25/1 21/5 19/2 0.369*

 BIN1 C status (TC + CC/TT) 27/24 17/9 15/11 11/10 0.739*

Cerebrospinal fluid biomarkers

 Aβ (pg/ml) 192.79 ± 50.17bc 183.61 ± 50.66d 168.77 ± 50.80 140.40 ± 43.59 0.001

 Tau (pg/ml) 68.53 ± 34.14c 79.32 ± 51.89d 86.01 ± 52.19e 129.29 ± 61.42  < 0.001

 pTau (pg/ml) 34.18 ± 16.58bc 39.60 ± 24.73d 48.42 ± 33.50 55.23 ± 26.13 0.005

Global cognitive performance

 MMSE 28.84 ± 1.16abc 27.92 ± 2.13d 27.73 ± 1.54e 22.67 ± 2.50  < 0.001

 ADAS-Cog 10.76 ± 6.53abc 14.19 ± 6.58d 16.96 ± 5.32e 35.81 ± 8.99  < 0.001

http://adni.loni.usc.edu
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Disease Assessment Scale-Cognitive Subscale (ADAS-
Cog) were used to measuring global cognitive function.

Calculation of polygenic scores
Genes were divided into two categories: protective or 
hazardous, depending on the value of odds ratio (OR) 
for each gene. For OR values > 1, the locus was defined as 
hazardous, while for OR < 1 there were defined as protec-
tive variants. Polygenic scores were defined as a sum of 
ORs of multiple loci. The concept of relative risk score 
(RRS) utilized in the present study was defined as genetic 
risk score (GRS) minus genetic protective score (GPS). 
Due to the strong risk effect of the APOE genotype, GRS 
was calculated with the APOEε4 (GRS) and without the 
APOEε4 genotype (GRS_n), respectively. Consequently, 
RRS was also separated into RRS with APOEε4 (RRS) 
and RRS without APOEε4 (RRS_n). Gene information 
was detailed in Additional file 1: Table S1.

Functional network construction
Resting-state functional MRI image acquisition and pre-
processing procedures were described in Additional 
file 1. The atlas of Power et al. [35] was used to partition 
the brain of each participant into 226 cortical and sub-
cortical areas. Subsequently, network connectivity was 
calculated within 10 RSNs as defined by previous fMRI 
studies [35, 36]. We also calculated network connectivity 
between all pairs of the 10 RSNs, as well as between each 
RSN and all other RSNs (i.e., one-versus-all-others). The 
detailed construction of the network is shown in Addi-
tional file 1.

Statistical analysis
Comparisons between groups used one-way analysis of 
variance for continuous variables and chi-square tests 
for categorical variables. The significance level was set at 
p < 0.05. Post hoc analysis with least significance differ-
ence (LSD) correction (p < 0.05) was used to compare dif-
ferences between two groups. All statistical analyses were 
conducted using SPSS v25 software (SPSS, Inc., Chicago, 
IL, USA).

To investigate correlations among polygenic scores 
(including GPS, GRS, RRS, GRS_n and RRS_n), lipid 
metabolites in the blood, CSF biomarkers, and cogni-
tive performance in AD spectrum individuals, linear and 
binomial nonlinear regression analyses were employed, 
after controlling the covariates of age, gender, and years 
of education. The significance level was set at p < 0.05.

Each network metric (within-, one-versus-all-others-, 
and pairwise between-network connectivity) was com-
pared across groups using generalized linear model 
analysis adjusted for age, gender, and education as covari-
ates. All p values were adjusted for multiple comparisons 

(10 within-network metrics + 10 one-versus-all-others-
network metrics + 45 pairwise between-network met-
rics = 65 comparisons) by controlling false discovery rate. 
Post hoc analysis was then performed to determine the 
significance of specific comparisons with network-based 
statistics (NBS) among groups (p < 0.01, FDR correction).

Additionally, the CCA was used to identify relation-
ships between brain network connectivity measures and 
clinical phenotypes, CSF biomarkers, lipid related genetic 
variants, and lipoproteins in the serum of AD spectrum 
patients. Given a significant CCA mode, Pearson’s cor-
relation was used to assess the correlation between the 
CCA mode and the corresponding set of original vari-
ables of which it consisted. Finally, the correlation coef-
ficients were visualized using the radar plots in Fig.  5. 
Details on CCA were described in Additional file 1.

Support vector machine classification
SVM was used in this study to classify AD spectrum in 
MATLAB based on a library (LIBSVM) [37]. The LIB-
SVM classifier algorithm was applied within Leave-one-
out cross-validation (LOOCV). Grid search method and 
Gaussian radial basis function (RBF) kernels were used 
for parameter optimization. Post hoc analysis revealed 
nineteen lipoproteins and three gene scores were asso-
ciated with network connectivity. Then, we performed 
Pearson correlation to find the functional connections 
which were correlated with all nineteen lipoproteins 
and all three gene scores. P values of correlation coeffi-
cient < 0.05 was considered statistically significant. Those 
functional connection were used in the classification by 
SVM. In order to quantify the performance of the final 
machine learning model, the accuracy, sensitivity, speci-
ficity, and area under the curve (AUC) were calculated to 
reduce the impact of deviations in the distribution of the 
training and testing sets. In addition, the accuracy (ACC) 
of testing set was assessed by permutation test with 1,000 
epochs as described in previous studies [38].

Path analysis
We further used SEM to examine the relationship among 
variables in radar plots (Additional file  1: Fig.  S4). All 
variables in the radar plots were observed variables. 
Moreover, we constructed four variables (dyslipidemia, 
pathology, brain function, and cognition) as latent vari-
ables. Hypothesized relationships were constructed 
among variables based on the results of post hoc analy-
sis. The causal path relationship of the 5 latent variables 
constituted the SEM structural model, and the relation-
ship between latent variables and their corresponding 
observed variables constituted the SEM measurement 
model. SEM was conducted using IBM SPSS Amos ver-
sion 22 statistical software (Amos Development Co., 
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Armonk, NY, USA). For the hypothesized relationships, 
t-tests and path coefficients were determined using a 
bootstrapping approach with a sampling of 5000. The 
goodness of fit was assessed by chi square/degree of 
freedom ratio (CMIN/DF), root-mean-square error of 
approximation (RMSEA), goodness-of-fit index (GFI), 
adjusted GFI (AGFI), Tucker-Lewis Index (TLI), normed 
fit index (NFI), comparative fit index (CFI), and incre-
mental (IFI). The significance level was set 0.05 in this 
study.

Results
Demographic, genetic, and molecular biomarkers, 
and neuropsychological data
There were no significant differences in age, gender, 
education, levels of thirty-eight serum lipid metabo-
lites, or any candidate genotypes, except apolipoprotein 
E (APOE) genotypes within any groups of participants. 
Significant cognitive decline as signed by lower MMSE 
scores and higher ADAS-cog scores, gradually decreased 
Aβ level, and increased Tau and p-Tau levels were iden-
tified in ADS individuals compared to the CN. In terms 
of cognitive scores or CSF biomarkers, there were no sig-
nificant differences between early MCI (EMCI) and late 
(LMCI) groups. No genotypes deviated from the Hardy–
Weinberg equilibrium with all p values above 0.05. More 
details of demographic, lipid pathway-based genotypes, 
CSF biomarkers, and global cognition are displayed in 
Table 1 and Additional file 1: Tables S1, S2.

Relationships among polygenic scores, lipid metabolites, 
CSF biomarkers and cognitive performance
First, binomial nonlinear connections were discovered 
between five cholesterol metabolism related biomarkers 
in the serum and ADAS-cog score, including serum total 
cholesterol (SERUM_C), esterified cholesterol (ESTC), 
free cholesterol (FREEC), phosphatidylcholine (PC), and 
sphingomyelins (SM). Besides, total phosphoglycerides 
(TOTPG), total choline (TOTCHO), and small HDL 
particles (S_HDL_P, including total lipids, phospholip-
ids, total cholesterol, cholesterol esters, free cholesterol, 
and triglycerides) levels represented a correlation trend 
with ADAS-cog or MMSE scores. Then, three cholesterol 
metabolism related markers including SERUM_C, ESTC 
and SM were also linearly correlated with Tau but not Aβ 
and p-Tau levels of CSF in the ADS. In addition, linear 
regression between polygenic scores and CSF biomarkers 
disclosed that genetic risk scores (GRS) were significantly 
correlated with Aβ, Tau, and even p-Tau levels, while 
genetic protective score (GPS) was not correlated with 
any of CSF biomarkers. It is interesting that relative risk 
scores (RRS = GRS—GPS) was significantly influenced 
the Aβ, Tau but not p-Tau levels in the ADS. Of note, 

the correlations between GRS_n (GRS without APOE), 
RRS_n (RRS without APOE) and CSF markers were not 
found, so the graphs were not presented here. All the cor-
responding graphs above were plotted in Fig.  1. Mean-
while, regression analyses revealed that CSF biomarkers 
(including Aβ, Tau and p-Tau) could significantly impact 
global cognitive performance in a nonlinear manner 
(Additional file 1: Fig. S1).

Dynamic trajectory of large‑scale brain network roles 
across the AD spectrum
To explore the dynamic trajectory both within- and 
between RSNs in ADS patients, pairwise functional 
connections (correlations) were extracted within- and 
between ten predefined large-scale functional brain net-
works: auditory network (AUD), cingulo-opercular net-
work (CON), dorsal attention network (DAN), DMN, 
fronto-parietal network (FPN), SAN, sensory network 
(SMN), subcortical network (SUB), ventral attention net-
work (VAN), and visual network (VIS), as derived from 
the brain atlas of Power et al. [35]. By mapping the group 
mean within-network connectivity (WNC) and between-
network connectivity (BNC) to a 2D parameter space, 
the mean functional role of 10 RSNs was qualitatively 
described across the ADS (Fig. 2A–D). From the means 
of individual WNC and BNC values (depicted by hori-
zontal and vertical dotted lines in Fig. 2F (detailed infor-
mation provided in Additional file 1), the RSNs from the 
CN group were consequently classified into four network 
roles: cohesive connector (SAN, DAN, SMN, and SUB), 
cohesive provincial (VIS), incohesive connector (AUD, 
FPN and CON), or incohesive provincial (DMN and 
VAN) (Fig.  2A). In addition to DMN and VAN, which 
exhibited both weaker cohesive connector and cohesive 
provincial roles, the other eight networks in the ADS rep-
resented divergent network roles compared to those of 
the CN group. Specifically, SAN, DAN, and AUD repre-
sented incohesive provincial and connector networks in 
patients with EMCI, LMCI and AD, respectively, the con-
verse of that observed in CN subjects (Fig.  2A–D). The 
graphs visually demonstrated how the network roles of 
these large-scale RSNs dynamically changed with severity 
of disease (Fig. 2E). Interestingly, the strengths of WNC 
and BNC exhibited a dynamically weakened trend, except 
for SUB, as disease progressed through the ADS, indicat-
ing that spatiotemporal patterns of large-scale RSNs rep-
resent a rebounding network mode rather than cascading 
network failure, as described previously [18].

Group‑level comparison of network connectivity in AD 
spectrum individuals
We next tested differences in WNC and BNC in terms 
of large-scale RSNs among the four groups. Firstly, we 
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obtained distinctive WNC and BNC matrices of the 10 
RSNs for the four groups (Fig.  2G). Clearly, five RSNs 
(DAN, FPN, SAN, VAN, and VIS) exhibited significantly 
differential WNC among the disease spectrum (Fig. 2H). 
Although VAN and DMN were found to be incohesive 
provincial networks in four groups (Fig.  2A–D), VAN 
exhibited significantly lower WNC and BNC across the 
ADS (Fig.  2A–D). Similarly, five RSNs, including DAN, 

SAN, SMN, CON, and AUD, were found to have inco-
hesive connector roles and provincial networks that had 
lower connectivity in the ADS relative to CN subjects. It 
was noted that the FPN shifted from an incohesive con-
nector to incohesive provincial network while the VIS 
changed from cohesive connector to a cohesive provin-
cial network, both representing lower connectivity in 
the ADS relative to CN subjects. In addition, the SUB 

Fig. 1  Regression analyses between polygenic scores, cerebrospinal fluid biomarkers, plasma cholesterol metabolites, and general cognition in 
the AD spectrum. A Nonlinear correlations were plotted in heat map between blood cholesterol metabolites and cognitive scores. The color bar 
indicated nonlinear regression p values ranging from 0 to 1. Two-tailed p values < 0.1 were considered significant. B Significant linear correlations 
were found between three cholesterol metabolism related markers in the blood and Tau level of cerebrospinal fluid in the AD spectrum. C Linear 
regression between polygenic scores and cerebrospinal fluid biomarkers revealed that GRS was significantly correlated with Aβ, Tau, and even 
p-Tau levels, in the contrast, GPS was not correlated with any of cerebrospinal fluid biomarkers; while relative risk scores (RRS = GRS—GPS) was 
significantly influenced the Aβ, Tau but not p-Tau levels in the AD spectrum. Grey bands indicated 95% confidence intervals and binomial nonlinear 
regressions were applied in Fig. 1B and 1C. Two-tailed p values < 0.1 were considered significant in Fig. 1B and 1C. The abbreviations of plasma 
cholesterol metabolites were are provided in Additional file 1: Table S2. Aβ amyloid 1 to 42 peptide, Tau total tau, pTau tau phosphorylated at the 
threonine 181 position, MMSE Mini-mental state examination, ADAS-Cog Alzheimer’s Disease Assessment Scale- Cognitive subscale, GRS genetic risk 
score including APOE, GPS genetic protective score, RRS relative risk score
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displayed more cohesive connector and cohesive provin-
cial networking, having the greatest connectivity in ADS 
individuals compared with CN subjects. Furthermore, 
ADS patients also showed significantly differential one-
versus-all-other-network connectivity in the DAN, FPN, 
SAN, VAN, and VIS networks compared with controls 
(Fig. 2H).

In addition, pairwise BNC was calculated as the mean 
connectivity between each pair of RSN. Connectivity 
profiles of patients with EMCI, LMCI and AD were com-
pared with controls. Figure  2H demonstrates that pair-
wise BNC was significantly different for ADS patients in 
the following pairs: AUD-VAN, AUD-VIS, CON-DAN, 
CON-VAN, DMN-FPN, DMN-VAN, DAN-FPN, DAN-
SMN, FPN-VAN, SUB-VIS, and VAN-VIS. Furthermore, 
post hoc analysis indicated that the source of the sig-
nificant differences in these pairwise BNC groups was at 

the large-scale network level. Specifically, ADS patients 
were characterized by continuous hypoconnectivity and 
dynamically hyperconnected links among the ten pre-
defined RSNs as disease progressed (Fig.  2I–J). These 
original alterations of large-scale networks may initially 
reproduce those spatiotemporal pattern discrepancies, 
accounting for proposed molecular pathophysiological 
mechanisms at the distributed network level.

Correlation patterns of large‑scale network connectivity 
with CSF biomarkers and cognitive performance in the AD 
spectrum
To explore the potential relationship between the 
dynamic trajectory of connectivity of the RSNs and CSF 
biomarkers or cognitive performance, a new method of 
combination network analysis and CCA was utilized. 
Recent studies have demonstrated that CCA, a powerful 

Fig. 2  Network roles (F) in brain networks of CN (A), EMCI (B), LMCI (C), and AD (D); Dynamic trajectory of network role of large-scale RSNs 
within- and pairwise between-network connectivity matrices of the four groups (G); A Line chart (H) displays the dynamic trajectory of within- and 
one-versus-all-other network connectivity across the entire ADS; P value matrix of group differences in within-, one-versus-all-others-, and pairwise 
between-network connectivity in the ADS (F); Circos plot representation of significant group-level differences of neural connections among the 
ten RSNs in the ADS using the NBS method (I and J). Blue lines indicate decreased connectivity and red indicates increased connectivity in the 
ADS. AUD the auditory network, CON the cingulo-opercular network, DAN the dorsal attention network, DMN the default mode network, FPN the 
fronto-parietal network, SAN the salience network, SMN the sensory network, SUB the subcortical network, VAN the ventral attention network, VIS 
the visual network
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multivariate approach that seeks to identify clusters of 
maximal correlation between two groups of variables, 
can detect associations between structural or functional 
connectivity and other phenotypic measures [35, 39]. 
Using this method, we demonstrated that large-scale 
brain network abnormalities were significantly corre-
lated with phenotypic variations and molecular biomark-
ers in the ADS. In the first step, univariate correlation 
was used to test the composition of the clinical CCA 
mode with each of the two clinical variables (MMSE and 
ADAS-cog). We observed that clinical CCA mode was 
highly correlated with MMSE score (r = 0.78, p < 0.0001) 
and ADAS-cog score (r = 0.78, p < 0.0001) (Additional 
file  1: Fig.  S2A). Similarly, we identified that CSF CCA 
mode was highly correlated with levels of Tau (r = 0.72, 
p < 0.0001) and pTau (r = 0.68, p < 0.0001), and moderately 
correlated with Aβ42 (r = 0.55, p < 0.0001) (Additional 
file 1: Fig. S2B). As shown in Additional file 1: Fig. S2C, 
the network CCA mode was significantly correlated with 
55 original network variables (Additional file 1: Table S4). 
In total, the CCA mode of network was significantly 
correlated with clinical variate CCA (Additional file  1: 

Fig. S2D, r = 0.93, p < 0.0001) and CSF CCA (Additional 
file 1: Fig. S2E, r = 0.95, p < 0.0001) modes, respectively.

Correlation patterns of lipid pathway‑based genetic 
variants and lipoproteins with large‑scale network 
connectivity in AD spectrum patients
Similarly, we also performed CCA to ascertain the asso-
ciation of brain network connectivity measures with 
accumulated lipid-related genetic scores and lipoproteins 
in the blood of ADS patients. We firstly tested univariate 
correlations for each of the 3 gene variables and 38 serum 
lipid variables in order to better understand the com-
position of gene CCA and serum lipid CCA modes. We 
found that gene CCA mode was highly correlated with 
GRS (r = 1, p < 0.0001), GPS (r = 1, p < 0.0001) and RRS 
(r = 1, p < 0.0001) (Fig.  3A). As shown in Fig.  3B, serum 
lipid CCA mode was significantly correlated with all 38 
original serum lipid variables (Additional file 1: Table S5). 
The results of third pair CCA mode of network and gene 
variate were again highly significant (Fig.  3C, r = 0.97, 
p < 0.0001), as was fourth pair CCA mode of network and 
serum lipid variable (Fig. 3D, r = 0.82, p < 0.0001).

Fig. 3  Correlations and their significance for patients with EMCI, LMCI or AD, for the following: A three gene score variables and gene CCA mode, 
B thirty-eight serum lipid variables and first level serum lipid CCA mode, C third pairs and D fourth pairs CCA mode. All data for lipid metabolites in 
blood were z-transformed. Note that P values in A and B were log10-transformed. Red dashed lines represent log10-transformed P values of 0.05. 
GPS genetic protective score, GRS genetic risk score, RRS relative risk score, CCA​ canonical correlation analysis
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In order to determine the potential for APOE ε4 gen-
otype to alter the association between lipid metabo-
lism-related genes and dynamic changes in RSNs, we 
constructed a second gene CCA mode and found that 
second order gene CCA mode was highly correlated 
with GRS_n (r = 1, P < 0.0001) and RRS_n scores (r = 1, 
P < 0.0001) after removing the APOE ε4 genotype (Addi-
tional file 1: Fig. S3A). Fifth pair CCA mode of the net-
work and three gene score variables where removed 
APOE ε4 OR values were also significantly correlated 
(Additional file 1: Fig. S3C, r = 0.94, p < 0.0001).

Post hoc analysis revealed the potential of distinctive 
lipid‑related genetic scores and lipoproteins on large‑scale 
network connectivity, CSF biomarkers, and cognitive 
performance
To determine the direction and magnitude of these 
associations between network CCA mode and a single 
variate of a clinical indicator, we conducted post hoc 
correlation analysis. As illustrated in Additional file  1: 
Fig.  S4A, nineteen lipoproteins were mostly associated 
with increased network connectivity and seven with 
decreased network connectivity within- and between- 
ten predefined RSNs. Furthermore, GRS was positively 
associated with increased network connectivity within 
the SUB and negatively associated with altered network 
connectivity between CON-VAN, DAN-VAN, FPN-VAN, 
SAN-VAN, SUB-VAN, VAN-VIS, and AUD-VAN, while 
GPS was negatively associated with decreased network 
connectivity between the FPN and SUB. Similarly, RRS 

was positively associated with decreased network con-
nectivity between DMN-SUB, DAN-SUB, FPN-SUB, 
CON-DMN, AUD-CON, and negatively associated with 
decreased network connectivity between AUD-VAN, and 
DAN-VAN, whereas RRS was associated with increased 
network connectivity within the SUB. In addition, MMSE 
was negatively correlated with decreased network con-
nectivity between DMN and SAN, while ADAS-cog and 
Tau were mostly associated with increased network con-
nectivity between SAN-SUB, and DMN-SAN, as shown 
in Additional file  1: Fig.  S4B. It is noteworthy that GRS 
was only associated with decreased network connectiv-
ity between SAN-VAN after removing the effects of the 
APOE ε4 genotype (Additional file  1: Fig.  S5). Detailed 
information for these correlation coefficients ® and p val-
ues are described in Additional file 1: Table S6.

SVM analyses identified potential lipid‑associated imaging 
biomarker for AD spectrum
After post-hoc analysis, we performed correlation analy-
sis and found that there were six functional connections 
significantly correlated to all nineteen lipoproteins and 
sixteen functional connections related to all three gene 
scores (Additional file  1: Table  S7). Then, these twenty-
two features were used for classification. The SVM model 
revealed that the lipid-associated twenty-two functional 
connections represented higher capacity to discriminate 
disease spectrum (AUC between 0.82 and 0.92), as shown 
in Fig. 4.

Fig. 4  Lipid-associated imaging biomarker for classifying AD spectrum. A Twenty-two functional connections were used for classification 
between groups. Node colors represent Power-atlas cortical and subcortical regions consisting of ten RSNs. B Functional connections that showed 
group-level differences were used as the inputs for binary classification. All p values of area under curve were < 0.001. AUD the auditory network, 
CON the cingulo-opercular network, DAN the dorsal attention network, DMN the default mode network, FPN the fronto-parietal network, SAN the 
salience network, SMN the sensory network, SUB the subcortical network, VAN the ventral attention network, VIS the visual network, ROC receiver 
operating characteristic, TPR true positive rate, FPR false positive rate, CN cognitively normal, EMCI early mild cognitive impairment, LMCI late mild 
cognitive impairment, AD Alzheimer’s disease
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Path analysis
First, when all the significant measurement variables in 
the post-hoc analysis results were included in the model, 
the fitting results were suboptimal. Then, we drop some 
observed variables from the final SEM model based 
on the fit of parameters and the modification indices. 
All fit indices of the final model indicate excellent fit to 
the model (see Additional file 1: Table S8). Figure 5 and 
Additional file  1: Table  S9 showed the results of testing 
the structural model. From the analysis, we found that 
dyslipidemia (β = 0.31, p = 0.02) produced significant 
effect on brain function 1, which was positively associa-
tion with brain function 2 (β = 0.96, p < 0.001), indicating 
dyslipidemia may induce brain networks reorganization 
at the large-scale levels. In addition, CSF biomarkers had 
a positive and significant influence on cognition (β = 0.41, 
p < 0.001).

Discussion
This is the first study focusing on the potential of lipid-
related genes and proteins to influence the dynamic 
trajectory of large-scale RSNs, CSF biomarkers, and cog-
nitive decline in ADS patients using a CCA approach. 

The present study shed mechanistic light on the role of 
lipid metabolites disturbance in promoting large-scale 
RSNs disruption and accelerating CSF biomarker depo-
sition and subsequently caused cognitive decline in ADS 
individuals. These findings provided novel insight for 
uncovering the neural link between lipid metabolites 
and cognitive decline at a large-scale network level and 
expanding our understanding of the mechanisms under-
lying AD pathophysiology.

Although it is not well-established that potential rela-
tionships between lipid metabolites and AD exist, the 
majority of studies have reported that abnormal lipid 
metabolites apparently increased the risk of cognitive 
decline and substantially contribute to the development 
and progression of AD [3, 7, 40, 41]. Recently, a meta-
analysis reported that high midlife total serum choles-
terol significantly increases the risk of late-life AD, and 
may correlate with the onset of AD pathology [42]. A pro-
spective study with a large-cohort sample in which 22,623 
participants were recruited established that the concen-
tration of cholesterol esters relative to total lipids in large 
HDL and the total cholesterol to total lipid ratio in very 
large VLDL significantly increased the risk of incidence 

Fig. 5  Structural equation model for direct, indirect and mediation relationship. Ellipses: latent variables; boxes: observed variables. CON the 
cingulo-opercular network, DAN the dorsal attention network, DMN the default mode network, SAN the salience network, SMN the sensory 
network, SUB the subcortical network; VAN the ventral attention network, VIS the visual network, Aβ amyloid-1 to 42 peptides, T_Tau total tau, P_Tau 
tau phosphorylated at the threonine 181 position, MMSE mini-mental state examination, ADAS-Cog Alzheimer’s Disease Assessment Scale-Cognitive 
Subscale. The abbreviations of plasma cholesterol metabolites were are provided in Additional file 1: Table S2
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of dementia [7]. We also found that lipid metabolites, 
including genes and lipoproteins were markedly associ-
ated with CSF biomarkers and cognitive impairment, also 
supporting the hypothesis that lipid metabolic dysfunc-
tion substantially contributes to AD pathophysiology 
via interference through progressive neuropathological 
changes of CSF biomarkers and declining cognitive func-
tion across the entire ADS.

Disrupted network integrity, including abnormal struc-
tural and functional network connectivity, was preferen-
tially targeted by specific genetic variants or molecular 
pathology in preclinical AD, or mapped the clinical phe-
notype with disease progression and supported the recent 
description of the theoretical framework and empirical 
evidence of AD [24, 43]. As such, brain network integrity 
emerged as potential intermediate biomarkers to bridge 
upstream determinants (gene and molecular pathology) 
and downstream effects (clinical phenotypes) [23, 24]. 
However, the complicated association that the dynamic 
spatiotemporal patterns of brain network integrity link-
ing molecular pathology and cognitive decline in ADS 
individuals remains largely unclear. According to cas-
cading network failure theory, distinct DMN subsystems 
representing differential spatiotemporal evolution cor-
respond with the AD pathophysiological response, and 
differentially affected by AD pathological biomarkers 
including Aβ deposition and tau tangles, subsequently 
leading to stereotypic network-based cognitive decline 
in ADS patients [18, 22]. This study firstly described the 
progressive changes in spatiotemporal network patterns 
within the DMN system in ADS patients. We then fur-
ther identified changes in dynamic trajectory within- 
and between networks reflected by the active capability 
of network inner cohesion and connectors beyond the 
DMN across the entire ADS. More attention should be 
focused on whether such changes in dynamic trajectory 
in large-scale RSNs are cascading failure or not. In con-
trast, a proportion of the networks represented enhanced 
network inner cohesion or exhibited network connec-
tor roles as the disease progressed. Compelling evidence 
has been reported that a gradual decrease in connectiv-
ity of RSNs is associated with amyloid deposition that 
accelerates disease progression, while the commonly 
observed increase in connectivity of RSNs also found in 
preclinical and prodromal AD patients has been inter-
preted as a compensatory phenomenon supporting bet-
ter performance on cognitive tasks [44, 45]. However, 
this enhanced network connectivity is the consequence 
of transient compensation to network disruption or an 
adaptive response to AD pathophysiological processes 
that still require identification through additional study.

Importantly, the dynamic changes in large-scale net-
works over the course of disease that were also observed 

were significantly affected by lipid-related genetic vari-
ants and lipoproteins, CSF biomarkers, and cognitive 
function, confirming the biological nature of the predict-
able correlation with network connectivity by linking 
upstream molecular pathology and downstream clinical 
phenotype to the preclinical stage of AD. Furthermore, 
post hoc analysis was performed to trace the source of 
these system-level correlations and identified that dis-
tinctive connectivity within- and between networks was 
specifically related to the effects of accumulated lipid-
related genetic variants or lipoproteins, neuropathologi-
cal biomarkers, in addition to cognitive decline. Due to 
changes in lipids often prior to molecular pathology and 
cognitive decline, we hypothesized that compromised 
large-scale networks and CSF biomarkers may mediate 
the effects of lipid metabolites on cognitive decline with 
progression of AD. Previously, structural atrophy or func-
tional decoupling of RSNs were, at least partly, ascribed 
to abnormalities in lipid metabolites which suggested 
that lipid metabolites may be a vulnerable molecular 
substrate of large-scale RSNs [28, 34]. More importantly, 
disturbed lipid metabolites and dynamic brain network 
changes occurred prior to measurable amyloid depo-
sition and tau tangles related to ageing [18], while lipid 
pathway genetic variants, including APOEε4 genotype 
and lipoproteins markedly enhanced the disruption of 
brain network architecture in preclinical AD patients [34, 
46] and even in the cognitively normal elderly [47, 48]. In 
addition, carriers of the APOEε4 allele, the strongest risk 
factor for sporadic late-onset AD, represented a specific 
phenotype in which the relationship with brain networks 
preceded any measurable systems or molecular level 
changes in cognitively normal subjects [49–51]. Further-
more, cholesterol-related genetic risk scores were associ-
ated with hypometabolism in AD-affected brain regions, 
even when controlling for the effects of APOE ε4 gene 
dose [52].

In this regard, we putatively identified that the dynamic 
trajectory changes of large-scale networks observed in 
this study may be induced because of a lipid-driven path-
ological interaction with Aβ abnormal deposition and 
tau-related neurofibrillary tangles and then promoted 
cognitive decline to dementia. From the path analysis, we 
found that dyslipidemia directly influenced brain func-
tion network reorganization leading to cognitive impair-
ment or indirectly affected the CSF biomarkers levels and 
subsequently caused cognitive decline.

Another interesting finding of the present study was the 
SVM classifier model. This SVM classifier achieved a rel-
atively high performance and implies that a significantly 
important role of lipid metabolism in the onset and neu-
ropathology of AD. Lipid associated neuroimaging bio-
markers would serve as a good potential biomarker for 
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ADS diagnoses and an invention target to early prevent 
AD incidence.

Several limitations should be noted. Firstly, the 38 
lipid-related genetic variants and lipoproteins selected in 
this multimodal cross-sectional study may underestimate 
the potential of lipid metabolites for the early detection 
and diagnosis of AD. Lipidomic approaches should be 
considered in order to explore the pathogenesis of AD, 
because this provides a new tool to investigate the asso-
ciation between blood-based genetic variants or changes 
in lipoproteins in the serum or plasma and the pathologi-
cal mechanisms of CNS disorders. Secondly, longitudi-
nal studies should be performed to explore the potential 
biomarkers of lipid metabolites in AD pathophysiology, 
validate the neural links between changes in lipids and 
neuropathology, and determine the causal contributions 
of lipid metabolite disturbance and disrupted network 
integrity, in addition to cognitive decline in ADS patients.

Conclusions
To sum, we demonstrated that abnormal lipid metabo-
lite changes induced the disruption of large-scale RSNs 
and CSF biomarker deposition, which then promoted 
cognitive impairment in preclinical and clinical AD. In 
addition, we also found that dynamic trajectory of large-
scale RSNs represented a rebounding mode rather than 
a cascading failure mode with disease progression in the 
ADS. These findings provided new evidence in which an 
effective strategy for early prevention or disease-modify-
ing therapy that targets the metabolites of lipid-related 
genetic variants or lipoproteins for late-onset AD, which 
would significantly improve our understanding of the 
mechanisms underlying the association of lipid mole-
cules and AD pathophysiology.
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