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Heterogeneous matrix stiffness regulates 
the cancer stem‑like cell phenotype 
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Abstract 

Background:  Solid tumors are stiffer than their surrounding normal tissues; however, their interior stiffness is not 
uniform. Under certain conditions, cancer cells can acquire stem-like phenotypes. However, it remains unclear how 
the heterogeneous physical microenvironment affects stemness expression in cancer cells. Here, we aimed to evalu-
ate matrix stiffness heterogeneity in hepatocellular carcinoma (HCC) tissues and to explore the regulation effect of the 
tumor microenvironment on stem-like phenotypic changes through mechanical transduction.

Methods:  First, we used atomic force microscopy (AFM) to evaluate the elastic modulus of HCC tissues. We then 
used hydrogel with adjustable stiffness to investigate the effect of matrix stiffness on the stem-like phenotype expres-
sion of HCC cells. Moreover, cells cultured on hydrogel with different stiffness were subjected to morphology, real-
time PCR, western blotting, and immunofluorescence analyses to explore the mechanotransduction pathway. Finally, 
animal models were used to validate in vitro results.

Results:  AFM results confirmed the heterogenous matrix stiffness in HCC tissue. Cancer cells adhered to hydrogel 
with varying stiffness (1.10 ± 0.34 kPa, 4.47 ± 1.19 kPa, and 10.61 kPa) exhibited different cellular and cytoskeleton 
morphology. Higher matrix stiffness promoted the stem-like phenotype expression and reduced sorafenib-induced 
apoptosis. In contrast, lower stiffness induced the expression of proliferation-related protein Ki67. Moreover, mechani-
cal signals were transmitted into cells through the integrin–yes-associated protein (YAP) pathway. Higher matrix stiff-
ness did not affect YAP expression, however, reduced the proportion of phosphorylated YAP, promoted YAP nuclear 
translocation, and regulated gene transcription. Finally, application of ATN-161 (integrin inhibitor) and verteporfin 
(YAP inhibitor) effectively blocked the stem-like phenotype expression regulated by matrix stiffness.

Conclusions:  Our experiments provide new insights into the interaction between matrix stiffness, cancer cell 
stemness, and heterogeneity, while also providing a novel HCC therapeutic strategy.
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Background
Primary liver cancer is the sixth most common cancer 
worldwide and the third leading cause of cancer-related 
deaths, with hepatocellular carcinoma (HCC) accounting 
for 75–85% of cases [1]. Although considerable progress 
has been made in the diagnosis and treatment of HCC 
over the past few decades, treatment efficacy remains 
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unsatisfactory [2]. Common treatment resistance and 
relapse are driven primarily by the inherent heterogene-
ity within cancer, which allows drugs to eliminate some, 
but not all, malignant cells [3].

Cancer stem cell (CSC) models have been used to 
explore cellular heterogeneity. CSCs, also known as 
tumor-initiating cells (T-ICs), are present in solid tumors 
and constitute a small fraction of cancer cells [4]. CSCs 
generate cell heterogeneity by setting a differentiation 
hierarchy in tumors, resulting in a range of different cell 
types [5]. Hepatic CSCs are considered responsible for 
the heterogeneous and hierarchical organization of HCC 
[6–8]. Under certain conditions, CSCs and non-CSCs 
can transform into each other; that is, terminally differ-
entiated cells can reverse differentiation and obtain char-
acteristics of CSCs [9]. For example, the inflammatory 
tumor microenvironment (TME) promotes cancer cell 
dedifferentiation into CSCs, and the paracrine effects of 
stromal cells can also modulate the cancer stem-like phe-
notype [10].

The TME, the “soil” of cancer cells, is highly heteroge-
neous; previous studies have focused on the associated 
cellular components, including cancer-associated fibro-
blasts (CAFs) and immune cells [11–13]. As the role of 
the physical microenvironment in tumors has become 
better understood, stiffness, a commonly altered feature 
in solid tumors, has gained increasing attention. Stiffness 
is the ability of a material to resist elastic deformation 
under force, typically measured by the elastic modulus, 
E. In cancer, the extracellular matrix (ECM), a noncellu-
lar component of the TME, becomes highly dysregulated, 
with matrix protein deposition and excessive cross-link-
ing causing matrix stiffening [14]. This increased stiffness 
is the most notable and recognized mechanical abnor-
mality in solid tumors [15]. Although stiffness is postu-
lated to regulate the stem-like phenotype of HCC cells 
[16], these associated studies treated HCC or fibrotic 
liver as tissues with a homogenous increase in stiffness 
[17] without considering the stiffness heterogeneity in 
the TME. Given the high heterogeneity of HCC, it first 
manifests in each patient, it then develops in different 
tumor nodules of the same patient, and finally in different 
portions of the same tumor nodules [4]. There is reason 
to believe that the physical microenvironment of HCC is 
heterogeneous, however, few studies on this aspect have 
been conducted.

Mechanotransduction is the mechanism by which 
cells adapt to the environment by converting mechani-
cal signals from the microenvironment into biochemical 
signals [18]. Integrins are heterodimeric transmembrane 
receptors composed of α- and β-subunits that medi-
ate cell adhesion and convey mechanical and chemical 
signals to the cell interior. Many integrin complexes can 

sense matrix stiffness [19]. The yes-associated protein 
(YAP), a transcriptional coactivator of the Hippo path-
way, has recently been shown to be a sensor and media-
tor of mechanical signaling in the ECM. YAP senses 
changes in cytoskeletal tension [20] and regulates gene 
transcription mainly by binding to TEA domain family 
1–4 (TEAD 1–4) after nuclear translocation [21]. In adult 
tissues, nuclear YAP is commonly found at sites where 
somatic stem or progenitor cells are enriched. Addition-
ally, YAP is crucial for tissue repair in  vivo and for the 
growth of organ-specific stem cells as organoids in vitro 
[18]. Importantly, YAP is commonly overexpressed in 
murine and human HCC and is associated with adverse 
outcomes [22].

Here, we aimed to evaluate matrix stiffness hetero-
geneity in HCC tissues. Our evaluation combined the 
heterogeneity of HCC cells and the stiffness heteroge-
neity of the TME, thus, demonstrating the regulatory 
effect of the TME on stem-like phenotypic changes via 
mechanotransduction.

Methods
HCC samples from patients
Tissue samples were collected from patients with HCC 
(n = 3) who underwent curative resection at the Gen-
eral Surgery Department, First Hospital of Lanzhou 
University. Three different regions of the maximum 
cross-section of HCC tissue were randomly selected. 
Each sample was cut into two pieces, one of which was 
immediately transferred to pre-cooled (4 ℃) phosphate-
buffered saline (PBS) buffer containing 1% protease 
inhibitor cocktail (HY-K0010, MCE), while the other was 
immersed in 4% paraformaldehyde (P1110, Solarbio) for 
subsequent analyses. This project was approved by the 
First Hospital of Lanzhou University Ethics Committee 
(Number: LDYYLL-2021-473). Informed consent was 
obtained from all patients in accordance with institu-
tional guidelines.

Histology and immunohistochemistry
Paraffin-embedded tissue samples were cut into 5-μm 
thick sections, deparaffinized with xylene, and dehy-
drated using graded alcohol washes. Antigen retrieval 
was performed for all sections by heating in a microwave 
oven, and endogenous peroxidase activity was blocked 
with 3% H2O2 solution. After 1  h of serum blocking, 
anti-NANOG (sc-293121, Santa Cruz) or anti-OCT4 (sc-
5279, Santa Cruz) antibodies were added to samples and 
incubated overnight at 4 ℃. The samples were then incu-
bated with a secondary antibody, and then a chromog-
enic agent (DA1016, Solarbio) was added. In addition, 
human HCC tissues were stained with Sirius Red. Immu-
nohistochemistry results were analyzed using ImageJ 
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software, and the final results were presented using the 
average optical density.

Stiffness measurement
Young’s modulus was applied to represent the elastic 
modulus and characterize the strength of the stiffness. 
Young’s modulus was measured by atomic force micros-
copy (AFM) with Nanowizard III (JPK, Germany) in the 
force spectroscopy mode. For tissue samples, borosilicate 
glass beads (20  μm diameter) were attached to pyrami-
dal cantilevers (NanoAndMore, USA) with a spring con-
stant of 0.08 N/m. Fresh tissue samples were embedded 
with OCT (4583, SAKURA) and sliced into 100-μm slices 
using a Microtome Cryostat (Leica, CM1950). The slices 
were then placed on adhesive glass coverslips, placed in a 
35-mm Petri dish, and approximately 2 ml of pre-cooled 
(4 ℃) PBS buffer containing 1% protease inhibitor cock-
tail (HY-K0010, MCE) was added. Measurements were 
performed immediately. For each sample, indentation 
tests were performed to generate at least 15 force curves 
across six 100 × 100 μm2 regions. Young’s modulus was 
calculated using AFM software by fitting the Hertz con-
tact model to the acquired force curves [23].

Cell cultures
HCCLM3 and Huh7 human HCC cell lines were kindly 
provided by the Key Laboratory of Biotherapy and 
Regenerative Medicine (Gansu, China). Cells were cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM; 
C11995500BT, Gibco) supplemented with 10% fetal 
bovine serum (AB-FBS-1050S, ABW) and 1% penicil-
lin–streptomycin solution (03-031-1B, BI) at 37  °C in 
a humidified incubator containing 5% CO2. Cells were 
identified using short tandem repeat DNA analysis.

Preparation of mechanically tunable polyacrylamide gel
Polyacrylamide (PA) hydrogel with tunable stiffness was 
prepared according to the method described by Tse and 
Engler [24]. In brief, 500  μl of 0.1  M NaOH (S835850, 
Macklin) solution was added to round glass coverslips 
with a diameter of 25 mm and dried in an oven at 80 ℃. 
Another 500  μl of distilled H2O (dH2O) was added, 
dried, and repeated until a uniform NaOH coating was 
formed on the coverslip surface. 3-Aminopropyltrieth-
oxysilane (A7440, Solarbio) (300  µl) was spread across 
each coverslip; after 5  min, the coverslips were exten-
sively washed in dH2O and then soaked in 0.5% glutar-
aldehyde (G810413, Macklin) in PBS buffer for 30  min, 
and air dried for later use. The glass slides were then 
immersed in dimethyldichlorosilane (D806824, Mack-
lin) for 5  min. Acrylamide (A800656, Macklin) and bis-
acrylamide (N813086, Macklin) solutions (Table 1), 1:100 
volume of AP (AR1166, Boster), and 1:1000 volume of 

TEMED (AR1165, Boster) were mixed. The gel mixture 
(25 µl) was quickly pipetted onto the slides, and inverted 
coverslips were carefully placed (treated side down) onto 
the gel droplet. The gel was allowed to polymerize for 
5–10 min. The bottom glass slide was removed, and the 
top coverslip-gel composite was placed in a Petri dish. 
The mixture was rinsed twice with dH2O to remove 
unpolymerized acrylamide. The dH2O was removed, 
and 800 μl of 0.2 mg/ml sulfo-SANPAH (A35395, Pierce) 
solution was added to the gel surface. The reaction was 
carried out for 15 min under UV light. Rinsing was per-
formed twice with 2 ml of 50 mM HEPES solution. Col-
lagen I (354,236, Corning) HEPES solution (1 ml 0.1 mg/
ml) was added and incubated overnight at 4 ℃. The cells 
were rinsed twice with PBS and placed under UV light 
for 30 min before culturing.

Immunofluorescence
Cells cultured on hydrogel with different stiffness 
were fixed in 4% paraformaldehyde (P1110, Solarbio) 
for 30  min and permeabilized with 0.2% Triton X-100 
(T8200, Solarbio) for 20 min. The cells were then blocked 
with 10% goat serum (AR1009, Boster) for 1 h and incu-
bated with anti-Ki67 antibody (27309-1-AP, Protein-
tech) or anti-YAP antibody (13,584–1-AP, Proteintech) 
overnight at 4  ℃. Subsequently, the cells were incu-
bated with CoraLite488-conjugated secondary antibody 
(SA00013-2, Proteintech) or rhodamine-conjugated sec-
ondary antibody (SA00007-2, Proteintech) for 1.5  h in 
the dark. F-actin was stained with rhodamine-phalloidin 
(CA1610, Solarbio). Nuclei were counterstained with 
2-(4-amidinophenyl)-6-indolecarbamidine dihydrochlo-
ride (DAPI) (AR1176, Boster), and images were captured 
by fluorescence microscopy (Olympus, IX73). For tissue 
sections, after deparaffinization and dehydration, the 
remaining protocol was the same as that for cells.

Real‑time PCR
Total RNA was extracted using TRIzol reagent (9108, 
Takara) and reverse-transcribed using the PrimeScript 
RT Reagent Kit (RR047A, Takara). Quantitative PCR 

Table 1  Expected modulus of elasticity after polymerization of 
relative acrylamide and bis-acrylamide concentrations

Acrylamide 
%

Bis-
acrylamide %

Acrylamide 
from 40% 
stock 
solution 
(ml)

Bis-
acrylamide 
from 2% 
stock 
solution 
(ml)

Water 
(ml)

E ± SD 
(kPa)

3 0.1 0.75 0.5 8.75 1.10 ± 0.34

5 0.15 1.25 0.75 8 4.47 ± 1.19

10 0.1 2.5 0.5 7 10.61
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was performed using TB Green premix Ex Taq (RR820A, 
Takara) on a Real-Time PCR Detection System (Bio-
Rad, CFX96). Relative mRNA expression was analyzed 
and normalized to that of GAPDH. All reactions were 
performed in triplicate, and at least three independent 
experiments were performed. The primer sequences are 
summarized in Table 2.

Western blotting
Total protein was extracted using RIPA buffer (AR0102, 
Boster) supplemented with a protease inhibitor cocktail 
(HY-K0010, MCE) and phosphatase inhibitor (AR1183, 
Boster). The concentration of extracted proteins was 
measured using a BCA Protein Assay Kit (PC0020, 
Solarbio), and equal amounts of extracted proteins were 
loaded onto SDS-PAGE. The size-separated proteins 
were transferred to polyvinylidene fluoride (PVDF) mem-
branes (IPVH00010, Millipore) for blotting. After block-
ing with 5% BSA blocking buffer (SW3015, Solarbio), 
membranes were incubated overnight at 4  °C with the 
following specific primary antibodies: anti-YAP antibody 
(13584-1-AP, Proteintech), anti-phosphorylated YAP 
antibody (Ser127) (13008 T, Cell Signaling Technology), 
anti-NANOG antibody (sc-293121, Santa Cruz), anti-
OCT4 antibody (sc-5279, Santa Cruz), and anti-GAPDH 
antibody (10494-1-AP, Proteintech). Following washing, 
membranes were incubated for 1 h with horseradish per-
oxidase-conjugated secondary antibodies (SA00001-2, 
Proteintech). Protein expression was detected using ECL 
western blotting substrate (PE0010, Solarbio), and the 
membranes were imaged using a membrane imaging sys-
tem (Clinx, ChemiScope S6).

Flow cytometry
HCC cells cultured on hydrogel with different stiffness 
were collected and washed twice with pre-cooled (4 ℃) 
PBS. A PE-conjugated anti-human CD133 antibody 

(394,004, Biolegend) was used for surface marker analy-
sis. For apoptosis testing, cells were stained using an 
apoptosis kit (40302ES20, Yeasen), according to the man-
ufacturer’s instructions. Flow cytometry was performed 
using a flow cytometer (Beckman, CytoFLEX) with 
software.

Subcutaneous tumorigenesis model of HCC cells mixed 
with hydrogel of different stiffness
Twenty-four four-week-old male BALB/c nude mice were 
purchased from the Gempharmatech company (Jiangsu, 
China). HCCLM3 cells (3 × 106) were mixed with Vitro-
Gel (TWG001, TheWell) at various concentrations. Vitro-
Gel is a xeno-free, tunable hydrogel that can be adjusted 
to 30–12,000 Pa by changing the hydrogel concentration 
with the dilution solution. The dilution ratios are listed 
in Table 3. The mixture was subcutaneously injected into 
the upper right flank of mice. Subcutaneous tumor for-
mation was observed after 7 days. The stiff + verteporfin 
group was intraperitoneally injected with 50  mg/kg/
day verteporfin for 7 days, and the remaining nude mice 
were fed normally. Our experiment conforms to the NIH 
Guide for Care and Use of Laboratory Animals. All ani-
mal experimental protocols were approved by the First 
Hospital of Lanzhou University Ethics Committee (Num-
ber: LDYYLL-2021-473).

Statistical analysis
GraphPad Prism 8 was used for statistical analyses. The 
experimental data were presented as the mean ± stand-
ard deviation (SD) and were analyzed using Student’s 
t-test. P values are represented as asterisks (*) on graphs 
(*P < 0.05; **P < 0.01; ***P < 0.001).

Results
HCC tissue has heterogeneous matrix stiffness
To assess the stiffness heterogeneity in HCC tissues, we 
collected surgical specimens from patients with HCC 
and randomly selected three tissue samples at the maxi-
mum cross-section of the specimens, which were labeled 
as A, B, and C groups (Fig. 1A). Sirius Red staining was 
used to evaluate collagen deposition, and AFM was 
used to determine the local stiffness (Young’s modulus) 

Table 2  Primers used for real-time PCR

Primer name Sequence 5′ − 3′

NANOG Forward: AGT​CCC​AAA​GGC​AAA​CAA​CCC​ACT​TC
Reverse: TGC​TGG​AGG​CTG​AGG​TAT​TTC​TGT​CTC​

OCT4 Forward: GCA​GCG​ACT​ATG​CAC​AAC​GA
Reverse: AGC​CCA​GAG​TGG​TGA​CGG​A

YAP Forward: AAC​TGC​TTC​GGC​AGG​CAA​T
Reverse: CAT​CCT​GCT​CCA​GTG​TTG​GT

CTGF Forward: ACC​GAC​TGG​AAG​ACA​GTT​TG
Reverse: CCA​GGT​CAG​CTT​CGC​AAG​G

ANKRD Forward: GCC​CAG​ATC​GAA​TTC​CGT​GA
Reverse: CGC​TGT​GCT​GAG​CAA​CTT​ATC​

GAPDH Forward: AGA​AGG​CTG​GGG​CTC​ATT​TG
Reverse: AGG​GGC​CAT​CCA​CAG​TCT​TC

Table 3  The corresponding Young’s modulus of VitroGel at 
different dilution concentrations

Dilution 
ratio

VitroGel 
(ml)

Dilution 
solution 
(ml)

Cell 
suspension 
(ml)

Young’s 
modulus (Pa)

1:0 2 0 0.5 12,000

1:1 2 2 1 3600–6000

1:3 1 3 1 600–1500
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Fig. 1  Stiffness measurement of hepatocellular carcinoma (HCC) tissue. AThree sites on the cross-section of HCC specimen were randomly selected 
and labeled as groups A, B, and C. B Sirius Red staining in the A, B, and C groups. Scale bar = 500 μm (left). Scale bar = 100 μm (right). C Schematic 
diagram of atomic force microscopy (AFM) analysis of tissue stiffness (Young’s modulus). D AFM probe under the microscope. Scale bar = 100 μm. E 
Young’s modulus testing results of A, B, and C groups. F Young’s modulus testing results within each group
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of the tissue. Sirius Red staining showed that the colla-
gen content in different parts of the tumor tissue differed 
significantly. Group A had a small amount of collagen, 
and group B had a medium amount of collagen, whereas 
group C contained a large number of disordered collagen 
fibers (Fig.  1B). Further, with AFM (Fig.  1C, D) detec-
tion, the Young’s modulus of the tissues was found to be 
significantly different: group A, E = 1051.61 ± 434.27 Pa; 
group B, E = 4540.35 ± 2666.98  Pa; group C, 
E = 9307.37 ± 4989.91  Pa (Fig.  1E). Additionally, the 
increase in stiffness was consistent with the amount of 
collagen in the tissue. Similar to the results of previous 
studies, tissue stiffness largely depended on the amount 
of collagen deposition and cross-linking [25, 26]. Fur-
thermore, the difference in Young’s modulus was not only 
reflected in the different sampling sites but also at the 
same sampling site (Fig. 1F).

HCC cells exhibit different cellular and cytoskeletal 
morphology on hydrogel with varying stiffness
Next, we used collagen I-coated PA hydrogel with adjust-
able stiffness to simulate the differential stiffness in the 
tissues (Fig.  2A). PA hydrogel exhibits good biocompat-
ibility and stability. Based on the AFM analysis of HCC 
tissues, the average stiffness of the different regions (A: 
1051.61 Pa, B: 4540.35 Pa, and C: 9307.37 Pa) was used 
to design the hydrogel. We adjusted the stiffness of the 
hydrogel by changing the ratio of acrylamide and bis-
acrylamide (according to the ratio in the previous liter-
ature [24]), and the final stiffness values of the hydrogel 
were 1.10 ± 0.34  kPa, 4.47 ± 1.19  kPa, and 10.61  kPa 
(Table 1), represented as soft, medium, and stiff, respec-
tively. The HCC cell lines, HCCLM3 and Huh7, exhibited 
different cell morphologies on hydrogel with different 
stiffness. That is, the cell morphology was relatively round 
on soft hydrogel, while on medium and stiff hydrogel, 
the cell morphology became gradually elongated and 
extended. The analysis showed that cells on medium and 
stiff hydrogel had greater surface areas (Fig. 2B, C). Actin 
filaments play an important role in mechanosensing [27]. 
After cytoskeleton staining with rhodamine-labeled phal-
loidin, we observed that cells on medium and stiff hydro-
gel had clearer stress fibers and actin filament networks 
compared with those on the soft hydrogel (Fig. 2D).

HCC stem‑like cell phenotype, drug resistance, 
and proliferative ability in response to different stiffness
HCCLM3 and Huh7 cells exhibited different stem-
like phenotypes on hydrogel with different stiffness. 
CSC maintenance is regulated by various transcrip-
tion factors, including NANOG and OCT4 [28]. Differ-
ences were detected in the mRNA and protein levels of 
NANOG and OCT4 based on the hydrogel, from soft to 

stiff. Compared with the soft hydrogel, the NANOG and 
OCT4 expression increased in cells on the stiff hydrogel 
(Fig. 3A, B, C). CD133 is a transmembrane glycoprotein 
expressed in adult stem cells. Ma et al. [29] first reported 
CD133 as a marker of hepatic CSCs. Flow cytometry 
analysis showed that the proportion of CD133-positive 
cells exhibited the same trend as that of NANOG and 
OCT4 expression, gradually increasing from soft to stiff 
hydrogel (Fig. 3D, Additional file 1: Fig. S1A).

Considering that the stemness of cancer cells is closely 
related to drug resistance, we treated cells cultured on 
hydrogel with different stiffness with 10  μM sorafenib 
for 24 h and then carried out apoptotic cell analysis. The 
proportion of apoptotic cells on the soft hydrogel was 
the largest, whereas that on the stiff hydrogel was the 
smallest (Fig.  4A, Additional file  1: Fig. S1B). Immuno-
fluorescence analysis of proliferation-related protein Ki67 
showed that the fluorescence intensity of cells on soft 
hydrogel was significantly higher than that on medium 
and stiff hydrogel (Fig. 4B, C).

Increased matrix stiffness regulates cancer stem‑like cell 
phenotype via the integrin–YAP pathway
YAP is a transcriptional coactivator that shuttles from the 
cytoplasm to the nucleus through dephosphorylation and 
binds to TEAD and other transcription factors to pro-
mote gene expression. YAP is also a transducer of cellular 
structures, including polarity, morphology, and cytoskel-
etal structure, and it can reprogram non-stem cancer 
cells into cells with CSC attributes [30, 31]. To explore 
the role of YAP in stiffness and cancer cell stemness, PCR 
analysis was performed. No significant difference in the 
mRNA expression of YAP was observed when cells were 
cultured on hydrogel with different stiffness. However, 
CTGF and ANKRD expression, which are typical down-
stream genes of YAP, increased significantly with an 
increase in stiffness (Fig. 5A).

Considering YAP function, we examined its subcel-
lular localization. Immunofluorescence results indi-
cate that YAP aggregation in the nucleus increased with 
increasing stiffness (Fig.  5B, C). Subsequent WB results 
confirmed that there was no significant difference in the 
total amount of YAP among the three groups. However, 
the phosphorylated YAP content decreased with increas-
ing stiffness, indicating that the number of activated YAP 
increased (Fig. 6A, B).

Verteporfin is a YAP inhibitor that inhibits the binding 
of YAP to TEAD, thereby inhibiting its transcriptional 
activity. Hence, HCCLM3 cells cultured on hydrogel with 
different stiffness were treated with verteporfin (1  μg/
ml) for 24 h, and the mRNA expression of NANOG and 
OCT4 was analyzed. NANOG and OCT4 mRNA expres-
sion remained higher in cells on stiff hydrogel, however, 
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Fig. 2  Cellular and cytoskeletal morphology of hepatocellular carcinoma (HCC) cells on polyacrylamide (PA) hydrogel with different stiffness. 
A Schematic diagram of PA hydrogel preparation. B Morphology of HCCLM3 and Huh7 cells adhering to hydrogel with different stiffness. Scale 
bar = 100 μm (left). Scale bar = 20 μm (right). C Statistical analysis of cell surface area. D Cytoskeleton of HCCLM3 and Huh7 cells on hydrogel with 
different stiffness. Scale bar = 20 μm
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Fig. 3  Expression of stem-like phenotypes of hepatocellular carcinoma (HCC) cells on polyacrylamide (PA) hydrogel with different stiffness. A 
Relative mRNA expression levels of NANOG and OCT4 in HCCLM3 and Huh7 cells on hydrogel with different stiffness. B Western blot (WB) for 
NANOG and OCT4 protein abundance in HCCLM3 and Huh7 cells on hydrogel with different stiffness. C Relative NANOG and OCT4 protein 
abundance was measured by quantifying band density using ImageJ software. After normalization to GAPDH protein expression for each sample, 
the semi-quantitate results were obtained as a ratio. D CD133-positive HCCLM3 cells cultured on hydrogel with different stiffness were estimated by 
flow cytometry
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the differences were notably smaller than those without 
the inhibitor. Moreover, the ratio of NANOG expres-
sion on stiff hydrogel and soft hydrogel decreased from 
approximately 6.7-fold to 1.3-fold, while that of OCT4 
expression decreased from approximately 2.0-fold to 
1.6-fold.

Integrins are cell surface proteins that sense the 
mechanical characteristics of the microenvironment [19]. 

ATN-161 (Ac-PHSCN-NH2) is a small peptide antago-
nist of several integrins, including integrin-α5β1. Hence, 
HCCLM3 cells cultured on hydrogel with different stiff-
ness were treated with ATN-161 (10  μmol/ml) for 24  h 
and the resulting mRNA expression was analyzed. No sig-
nificant differences were observed in NANOG nor OCT4 
mRNA expression among the three groups. However, the 

Fig. 4  Drug resistance and proliferation ability of hepatocellular carcinoma (HCC) cells on polyacrylamide (PA) hydrogel with different stiffness. 
A Apoptotic HCCLM3 cells on hydrogel with different stiffness treated with sorafenib. B Representative immunofluorescence images of Ki67 
(green) and 4′,6-diamidino-2-phenylindole (DAPI) (blue) in HCCLM3 and Huh7 cells on hydrogel with different stiffness. Scale bar = 100 μm. C Ki67 
fluorescence intensity was quantified using ImageJ software
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Fig. 5  Yes-associated protein (YAP) plays an important role in mechanotransduction. A Relative mRNA expression levels of YAP and YAP target 
genes, ANKRD and CTGF, in HCCLM3 and Huh7 cells on hydrogel with different stiffness. B Representative immunofluorescence images of YAP (red) 
and 4′,6-diamidino-2-phenylindole (DAPI) (blue) in HCCLM3 and Huh7 cells on hydrogel with different stiffness. Scale bar = 20 μm. C Quantification 
of YAP:DAPI nuclear co-localization is represented by Pearson’s correlation coefficient
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Fig. 6  The integrin–yes-associated protein (YAP) pathway conducts mechanical signals into hepatocellular carcinoma (HCC) cells to induce 
differences in stemness expression. A Western blot (WB) analysis of the abundance of YAP and pYAP in HCCLM3 and Huh7 cells on hydrogel with 
different stiffness. B Relative YAP and pYAP protein abundance determined by quantifying band density with ImageJ software. After normalization 
to GAPDH protein expression for each sample, the semi-quantitate results were obtained as a ratio. C Relative mRNA expression levels of NANOG 
and OCT4 in HCCLM3 cells on hydrogel with different stiffness treated with verteporfin or ATN-161. D WB analysis of YAP and pYAP abundance in 
HCCLM3 and Huh7 cells on stiff hydrogel treated with verteporfin or ATN-161
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NANOG expression was lower in the medium and stiff 
groups compared with the soft group (Fig. 6C).

These experiments were then repeated in Huh7 cells 
and the differences in the expressions of NANOG and 
OCT4 mRNA following verteporfin treatment were simi-
lar to that in HCCLM3 cells. Moreover, no significant 
difference was detected in NANOG expression following 
treatment with ATN-161; whereas OCT4 expression was 
inhibited to a certain extent (Additional file 2: Fig. S2).

To verify the effectiveness of the inhibitors, ATN-161 
and verteporfin were added to HCCLM3 and Huh7 cells 
cultured on stiff hydrogel for 24  h. WB analyses sug-
gested that there was no significant difference in YAP 
abundance between the stiff and stiff + ATN-161 groups, 
whereas it was significantly reduced in the stiff + verte-
porfin group. Moreover, the abundance of pYAP in the 
stiff group was lower than that in the stiff + ATN-161 
group, and was lower yet in the stiff + verteporfin group 
(Fig. 6D).

Matrix stiffness regulates the stem‑like phenotype of HCC 
cells in vivo
Finally, we performed subcutaneous tumorigenesis in 
nude mice to explore whether the cells could reproduce 
the in  vitro experimental results. HCCLM3 cells were 
mixed with hydrogel of adjustable stiffness and injected 
subcutaneously into nude mice. After injection, the soft, 
medium, and stiff groups were fed normal diets. In the 
stiff + verteporfin (stiff + VP) group, verteporfin (50 mg/
kg) was continuously injected intraperitoneally from 
day 8 to 14 (Fig.  7A). Nude mice were euthanized after 
14 days, and subcutaneous tumor tissues were collected. 
Tumor volumes decreased significantly with an increase 
in matrix stiffness. However, there were no significant dif-
ferences between the stiff and stiff + VP groups (Fig. 7B, 
C). Immunohistochemical staining revealed that the 
abundances of NANOG and OCT4 proteins increased 
significantly with increased matrix stiffness. Immunoflu-
orescence results showed that the translocation of YAP 
into the nucleus increased with increasing matrix stiff-
ness. Moreover, in the soft and medium groups, cytoskel-
eton morphology was not observed, whereas in the stiff 
and stiff + VP groups, the cytoskeleton morphology was 
clear (Fig. 7D, E).

Discussion
Here, we described the heterogeneity of matrix stiffness 
within HCC tissues and how stiffness affects HCC cells 
via the integrin–YAP pathway to regulate the expression 
of stem-like phenotypes (Fig. 8).

HCC is a highly heterogeneous tissue. CSCs have been 
proposed as one of the determining factors that con-
tribute to intratumoral heterogeneity. Stemness traits 

are acquired via genetic modifications and/or interac-
tions with the TME [10]. According to our results, there 
is also heterogeneity in the stiffness of the HCC micro-
environment, which can directly regulate the expression 
of stem-like phenotypes via cellular mechanotransduc-
tion. According to our analysis of stemness-related HCC 
markers (NANOG, OCT4 and CD133), OCT4 expres-
sion in HCCLM3 cells did not differ significantly between 
those cultured on medium and high stiffness, which is 
reflected in both mRNA and protein levels. We postu-
lated that different cells exhibit a range of adaptation to 
stiffness. That is, there was no significant difference in 
the induction of stemness expression by stiffness within 
a certain range.

YAP expression level did not increase with increas-
ing matrix stiffness, while that of its downstream genes, 
ANKRD and CTGF, increased. We suggest that YAP 
might not elicit effects via increased expression but rather 
through activation. Subsequent WB and immunofluores-
cence experiments confirmed this hypothesis. A stiffer 
matrix can promote YAP aggregation in the nucleus by 
dephosphorylation to increase transcription of NANOG 
and OCT4. Moreover, application of YAP inhibitor par-
tially prevented the induction of stemness expression by 
stiff substrates both in vivo and in vitro. Because YAP is 
not the only factor that regulates stem-like expression, 
there are other cellular pathways related to stemness.

Integrins can transduce mechanical signals into cells; 
therefore, we hypothesized that they are upstream regu-
lators of YAP. To test this hypothesis, we treated HCC 
cells with an integrin inhibitor and found that the expres-
sion of stemness-related markers and active YAP was 
decreased. Moreover, the expression of NANOG on stiff 
hydrogel was lower than that on soft hydrogel. This may 
have been caused by the specific integrin inhibitor that 
was used, ATN-161, as it acts on several integrin iso-
forms, thereby causing extensive inhibition of the down-
stream mechanical pathways.

Matrix stiffness can additionally affect drug resistance 
in HCC cells. Following sorafenib treatment, HCC cells 
cultured on a stiffer matrix exhibited lowered apoptosis 
levels, which were positively correlated with the expres-
sion of stem-like phenotypes. Matrix stiffening inherently 
constitutes a mechanical barrier against drug delivery 
[32] and can also enhance the resistance of the cell itself, 
thus, complicating chemotherapy. Recently, drugs target-
ing matrix stiffness have proven effective in experiments 
and are gradually being applied in clinical settings [33]. 
However, matrix stiffness can also affect HCC cell pro-
liferation. Here, HCC cells had a stronger proliferative 
ability when cultured on a soft matrix both in  vivo and 
in vitro. CSC has the ability to self-renew, but this does 
not equate to greater proliferative ability. Although there 
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Fig. 7  Matrix stiffness regulates stemness expression of hepatocellular carcinoma (HCC) cells in vivo. A Flow chart illustrating the establishment 
of subcutaneous tumors in nude mice with a mixture of HCCLM3 cells and hydrogel. B Gross appearance of subcutaneous tumors in nude 
mice. C Analysis and comparison of tumor volume. D Immunohistochemical staining and immunofluorescence analysis of NANOG, OCT, 
YAP, and cytoskeleton. Scale bar = 100 μm (hematoxylin–eosin staining, HE). Scale bar = 50 μm (immunohistochemistry). Scale bar = 20 μm 
(immunofluorescence). E Quantification of NANOG and OCT4 expression is represented by average optical density. Quantification of YAP:DAPI 
nuclear co-localization is represented by Pearson’s correlation coefficient. (n = 6 in soft, medium, stiff groups and n = 5 in stiff + VP group)
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is no direct experimental evidence that CSCs undergo 
cell cycle arrest; in fact, they have been shown to incor-
porate DNA labels and are therefore often described as 
slow-cycling cells [5]. Moreover, the drug resistance and 
responsibility for recurrence make CSCs overlap with 
dormant cancer cells (non-proliferating cancer cells 
undergoing G0-G1 cell cycle arrest) [34]. This could lead 
to another problem: if sorafenib is administered in com-
bination with other treatments that reduce matrix stiff-
ness, the softened matrix will increase the proliferative 
capacity of HCC cells, thus reducing the therapeutic effi-
cacy. Therefore, drugs that reduce matrix stiffness might 
not be the best choice for HCC treatments. Indeed, many 
drugs targeting matrix stiffness have been designed to 
target CAFs, degrade ECM, or reduce cross-linking [33]; 
however, their application faces some challenges. For 
instance, the non-specificity of surface markers of CAFs 
leads to inaccurate targeting, the role of CAF subsets in 
tumor promotion and inhibition is not fully understood 
as well [11]. Moreover, degradation of the ECM may 
remove the obstacle of cancer invasion [35]. According 
to our in vivo results, tumor-bearing mice did not show 
significantly altered tumor size when treated with a YAP 

inhibitor suggesting that treatments targeting the cellular 
mechanotransduction pathway may be more effective.

Contrary to our experimental results, previous stud-
ies have indicated that the expression of stem-like phe-
notypes in HCC cells was higher when cultured on soft 
substrates [16]. This may be due to the application of 
hydrogel with different stiffness and reactivities with 
HCC cell lines, which requires further exploration. 
Meanwhile, in another study, higher matrix stiffness 
was found to trigger epithelial-mesenchymal transition 
(EMT) of HCC cells [36] and promote the formation of 
a pre-metastatic niche [37]. In fact, several studies have 
shown an association between EMT and the acquisition 
of stem-like phenotypes [38]; our results are consistent 
with these experiments.

Here, we aimed to establish a relationship between 
the heterogeneity of the cancer mechanical microenvi-
ronment and the expression of stem-like phenotypes. 
We observed that HCC cells grown on hydrogel with 
different stiffness expressed different degrees of stem-
like phenotypes. However, the heterogeneity of cancer 
cells appears during the hierarchical differentiation of 
CSCs, and we cannot dynamically observe the process 

Fig. 8  The mechanotransduction pathway. Integrins conduct physical signals into the cell, induce cytoskeleton polymerization, activate YAP and 
bind to TEAD through nuclear translocation, thereby enhancing the expression of stem-like phenotypes
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of mechanical factors regulating stemness expres-
sion owing to the lack of cancer cell markers at differ-
ent differentiation levels. Therefore, it is challenging to 
maintain cells at one stage of differentiation to enable 
analyses such as drug sensitivity. Additionally, our ani-
mal experiments used mechanically tunable polysac-
charide hydrogel, which differs from previous studies 
that used components, such as Matrigel or collagen to 
simulate matrix stiffness. Collagen and other compo-
nents regulate the mechanical properties via adapting 
the concentration. Previous experiments have con-
firmed that the concentration of collagen has a certain 
impact on the biological behavior of cells [39], as well 
as other physical properties (such as cell-binding sites, 
pore size, porosity, and degradability) change [40]. 
Therefore, these biological materials cannot exclude 
these effects. Moreover, owing to the high heterogene-
ity of the TME, simulating it in its entirety in  vitro is 
challenging and will require continued advancement of 
the associated technology.

Conclusion
Our experimental results show that the stiffness of the 
HCC microenvironment is heterogeneous, and the effect 
of matrix stiffness on cancer cells affects stem-like expres-
sion, consequentially forming tiny mechanical niches, 
leading to the heterogeneity of cells and poor therapeutic 
effects. In this process, the integrin-YAP pathway con-
ducts mechanical signals to regulate cell function. Hence, 
targeting cell mechanotransduction pathways may be a 
new strategy for eradicating drug resistance.
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