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Abstract 

Background:  Associations of drugs with diseases provide important information for expediting drug development. 
Due to the number of known drug-disease associations is still insufficient, and considering that inferring associa‑
tions between them through traditional in vitro experiments is time-consuming and costly. Therefore, more accurate 
and reliable computational methods urgent need to be developed to predict potential associations of drugs with 
diseases.

Methods:  In this study, we present the model called weighted graph regularized collaborative non-negative matrix 
factorization for drug-disease association prediction (WNMFDDA). More specifically, we first calculated the drug 
similarity and disease similarity based on the chemical structures of drugs and medical description information of 
diseases, respectively. Then, to extend the model to work for new drugs and diseases, weighted K  nearest neighbor 
was used as a preprocessing step to reconstruct the interaction score profiles of drugs with diseases. Finally, a graph 
regularized non-negative matrix factorization model was used to identify potential associations between drug and 
disease.

Results:  During the cross-validation process, WNMFDDA achieved the AUC values of 0.939 and 0.952 on Fdataset 
and Cdataset under ten-fold cross validation, respectively, which outperforms other competing prediction methods. 
Moreover, case studies for several drugs and diseases were carried out to further verify the predictive performance of 
WNMFDDA. As a result, 13(Doxorubicin), 13(Amiodarone), 12(Obesity) and 12(Asthma) of the top 15 corresponding 
candidate diseases or drugs were confirmed by existing databases.

Conclusions:  The experimental results adequately demonstrated that WNMFDDA is a very effective method for 
drug-disease association prediction. We believe that WNMFDDA is helpful for relevant biomedical researchers in 
follow-up studies.

Keywords:  Drug-disease association, Weighted nearest neighbor, Graph regularization, Non-negative matrix 
factorization
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Background
In the past few decades, people have made remarkable 
progress in life sciences and genomics. However, the 
development of a new drug is still a high-risky, tremen-
dously expensive and time-consuming process [1, 2]. On 
average, it takes about 15 years and costs more than $ 800 
million to discover and bring a new drug to the market 
[3, 4]. Although tremendous investment in new drugs 
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design and discovery, the number of new drugs author-
ized by the U.S. Food and Drug Administration (FDA) 
has remained low since the 1990s [5, 6]. About 90% new 
drugs designed for specific diseases fail the first phase of 
clinical trials, which means that new drugs design and 
discovery are becoming more and more costly [7]. In light 
of these challenges, repositioning of already commercial-
ized drugs, which aims to identify and discover the new 
therapeutic uses for these drugs, is attracting strong 
increasing interests from the biomedical researchers and 
pharmaceutical companies [8]. Since existing drugs have 
been proven safe through various clinical trials, drug 
repositioning can lower risk, shorten the process of drug 
development, and are more likely to be approved by regu-
latory authorities [9]. Therefore, drug repositioning plays 
an important role in drug research and development. 
Nowadays, some existing drugs (e.g. Minoxidil, Thalido-
mide, Sildenafil) have been successfully repositioned in 
clinical trials, which have saved new drug development 
costs and created great economic value for related phar-
maceutical companies [10]. For example, Minoxidil, orig-
inally commercialized to prevent high blood pressure, 
was repositioned to treat the androgenic alopecia; Tha-
lidomide was marketed to use as a sedative, it was later 
repurposed as a treatment to insomnia and nausea [11, 
12]. Compared with the development of a novel drug for 
specific indications, drug repositioning costs only about 
$ 300 million and can shorten the drug development 
cycle by more than half [10, 13]. To this end, more and 
more existing drugs are being repurposed to treat dis-
eases other than those originally intended [14].

In fact, drug repositioning can be seen as identifying 
the associations between drug and disease. Although 
some associations of drugs with diseases have been veri-
fied in clinical trials, many of them are still undiscovered. 
In recent years, some computational approaches have 
been developed to infer associations between drug and 
disease for drug repositioning, such as semantic infer-
ence [1], network analysis [15], text mining [16] and 
machine learning [17], etc. For example, Napolitano et al. 
trained a multi-class Support Vector Machine (SVM) 
classifier based on drugs similarities to identify potential 
drug indications [18]. Gottlieb et  al. constructed clas-
sification features by integrating disease similarities and 
drug similarities, and scored the new associations of 
drugs with diseases to predict novel therapeutic indica-
tions by implementing a logistic regression classification 
algorithm [19]. Based on the hypothesis that different 
diseases with similar treatments can be treated with simi-
lar drugs, Chiang et  al. developed a “guilt-by-associa-
tion” principle approach to infer potential relationships 
between drug and disease [20]. Yang et  al. developed a 
causal network linking drug-target-pathway-gene-disease 

to calculate association scores of drugs with diseases. 
Based on known drug-disease associations, a probabilis-
tic matrix factorization model is learned to classify drug–
disease associations, and novel associations of drugs with 
diseases were predicted according to the calculated asso-
ciation scores and association types [21]. However, these 
methods fail to predict associations of novel drugs with-
out any known related disease.

At present, with the generation of large-scale high-
throughput biological data, researchers are increasingly 
concerned how to establish complex biomolecular inter-
action networks for predicting their associations. Mar-
tínez et  al. have developed a novel model, DrugNet, to 
infer new treatments for diseases and novel therapeutic 
indications for drugs [22]. This method predicts drug-
disease potential associations by prioritizing based on 
a heterogeneous network which was integrated biologi-
cal information about drugs, targets and diseases. Wang 
et  al. proposed three-layer heterogeneous network-
based computational method named TL-HGBI, which 
performs drug repositioning by applying known drug-
disease associations and drug, disease and target simi-
larities [23]. Luo et al. presented a new prediction model 
MBiRW, which utilized Bi-Random walk algorithm to 
infer new drug indications based on the assumption that 
similar drugs tend to be associated with the different dis-
eases that with similar treatments [24].

In fact, predicting novel indications for existing drugs 
can be considered as a recommendation system prob-
lem. Recently, recommendation system models have 
been used to predict associations between biomolecules 
(e.g. drug-target interactions, circRNA-disease associa-
tions) [25, 26]. Luo et al. developed a drug repositioning 
recommendation system (DRRS) to infer new indica-
tions for existing drugs, which used fast Singular Value 
Thresholding (SVT) algorithm to complete the associa-
tion adjacency matrix of drug with disease [27]. Similar 
to finding missing interactions in an adjacency matrix, 
matrix factorization is well applied in collaborative fil-
tering recommendation algorithms [28]. Recent studies 
have shown that matrix factorization technique has been 
successfully used in recommender system and link pre-
diction for data representation [29, 30], especially in the 
field of bioinformatics [31–33]. Inspired by these, we can 
view the drug-disease association prediction problem as 
a recommender system task and used matrix factoriza-
tion to predict.

In this paper, we propose a new computational method 
named WNMFDDA to infer the unknown associations 
of drugs with diseases, which is based on weighted graph 
regularized collaborative non-negative matrix factoriza-
tion. Distinct from previous methods, graph Laplacian 
regularization is introduced to prevent overfitting, which 
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can ensure close drugs or diseases are sufficiently close 
to each other in the corresponding latent feature space; 
Tikhonov ( L2 ) is used to guarantee that the solution 
obtained from matrix factorization is smooth. In addi-
tion, in order to extend our model to work for new drugs 
(or new diseases) and reduce the impact of sparse asso-
ciations on prediction performance, weighted K-nearest 
neighbor is utilized to rebuild the association adjacency 
matrix between drug and disease before performing 
matrix factorization. We carry out ten-fold cross valida-
tion to verify the performance of WNMFDDA and com-
pared it with several classical models. The experimental 
results of cross validation show that WNMFDDA obtains 
better performance than other compared models. Case 
studies on drugs and diseases also demonstrate that our 
proposed approach is reliable in identifying drug-disease 
potential associations.

Methods and materials
Method overview
To identify potential associations between drug and dis-
ease, we propose a new computational model named 
WNMFDDA. The proposed method mainly process (See 
Fig. 1) contains three steps: (i) We measure the drug simi-
larity and disease similarity based on chemical structures 
of drugs and medical description information of diseases, 
respectively. (ii) To extend WNMFDDA to predicting 
novel diseases and drugs, the adjacency matrix of drug 
with disease is reformulated based on weighted K-nearest 
neighbor profiles of drug and disease. (iii) Graph regular-
ized collaborative matrix factorization is performed on 
the updated adjacency matrix to obtain the final score 
matrix.

Datasets
The dataset (Fdataset) used in this work was obtained 
from Gottlieb et  al. [19], which is comprised multiple 
data sources, and is considered as the golden standard 
datasets for predicting potential associations between 
drug and disease. After deleting the duplicate associa-
tion pairs, a total of 1933 experimentally verified associa-
tions between 593 drugs and 313 diseases are collected 
for prediction. Diseases and drugs are obtained from 
the Online Mendelian Inheritance in Man (OMIM) 
database [34] and DrugBank database [35], respectively. 
Here, we construct the drug-disease association adja-
cency matrix Y n×m based on the known associations, n 
is the number of drugs and m is the number of diseases. 
Let R = {r1, r2, · · · , rn} and D =

{

d1, d2, · · · , dm
}

 rep-
resent the set of n drugs and m diseases. In the original 
adjacency matrix Y ∈ Rn×m , the value of Y (i, j) is set 1 if 

drug ri relates with disease dj , otherwise it is 0. Finally, 
the original adjacency matrix Y ∈ R593×313 , the drug 
similarity matrix and disease similarity matrix are used to 
identify the associations of drugs with diseases based on 
WNMFDDA.

Similarity for drugs and diseases
In this work, the drug similarity matrix is denoted by 
SR ∈ R593×593 . we calculate the drug-drug similarity 
using the Chemical Development Kit (CDK) [36] based 
on Simplified Molecular Input Line Entry Specification 
(SMILES) chemical structures [37], and the Tanimoto 
score of their 2D chemical fingerprints is used as repre-
senting the pair of drug similarity [38].

The disease similarity matrix is denoted by SD ∈ R313×313 . 
The similarities between diseases are derived from Mim-
Miner [39], which measures the pairwise disease semantic 
similarity through text mining based on the medical descrip-
tion information in the OMIM database [34].

Weighted graph regularized collaborative non‑negative 
matrix factorization for predicting drug‑disease associations
Reformulate association adjacency matrix of drug with disease
Due to many of non-interactions of drugs or diseases in the 
original adjacency matrix (i.e. their values are 0 in Y  ) that 
could be potential true interactions, which may lead to poor 
performance in predicting the potential drug-disease asso-
ciations. In order to solve the above mentioned problem, we 
perform weighted K-nearest neighbor (WKNN) profiles to 
construct novel interaction profiles of drug and disease.

For each drug rp , we sort all other drugs in descending 
order according to their similarities with rp . Then, the new 
interaction profile of drug rp is obtained according to its K
-nearest known drugs (each drug has at least one confirmed 
association), and their corresponding K  interaction profiles 
are as follows:

where

a ∈ [0, 1] isadecayterm . wi is a weight coefficient, it 
means that the more similar ri to rp , the larger weight is 
assigned. Y (ri) = (Yi1,Yi2, · · · ,Yim) denotes the interac-
tion profile for drug ri , which is the ith row vector of adja-
cency matrix Y .

Similar to drugs, for each disease dq , the new interac-
tion profiles of disease dq can be calculated as follows:

(1)Yr
(

rp
)

=
1

∑

1≤i≤KS
R(ri,rp)

∑K

i=1
wiY (ri)

(2)wi = ai−1 ∗ SR(ri,rp)
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where, wi is a weight coefficient. Y (dj) = (Y1j ,Y2j , · · · ,Ynj) 
represents the interaction profile for disease dj , which is the 
jth column vector of adjacency matrix Y .

Thereafter, we merge the new interaction profiles of drug 
and disease by Yrd = (Yr + Yd)/2 . Finally, the original adja-
cency matrix Y  is updated by replacing Yij = 0 with related 
likelihood score as follows:

The model of WNMFDDA
Non-negative matrix factorization (NMF) is one of the 
most popular multidimensional data processing tools 
in research fields such as bioinformatics and pattern 
recognition [40–42]. The purpose of NMF is to decom-
pose a nonnegative matrix Y  into two low-dimensional 
nonnegative matrices, and makes their product approx-
imation to the original matrix Y  . Therefore, for drug-
disease adjacency matrix Y n×m , it can be decomposed 
into two low-rank feature matrices, Ak×n and Bk×m , and 
Y ∼= ATB(k ≤ min(n,m)) . The objective function for pre-
dicting drug-disease associations can be mathematically 
formulated as follows:

where � • �F denotes the Frobenius norm. To enhance 
generalization capability and solve the problem that 
the standard NMF in formula (6) fails to discover the 

(3)Yd
(

dq
)

=
1

∑

1≤j≤KS
D(dj,dq)

∑K

j=1
wjY (dj)

(4)wj = aj−1 ∗ SD(dj,dq)

(5)Y = max(Y ,Yrd)

(6)min
A,B

�Y − A
T
B�

2

F s.t.A ≥ 0,B ≥ 0

intrinsic geometrical of drug space and disease space, 
we introduce Laplacian regularization to constrain non-
negative matrix factorization which can ensure that close 
drugs or diseases are sufficiently close to each other in 
corresponding latent feature space. The optimization 
problem can be written as follows:

(7)min
A,B

�Y − ATB�
2
F + �





n
�

i≤j

�ai − aj�
2SRij +

m
�

i≤j

�bi − bj�
2SDij



s.t.A ≥ 0,B ≥ 0

where R1 =
∑

n

i≤j
�ai − aj�

2
S
R

ij
 and R2 =

∑m
i≤j �bi − bj�

2SDij  are 
the Laplacian regularization terms. ai and bi are ith col-
umn of matrices A and B , respectively. � is the regulariza-
tion parameter.

Recent studies on manifold learning theory and spec-
tral graph theory have shown that the local geometric 
structure and topological structure of original data points 
can be leaved unchanged by the p-nearest neighbor graph 
when these points are mapped from high-dimensional 
space to low-dimensional space [43, 44]. In addition, 
drugs and diseases in the same cluster are more possible 
to have similar characteristics, and the sparse similarity 
matrix has been effectively applied to graph regulariza-
tion [45]. As a graph clustering method, p-nearest neigh-
bor is used to construct the graphs ( SR∗ and SD∗ ) for drug 
space and disease space. Therefore, we can obtain the fol-
lowing weight matrix WR of drug according to the drug 
similarity matrix SR:

Here, Np(ri) and Np

(

rj
)

 represent the sets of p-nearest 
neighbors of drug ri and drug rj . Then, the graph matrix 
SR∗ for drugs is defined as follows:

Similarly, based on the disease similarity matrix SD , the 
graph matrix SD∗ for diseases is determined by:

Then, the optimization problem is formularized as 
follows:

where R
∗
1
=

∑

n

i≤j
�ai − aj�

2
S
R∗
ij

 and R∗
2
=

∑m
i≤j �bi − bj�

2SD∗ij
 

are the graph Laplacian regularization terms. In order to 
avoid overfitting and guarantee the A and B smoothness, 
Tikhonov ( L2 ) regularization terms are incorporated into 
the Eq.  (11) [46]. Finally, the optimization problem of 
WNMFDDA can be transformed into:

(8)WR
ij =







1 , i ∈ Np

�

rj
�

&j ∈ Np(ri)

0, i /∈ Np

�

rj
�

&j /∈ Np(ri)
0.5, otherwise

(9)∀i, jSR∗ij = SRijW
R

ij

(10)∀i, jSD∗ij = SDij W
D

ij

(11)min
A,B

�Y − ATB�
2

F + �





n
�

i≤j

�ai − aj�
2SR∗ij +

m
�

i≤j

�bi − bj�
2SD∗ij



 s.t.A ≥ 0,B ≥ 0
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and

where β is the regularization parameter. Tr(•) is the 
trace of a matrix. Dr =

∑n
i=1 S

R∗
ij  and Dd =

∑m
i=1 S

D∗
ij  

are the diagonal matrices; Lr = Dr − SR∗ and 
Ld = Dd − SD∗ denote the graph Laplacian matrices 
with respect to SR∗ and SD∗ [47]. The Eq.  (12) can be 
rewritten as:

Optimization algorithm
In this work, the optimization problem of objective 
function Eq.  (15) is solved by using Lagrange mul-
tipliers method. We introduce Lagrange multipli-
ers � = {φki} and � = {ψkj} to constrain aki ≥ 0 and 
bkj ≥ 0 , respectively. The corresponding Lagrange func-
tion Lf  of Eq. (15) is represented as follows:

(12)

min
A,B

�Y − ATB�
2

F + �





n
�

i≤j

�ai − aj�
2SR∗ij

+

m
�

i≤j

�bi − bj�
2SD∗ij



+ β

�

�A�2F + �B�2F

�

s.t.A ≥ 0,B ≥ 0

(13)
n

∑

i≤j

�ai − aj�
2SR∗ij =

n
∑

j=1

aTj aj

n
∑

i,j=1

SR∗ij −

n
∑

i,j=1

aTi ajS
R∗
ij = Tr

(

ADrA
T
)

−Tr
(

ASR∗AT
)

= Tr
(

ALrA
T
)

(14)

m
∑

i≤j

�bi − bj�
2SD∗ij =Tr

(

BDdB
T
)

− Tr
(

BSD∗BT
)

= Tr
(

BLdB
T
)

(15)

min
A,B

�Y − ATB�
2

F + �





n
�

i≤j

�ai − aj�
2SR∗ij

+

m
�

i≤j

�bi − bj�
2SD∗ij



+ β

�

�A�2F + �B�2F

�

= Tr
�

YYT
�

− 2Tr
�

YBTA
�

+ Tr
�

ATBBTA
�

+ �Tr
�

ALrA
T
�

+ �Tr
�

BLdB
T
�

+ βTr
�

AAT
�

+ βTr
�

BBT
�

The partial derivatives of Lf  to A and B are as follows:

The Karush–Kuhn–Tucker (KKT) constraint condi-
tions φkiaki = 0 and ψkjbkj = 0 are used in the following 
equations for aki and bkj [48]:

Finally, the updating rules for aki and bkj can be deter-
mined as follows:

We update the matrices A and B with Eq.  (21) and 
Eq.  (22) until convergence. The predicted associa-
tion score matrix for drug-disease pairs is obtained by 
YP = ATB . Then, we prioritize the disease-associated 
drugs (or drug-associated diseases) on the basis of cor-
relation scores in matrix YP . Generally, the higher the 
drug-disease pair score, the more likely they are to be 
related. The whole algorithm of WNMFDDA is exhibited 
in Table 1.

(16)

Lf =Tr

(

YY
T

)

− 2Tr

(

YB
T
A

)

+ Tr

(

A
T
BB

T
A

)

+ �Tr

(

ALrA
T

)

+ �Tr

(

BLdB
T

)

+ βTr

(

AA
T

)

+ βTr

(

BB
T

)

+ Tr

(

�A
T

)

+ Tr

(

�B
T

)

(17)
∂Lf

∂A
= −2BYT + 2BBTA+ 2�ALr + 2βA+�

(18)
∂Lf

∂B
= −2AY + 2AATB+ 2�BLd + 2βB+�

(19)
−

(

BY
T

)

ki

aki +

(

BB
T
A

)

ki

aki

+

[

�A

(

Dr − S
R∗
)]

ki

aki + (βA)kiaki = 0

(20)
− (AY )kjbkj +

(

AATB
)

kj
bkj

+

[

�B
(

Dd − SD∗
)]

kj
bkj + (βB)kjbkj = 0

(21)aki ← aki
BY T + �ASR∗

βA+ �ADr + BBTA

(22)bkj ← bkj
AY + �BSD∗

βB+ �BDd + AATB
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Results and discussion
Experimental settings
To systematically assess the ability of WNMFDDA in pre-
dicting potential associations of drugs with diseases, we 
conduct ten-fold cross validation (10-CV) experiments 
based on known drug-disease associations. In the golden 
dataset, 1933 known associations of drugs with diseases 
are randomly divided into ten roughly equal parts, while 

the other unconfirmed pairs are regarded as candidate 
associations. In each cross validation, each part is served 
as a test set in turn, and the remaining parts are treated 
as the training set.

AUC is widely applied for assessing the prediction mod-
els [49]. Since the known drug-disease associations are 
much less than unknown associations between them, the 
sensitivity (Sen., also known as recall) and Precision (Pre.) 

Table 1  The algorithm for predicting drug-disease associations
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are computed as the evaluation metric. In addition, other 
classification metrics, accuracy (Acc.) and F1-Score, are 
also used widely [50].

In this work, the influence of parameters on WNM-
FDDA has been analyzed by applying Fdataset. We 
used grid search to determine the parameter combina-
tions. WNMFDDA has six parameters and their val-
ues are considered from the following ranges: decay 
term a ∈ {0.1, 0.2, · · · , 1} , neighborhood size K  is 
chosen from {1, 2, · · · , 10} , subspace dimensionality 
k ∈ {60, 80, 100, · · · , 200} , regularization coefficients 
� ∈ {0.02, 0.2, 1, 2} and β ∈ {0.002, 0.02, 0.2, 1} . At the 
same time, we set p = 5 to construct the graphs for drug 

(23)Sen. =
TP

TP + FN

(24)Pre. =
TP

TP + Fp

(25)Acc. =
TN + TP

TN + TP + FN + Fp

(26)F1− Score =
2× Pre.× Sen.

Pre.+ Sen.

Fig. 1  Flowchart of WNMFDDA for inferring the potential drug-disease associations

Fig. 2  The ROC curves of WNMFDDA on Fdataset under ten-fold 
cross validation

Table 2  The average AUC values of WNMFDDA and related 
methods on Fdataset

Methods DDRS MBiRW HGBI DrugNet WNMFDDA

AUC​ 0.930 0.917 0.829 0.778 0.939
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space and disease space according to [43] and [51]. The 
final optimal parameter combinations are K = 5 , a = 0.5 , 
k = 160 , � = 1 and β = 0.02 , which are determined based 
on AUC values under 10-CV experiments. Meanwhile, 
we used the best parameter values that recommended by 
the corresponding authors in compared methods.

Performance evaluation
In this study, ten-fold cross validation was introduced 
to assess the performance of WNMFDDA. we conduct 
10-CV on the Fdataset to compare it with four classical 
models, including DDRS [27], MBiRW [24], HGBI [23] 
and DrugNet [22]. As shown in Fig.  2, the AUC value 
achieved by WNMFDDA is 0.939. The AUC values of 
WNMFDDA and the other four competing approaches 
on Fdataset are displayed in Table  2. Specifically, the 
AUC values of WNMFDDA, DDRS, MBiRW, HGBI and 
DrugNet are 0.939, 0.930, 0.917, 0.829 and 0.778, respec-
tively. The performance of WNMFDDA method outper-
forms the compared computational approaches, DDRS, 
MBiRW, HGBI and DrugNet.

In practice, the predicted top-ranked results are more 
important than other parts. In this study, the numbers of 
correctly retrieved true associations between drug and 
disease from different top portions were counted when 
all known associations are regarded as the training set. 
In generally, the method is considered as more reliable 
if more true associations are discovered on the top por-
tions. At different thresholds, the number of true asso-
ciations correctly predicted by WNMFDDA are shown 
in Fig. 3. For example, at the top 20 and 40 of predicted 
candidate drugs, WNMFDDA correctly identified 1651 
(85.41%) and 1819 (94.10%) true associations from all the 
1933 known associations, respectively. The experimental 

results suggest that our model has higher accuracy and 
lower false positive rate in identifying potential drug-dis-
ease associations.

In addition, considering the fact that the known and 
unknown associations between them are serious imbal-
ance, several classification metrics (i.e. Sen., Pre., Acc. 
and F1-Score) are calculated at different specificity 
(Spe.), and are used as evaluation indicators. As shown 
in Table  3, the average Sen, Pre, Acc and F1-Score are 
86.91%, 89.79%, 88.51% and 88.31%, respectively, when 
Spe is 90%. This result further illustrates that our method 
is reliable.

Case studies
In this section, to further test the predictive perfor-
mance of WNMFDDA, we conduct two types of case 
studies on two drugs and two diseases, respectively. 
The first type of case study was performed on Doxo-
rubicin drug and Obesity. During the experiment, all 
known associations on the Fdataset are utilized to train 
prediction model of WNMFDDA. For Doxorubicin, 
the top-15 candidate diseases related with Doxorubicin 
are obtained according to their predicted association 
scores. Then, we validate these candidate diseases based 
on the other public biological database: Comparative 
Toxicogenomics Database (CTD) [52], which provides 
newly experimentally verified associations between 
drugs and diseases. Table  4 lists the top-15 predicted 
candidate diseases for Doxorubicin, 12 out of the top-
15 are confirmed by CTD to be associated with Doxo-
rubicin. For example, Doxorubicin, originally indicated 
for Acute Leukemia, is predicted to treat stomach can-
cer and confirmed by CTD. As shown in Table 5, 13 out 
of the top-15 predicted drugs are confirmed by CTD to 
be associated with Obesity.

In order to illustrate the prediction capability of 
WNMFDDA on novel diseases /drugs without known 
associated drugs/diseases, we selected Amiodarone Fig. 3  The number of correctly retrieved drug-disease associations 

for various ranking thresholds

Table 3  The ten-fold cross validation results achieved by 
WNMFDDA on Fdataset

Test set Sen.(%) Pre.(%) Acc.(%) F1-Score(%)

1
2
3
4
5
6
7
8
9
10
Average

86.53
87.05
86.01
81.35
87.05
89.64
86.53
88.60
86.53
89.80
86.91 ± 2.38

89.78
89.84
89.73
89.20
89.84
90.10
89.78
90.00
89.78
89.80
89.79 ± 0.24

88.34
88.60
88.08
85.75
88.60
89.90
88.34
89.38
88.34
89.80
88.51 ± 1.17

88.13
88.42
87.83
85.09
88.42
89.87
88.13
89.30
88.13
89.80
88.31 ± 1.35



Page 9 of 12Wang et al. Journal of Translational Medicine          (2022) 20:552 	

drug and Asthma disease to perform the second type 
of case study. For drug Amiodarone, before training 
the model, all known associations with Amiodarone 
are removed from the original dataset. Then, we sort 
all the 313 diseases in descending order according to 
the correlation scores, and verify the top-15 diseases 
in the CTD. As shown in Table 6, 12 out of the top-15 
drug-disease associations predicted by WNMFDDA 
are confirmed in the CTD. Similarly, all known associa-
tions with Asthma are hidden from the original dataset 
when we carry out case study to Asthma. The top-15 
inferred candidate drugs are displayed in Table  7, 13 
out of 15 are verified to be related with the Asthma by 
CTD. These results further suggest that WNMFDDA is 

a useful predictor to infer potential associations of dis-
eases with drugs.

Validation on the other dataset
To further validate the robustness of WNMFDDA, we 
implement 10-CV to verify the prediction accuracy on 
the Cdataset. This dataset has been used in previous 
studies [24, 27], including 663 drugs, 409 diseases and 
2532 verified drug-disease associations. These drugs 
and diseases are obtained from DrugBank database and 
OMIM database, respectively. The ROC curves of WNM-
FDDA on Cdataset are drawn in Fig. 4. The average AUC 
values of WNMFDDA and the compared methods are 
shown in Table 8. We can see that the average AUC value 

Table 4  The top-15 candidate diseases associated with Doxorubicin are predicted by GWMFDDA based on known associations in 
Fdataset

Drug Rank Diseases Evidences Rank Diseases Evidences

Doxorubicin 1 Turcot syndrome CTD 9 Urinary Bladder Neoplasms CTD

2 Lymphoblastic Leukemia, Acute, 
with Lymphomatous Features

unconfirmed 10 Neuroblastoma CTD

3 Breast Neoplasms CTD 11 Testicular Germ
Cell Tumor

CTD

4 Hodgkin Disease CTD 12 Multiple Myeloma CTD

5 Leukemia, Myeloid, Acute CTD 13 Carcinoma, Small Cell CTD

6 Dohle Bodies And Leukemia unconfirmed 14 Stomach Neoplasms CTD

7 Rhabdomyosarcoma 2 CTD 15 Reticulum
Cell Sarcoma

unconfirmed

8 Osteosarcoma CTD

Table 5  The top-15 candidate drugs associated with Obesity 
are predicted by GWMFDDA based on known associations in 
Fdataset

Disease Rank Drugs Evidences Rank Drugs Evidences

1 Benzpheta‑
mine

CTD 9 Bupropion CTD

2 Phenter‑
mine

CTD 10 Ampheta‑
mine

CTD

3 Phenylpro‑
panola‑
mine

CTD 11 Pseu‑
doephed‑
rine

uncon‑
firmed

Obesity 4 Sibutramine CTD 12 Dextroam‑
phetamine

CTD

5 Metamfe‑
tamine

uncon‑
firmed

13 Ephedrine CTD

6 Orlistat CTD 14 Cimetidine CTD

7 Phendime‑
trazine

CTD 15 Topiramate CTD

8 Diethylpro‑
pion

CTD Fig. 4  ROC curves of WNMFDDA on Cdataset under ten-fold cross 
validation
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of WNMFDDA is 0.953, while DDRS, MBiRW, HGBI and 
DrugNet are 0.947, 0.933, 0.858 and 0.804, respectively. 
WNMFDDA achieves the best prediction performance. 
The superior experiment results on Cdataset also dem-
onstrate that our proposed model is robust and effec-
tive in revealing potential associations between drug and 
disease.

Conclusions
Identifying new indications for existing drugs is a prom-
ising alternative to drug development, which not only 
saves time and costs, but also reduces risks and expedites 
drug approval. In this work, a model based on weight 
non-negative matrix factorization, WNMFDDA, was 
proposed to predict potential drug-disease associations. 
Different from other traditional computational methods, 

WNMFDDA reformulate the adjacency association 
matrix based on weighted K  nearest neighbor profiles as 
a preprocessing step, which enables it to infer potential 
associations for novel diseases/drugs without any known 
associated with drugs/diseases. Meanwhile, graph regu-
larized matrix factorization was used to calculate the 
association scores.

We conducted 10-CV on two datasets and case studies 
on Fdataset to verify the performance of our developed 
model. Comprehensive experimental results demonstrate 
that WNMFDDA outperforms other state-of-the-art 
approaches, and can effectively infer potential associa-
tions between drug and disease. We believe that WNM-
FDDA is helpful for relevant biomedical researchers in 
follow-up studies. However, WNMFDDA still has some 
limitations. Firstly, the number of experimental verified 
drug-disease associations used in this work is relatively 
sparse. Secondly, determining the optimal parameter 
combinations for different biological datasets is still a 
daunting task. Finally, how to reasonably incorporate 
more effective drug and disease features to enhance the 
performance of WNMFDDA deserves further research.

Table 6  The top-15 candidate diseases associated with Amiodarone are predicted by GWMFDDA after removing all known 
associations with Amiodarone based on the Fdataset

Drug Rank Diseases Evidences Rank Diseases Evidences

Amiodarone 1 Breast Neoplasms CTD 9 Hodgkin Disease CTD

2 Lymphoblastic Leukemia, Acute, 
with Lymphomatous Features

CTD 10 Osteosarcoma CTD

3 Leukemia, Myeloid, Acute CTD 11 Inclusion Body Myopathy With Early-Onset 
Paget Disease And Frontotemporal Dementia

CTD

4 Turcot Syndrome Unconfirmed 12 Urinary Bladder Neoplasms CTD

5 Dohle Bodies and Leukemia Unconfirmed 13 Lung Neoplasms CTD

6 Hajdu-Cheney Syndrome Unconfirmed 14 Carcinoma, Small Cell CTD

7 Multiple Myeloma CTD 15 Fibrous Dysplasia, Polyostotic CTD

8 Osteoporosis CTD

Table 7  The top-15 candidate drugs associated with Asthma are predicted by GWMFDDA after removing all known associations with 
Asthma based on the Fdataset

Disease Rank Drugs Evidences Rank Drugs Evidences

Asthma 1 Cromoglicic acid Unconfirmed 9 Triamcinolone CTD

2 Ciprofloxacin CTD 10 Montelukast CTD

3 Budesonide CTD 11 Beclomethasone CTD

4 Pirbuterol CTD 12 Moxifloxacin CTD

5 Salbutamol CTD 13 Nedocromil CTD

6 Zileuton CTD 14 Formoterol CTD

7 Prednisone CTD 15 Orciprenaline Unconfirmed

8 Terbutaline CTD

Table 8  AUC values of WNMFDDA and related methods on 
Cdataset

Methods DDRS MBiRW HGBI DrugNet WNMFDDA

AUC​ 0.947 0.933 0.858 0.804 0.953
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