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Abstract 

Background:  Pharmacogenomics (PGx) aims to utilize a patient’s genetic data to enable safer and more effective 
prescribing of medications. The Clinical Pharmacogenetics Implementation Consortium (CPIC) provides guidelines 
with strong evidence for 24 genes that affect 72 medications. Despite strong evidence linking PGx alleles to drug 
response, there is a large gap in the implementation and return of actionable pharmacogenetic findings to patients 
in standard clinical practice. In this study, we evaluated opportunities for genetically guided medication prescribing 
in a diverse health system and determined the frequencies of actionable PGx alleles in an ancestrally diverse biobank 
population.

Methods:  A retrospective analysis of the Penn Medicine electronic health records (EHRs), which includes ~ 3.3 million 
patients between 2012 and 2020, provides a snapshot of the trends in prescriptions for drugs with genotype-based 
prescribing guidelines (‘CPIC level A or B’) in the Penn Medicine health system. The Penn Medicine BioBank (PMBB) 
consists of a diverse group of 43,359 participants whose EHRs are linked to genome-wide SNP array and whole exome 
sequencing (WES) data. We used the Pharmacogenomics Clinical Annotation Tool (PharmCAT), to annotate PGx alleles 
from PMBB variant call format (VCF) files and identify samples with actionable PGx alleles.

Results:  We identified ~ 316.000 unique patients that were prescribed at least 2 drugs with CPIC Level A or B guide‑
lines. Genetic analysis in PMBB identified that 98.9% of participants carry one or more PGx actionable alleles where 
treatment modification would be recommended. After linking the genetic data with prescription data from the EHR, 
14.2% of participants (n = 6157) were prescribed medications that could be impacted by their genotype (as indicated 
by their PharmCAT report). For example, 856 participants received clopidogrel who carried CYP2C19 reduced function 
alleles, placing them at increased risk for major adverse cardiovascular events. When we stratified by genetic ances‑
try, we found disparities in PGx allele frequencies and clinical burden. Clopidogrel users of Asian ancestry in PMBB 
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Introduction
The vision of precision medicine involves using 
genomic information to guide preventive measures and 
tailor treatment for patients. A major component of 
this vision is pharmacogenomics (PGx), which aims to 
provide pharmacotherapy guidance for patients carry-
ing genetic alleles impacting response to medications, 
with the goal of genetically tailored prescribing at the 
point of care. Many medications, such as opioid anal-
gesics or the anticoagulant warfarin, require careful 
dose titration to achieve a therapeutic dose, and con-
sideration of PGx information can help select the most 
appropriate drug at the right dose, avoiding harmful 
adverse drug reactions. The Clinical Pharmacogenet-
ics Implementation Consortium (CPIC) has published 
guidelines for 71 drugs based on a large body of evi-
dence showing the impact of PGx alleles which provide 
specific drug recommendations to alter prescribing 
practices. [1–3] CPIC also assigns preliminary pri-
oritization levels (called “provisional”) based on cur-
sory review of evidence including, but not limited to, 
actionability in other professional society guidelines, 
recommendations from FDA-approved drug labels and 
assessment of evidence from PharmGKB clinical anno-
tations. [4, 5] Level A refers to gene-drug pairs where 
genetic information should be used for prescribing 
decisions and alternative therapies, or dosing are highly 
likely to be effective and safe. [1] Level B refers to pairs 
where genetic information could be used to change 
prescribing and alternative therapies or dosing are 
extremely likely to be as effective and as safe as non-
genetically based dosing. [1] As of June 2022, there are 
96 gene-drug pairs with a CPIC level A or B guideline. 
Many of the alleles in these genes are common in the 
population and associated with a large effect size and 
a clearly identifiable drug response phenotype such as 
metabolizer status. However, one barrier to PGx imple-
mentation is the uncertainty about the true clinical 
burden of PGx alleles, particularly when accounting for 
ancestry-specific allele frequencies. For example the 
CYP2C19*2 no function allele (with rs4244285 as a key 
SNP) is twice as common in Asian ancestry individu-
als as those with European ancestry, which will have 
ethical and legal implications for testing prioritization 

[6] Understanding the prevalence of PGx alleles and 
the frequency of prescribing drugs impacted by these 
alleles in multiple ancestral populations will aid in tar-
geting clinical implementation efforts for drug-gene 
pairs with the greatest impact.

Electronic Health Records (EHRs) are a digital record 
of a patient’s diagnosed conditions as well as informa-
tion about the care they have received. EHRs have also 
become a robust source of real-world data that when 
linked to large DNA repositories can validate the associa-
tion of known PGx alleles with drug response phenotypes 
but also further enable discovery of novel PGx associa-
tions. There have been several successful examples using 
the EHR to identify novel genetic association with drug 
side effects. [7–9] The University of Pennsylvania Health 
System (also known as Penn Medicine) is one of the pri-
mary health care providers in Philadelphia and the sur-
rounding region. Penn Medicine consists of over 3.3 
million patients whose data are stored in an EHR since 
2008. In our study period of 2012–2020, we counted 
3,384,922 unique patients. Approximately 150,000 
of these patients have enrolled in the Penn Medicine 
BioBank (PMBB) research program as of July 2022 and 
thus far 43,359 have been genotyped for research pur-
poses on a genome-wide SNP array and sequenced using 
whole exome sequencing (WES); all participant genetic 
data is then linked to their EHR data. Prior studies have 
shown that  > 95% of individuals carry one or more alleles 
that interact with drugs from CPIC Level A guidelines 
[10–12], but the number of patients that will actually be 
prescribed the drugs impacted by the alleles they carry is 
challenging to predict. In consideration of the implemen-
tation of preemptive PGx into clinical care, we sought to 
understand the population of Penn Medicine patients 
that are impacted by PGx alleles and are prescribed PGx 
affected medications. Considering this, we evaluated the 
prescribing patterns in the Penn Medicine EHR for a set 
of medications that are included in CPIC level A and B 
guidelines. Actionable PGx alleles are ones for which a 
medication prescribing change is recommended. There-
fore, we also evaluated the frequency of actionable PGx 
phenotypes, the set of alleles that contribute to a clini-
cally meaningful and observable drug response trait (e.g., 
drug metabolizer status), and are associated with strong 

had significantly higher rates of CYP2C19 actionable alleles than European ancestry users of clopidrogrel (p < 0.0001, 
OR = 3.68).

Conclusions:  Clinically actionable PGx alleles are highly prevalent in our health system and many patients were 
prescribed medications that could be affected by PGx alleles. These results illustrate the potential utility of preemptive 
genotyping for tailoring of medications and implementation of PGx into routine clinical care.

Keywords:  Pharmacogenomics, Electronic Health Records, Genomic analyses, Genetic testing, CPIC guidelines
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or moderate therapeutic recommendations in the CPIC 
guidelines, in the genotyped PMBB participants. The 
large number of ancestrally diverse participants in the 
PMBB also allowed for ancestry stratified analyses to bet-
ter understand how drug prescription practices based 
on an individual’s ancestry may influence the burden of 
unwanted drug response outcomes.

Methods
Dataset
The study was approved by the Institutional Review 
Board of the University of Pennsylvania and complied 
with the principles set out in the Declaration of Hel-
sinki. All individuals recruited for the Penn Medicine 
BioBank (PMBB) are patients of clinical practice sites of 
the University of Pennsylvania Health System. Appropri-
ate consent was obtained from each participant regard-
ing storage of biological specimens, genetic sequencing/
genotyping, and access to all available EHR data. Medi-
cation data was extracted using Penn Medicine’s Clini-
cal Data Warehouse, the Penn Data Store (PDS), from 
January 2012–December 2020. We used the CPIC 
guidelines available prior to December 2021 to select 
49 drugs with prescribing recommendations for our 
study. For each of the drugs (Additional file 1: Table S1), 
we generated extensive medication libraries that con-
tained every permutation of the medication available in 
the EHR including by drug name (generic, brand name 
and combinations products), dose and dosage form (e.g. 
oral, intravenous) and RxNorm identifiers. [13] Unique 
patients were counted once per year for each medication 
to get a unique number of prescriptions per year. Yearly 
prescribing data were normalized by yearly encounters 
to the health system to obtain a drug exposure rate and 
account for the growing number of patients in the health 
system. Drug exposures and encounters were limited to 
those which occurred when the patient was 18  years of 
age or older.

Genotyping and whole exome sequencing
Individuals were genotyped using the Illumina Global 
Screening array v.2.0 and minimally processed with 
PLINK to remove sites with marker call rate  < 95% and 
samples with overall call rate  < 90%. Furthermore, any 
samples with a discordance between genetically defined 
sex and EHR reported sex were discarded. Genotyp-
ing and whole exome sequencing was performed at the 
Regeneron Genetics Center using an in-house high 
throughput, fully automated approach for exome cap-
ture. Libraries were generated from 100  ng of genomic 
DNA with a mean fragment length of 200 bp. The librar-
ies were then barcoded and amplified in preparation for 

multiplexed exome capture and sequencing. Following 
exome capture, pooled samples were sequenced with 
75 bp paired end reads with two 10 bp index reads on the 
Illumina NovaSeq 6000 platform on S4 flow cells. Sam-
ples were then QC filtered using the widely used ‘Goldi-
locks’ filtering procedure as described previously [14, 15].

Construction of an integrated call set
Genotyping arrays and exome sequencing in isolation 
both provide limited coverage of PGx sites across the 
genome. We took a similar, but simplified approach to 
McInnes et al. to generate an integrated call set combin-
ing the array and exome data. [16] Based on prior work 
indicating that whole exome sequencing has a much 
higher call accuracy than genotyping arrays [17], the 
integrated call set favored exome calls over array calls in 
cases where a site was covered by both. The exome was 
used as the primary sequence, with sites not covered by 
the exome filled with available calls from the genotyping 
array using bcftools version 1.15.1 [18]. Average coverage 
was assessed for the array, exome, and integrated call sets 
by counting the fraction of PharmCAT reference PGx 
sites that were found in each set.

PGx analysis
Annotation of PGx alleles was performed using an in-
development version of PharmCAT 2.0, a bioinformat-
ics tool to annotate PGx alleles from a VCF file [19]. 
The version of PharmCAT used for this study interprets 
alleles included in CPIC guideline genes, using the lat-
est CPIC guidelines published in August 2022. The 
PharmCAT preprocessor was used to convert the PMBB 
multi-sample VCF files into single-sample VCF files with 
normalized allele representations for input into the main 
PharmCAT tool. PharmCAT-generated annotations for 
the 43,359 genotyped individuals were used to identify 
all PMBB individuals with one or more actionable PGx 
alleles for the studied drugs.

PharmCAT provides a report for each individual 
(patient-participant) containing all drug-gene com-
binations that have guidelines included in the CPIC 
database with a few exceptions. The version of Pharm-
CAT at the time of this study did not call G6PD, which 
falls on the X-chromosome, as well as MT-RNR1, a 
mitochondrial gene and also did not call the HLA 
region. While we studied the usage rates of some drugs 
which are affected by HLA and G6PD genotype/phe-
notype, we could not study the frequencies of PGx 
alleles in these genes. CPIC guidelines utilize pheno-
types to provide dosing recommendations rather than 
genotypes. As such, PharmCAT performs genotypes 
to phenotype conversions based on allele function 
guidelines from CPIC. These phenotype frequencies 



Page 4 of 15Verma et al. Journal of Translational Medicine          (2022) 20:550 

are provided in Table 3. Phenotypes are usually listed 
as poor metabolizer (PM), intermediate metabolizer 
(IM), normal metabolizer (NM), rapid metaboliz-
ers (RM), and ultrarapid metabolizer (UM). For some 
complex genes such as CYP2D6, genotypes are trans-
lated into gene activity scores (AS) to better capture 
residual enzyme activity for some alleles [3]. We cal-
culated the AS for CYP2C9 and CYP2D6 based on the 
CPIC allele functionality tables. Using the PharmCAT 
calls, we performed an ancestry-stratified analysis to 
identify patterns of allele and phenotype frequency 
in different populations. Furthermore, for each drug-
gene combination we looked at the rates of patients 
with actionable PGx alleles (i.e., leading to prescrib-
ing change recommendations) for drugs which they 
were prescribed, stratified by ancestry. A phenotype is 
deemed actionable if there is a CPIC guideline for that 
phenotype and a particular drug. In some cases, such 
as CYP2C19, which has both gain-of-function and 
loss-of-function variants in the CPIC definitions, some 
non-baseline phenotypes may be actionable for one 
drug but not another. For instance, CYP2C19 UM phe-
notypes have a CPIC guideline recommendation for 
omeprazole, but not for clopidogrel. Therefore, while 
CYP2C19 UM is an actionable CYP2C19 phenotype, 
it is not actionable for clopidogrel specifically, which 
instead has guidelines for CYP2C19 IM and PM.

PharmCAT does support inclusion of external calls 
for HLA, G6PD, and CYP2D6. Due to the limitations of 
array and exome data, we were unable to call CYP2D6 
CNV and structural variation with any external tool. 
PharmCAT does not ordinarily call the CYP2D6 gene, 
whose phenotype is reliant on copy-number and struc-
tural variation in the gene as well as the HLA locus 
which is difficult to call without specialized assays. 
However, a “research mode” option in PharmCAT 
allowed us to call CYP2D6 from SNPs alone. These 
calls only feature CYP2D6 star-alleles that do not 
define or include structural variation or a gene dele-
tion. We conducted a separate analysis using the 
CYP2D6 calls to estimate the prevalence of CYP2D6 
reduced function phenotypes in patients treated with 

relevant drugs, with the notable caveat that we could 
not measure effects of gene deletion or duplication.

Results
Demographics
There were 11,235,263 unique patient encounters to 
Penn Medicine from January 1, 2012, to December 
31, 2020, across 1,896,012 unique patients. The cohort 
included 56.1% women and 43.9% men. The median age 
was 56 years. The EHR race and ethnicity demographics 
were 59.8% White (56.7% self-reported White and 3.2% 
self-reported Hispanic White), 23.4% Black (22.4% self-
reported Black and 1% self-reported as Hispanic Black), 
4.2% Hispanic or Latino, and 4% Asian as shown in Addi-
tional file 1: Fig. S1a.

The distribution of genetic ancestry in the PMBB is 
comprised of 69.2% European ancestry (EUR), 25.7% 
African ancestry (AFR), 1.6% East Asian ancestry 
(EAS), 1.3% admixed American ancestry (AMR), 1.3% 
South Asian ancestry (SAS), and 0.9% unknown ances-
try (UNK). 49.7% of PMBB patients are female (Addi-
tional file 1: Fig. S1b). Differences in the demographics of 
PMBB and Penn Medicine can be partly attributed to the 
distinction between genetic ancestry and self-reported 
race, as well as the recruitment of most genotyped PMBB 
patients occurring prior to Penn Medicine’s acquisition 
of multiple hospitals.

Drug prescription trends in Penn Medicine EHR
During our study period, 723,115 (21.3%) unique patients 
receiving care at Penn Medicine had at least 1 record for 
a medication in our list (see “Methods” section), while 
316,235 (9.3%) received 2 or more drugs and 146,885 
(4.3%) received 3 or more. The count of medications per 
patient per year is show in Table 1. The most prescribed 
medication over the study period was ondansetron, with 
more than 3 ondansetron prescriptions for every 100 
encounters. Ondansetron is an anti-emetic medication 
used to treat nausea and vomiting (Table 2).

An evaluation of prescribing patterns over time for the 
studied medications showed an increasing use of some 
medications, particularly for ondansetron and ibuprofen 

Table 1  Total number of medications taken by unique patients each year from 2012–2020

# Meds 2012 2013 2014 2015 2016 2017 2018 2019 2020

0 620.820 605.509 593.552 568.411 550.173 525.943 504.553 489.512 508.213

1 74.261 84.061 92.561 114.240 126.647 139.960 156.680 167.905 155.969

2 20.338 24.040 26.197 29.654 33.772 40.074 44.121 47.179 42.731

3 5774 6954 7885 7985 9188 11.963 12.686 13.219 11.720

4 1481 1923 2177 2135 2513 3687 3653 3800 3300

5 +  441 628 743 690 822 1488 1422 1500 1182
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Table 2  List of PGx informed medications and total prescriptions for each medication. Prescription rate is calculated as total 
prescriptions/number of unique patient encounters. The list is ordered from high to low prescription rate

Medication Drug class Total prescriptions Prescription rate

Ondansetron Anti-emetic 387.151 0.034459

Ibuprofen NSAID 382.539 0.034048

Omeprazole Proton-pump inhibitor 364.753 0.032465

Simvastatin Statin 224.908 0.020018

Sertraline Antidepressant 187.200 0.016662

Tramadol Opioid 184.633 0.016433

Escitalopram Antidepressant 170.216 0.01515

Codeine Opioid 152.598 0.013582

Pantoprazole Proton-pump inhibitor 146.450 0.013035

Meloxicam NSAID 93.665 0.008337

Citalopram Antidepressant 92.664 0.008248

Clopidogrel Antiplatelet 86.931 0.007737

Warfarin Anticoagulant 84.435 0.007515

Hydrocodone Opioid 82.405 0.007334

Lansoprazole Proton-pump inhibitor 79.480 0.007074

Tacrolimus Immunosuppressant 67.348 0.005994

Allopurinol Uric acid reducer 62.078 0.005525

Celecoxib NSAID 51.544 0.004588

Amitriptyline Antidepressant 41.721 0.003713

Paroxetine Antidepressant 40.524 0.003607

Nortriptyline Antidepressant 29.154 0.002595

Azathioprine Immunosuppressant 26.068 0.00232

Fluorouracil Chemotherapy 25.805 0.002297

Tamoxifen Chemotherapy 15.005 0.001336

Oxcarbazepine Anticonvulsant 14.975 0.001333

Carbamazepine Anticonvulsant 14.116 0.001256

Dexlansoprazole Proton-pump inhibitor 10.077 0.000897

Abacavir Antiviral 9709 0.000864

Doxepin Antidepressant 9175 0.000817

Efavirenz Antiviral 8856 0.000788

Phenytoin Anticonvulsant 7475 0.000665

Piroxicam NSAID 5665 0.000504

Atomoxetine ADHD 5003 0.000445

Flurbiprofen NSAID 4802 0.000427

Capecitabine Chemotherapy 4672 0.000416

Atazanavir Antiviral 4099 0.000365

Voriconazole Antifungal 4037 0.000359

Mercaptopurine Chemotherapy 3601 0.000321

Fluvoxamine Antidepressant 3440 0.000306

Desipramine Antidepressant 2458 0.000219

Imipramine Antidepressant 2050 0.000182

Clomipramine Antidepressant 1741 0.000155

Succinylcholine Paralytic 1373 0.000122

Ivacaftor Cystic Fibrosis 1293 0.000115

Peginterferon_alfa-2a Antiviral 993 8.84E-05

Rasburicase Uric acid reducer 520 4.63E-05

Peginterferon_alfa-2b Antiviral 322 2.87E-05

Fosphenytoin Anticonvulsant 109 9.70E-06
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when the total prescriptions are normalized by the 
number of encounters for each year as shown in Fig.  1. 
At the same time, despite a large decline in the usage of 

simvastatin, it remains one of the most prescribed drugs, 
with more than 1 in 100 encounters involving a prescrip-
tion. Similarly, while the use of warfarin is declining, it is 

Table 2  (continued)

Medication Drug class Total prescriptions Prescription rate

Thioguanine Chemotherapy 20 1.78E-06

Fig. 1  Medication prescription trends over the years of study period. Each line represents a separate medication. Prescription rate is calculated as 
total prescriptions each year/unique patient encounters each year. The plot is divided into 5 categories based on overall drug usage/prescription 
rates. The y-axes are scaled differently to reflect the differences in order of magnitude in prescription rates between categories
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still used very frequently. Additionally, we examined pre-
scribing patterns for 3 drug classes: non-steroidal anti-
inflammatory drugs (NSAIDs), proton-pump inhibitors, 
and antidepressant drugs (Fig. 2).

Integrated call set performance
We compared the performance of our integrated call set 
to the whole exome sequencing and genotyping array 
data by measuring their coverage of the PGx sites used 
by PharmCAT. Of 536 total sites across all samples, the 
arrays covered an average of 250 sites (46.6%), the exome 
covered an average of 259 (48.3%) and the integrated 
call set covered an average of 354 (66%). This validates 
that exome and genotyping arrays have complementary 
information for PGx and should be combined, when pos-
sible, for larger coverage of the genome. For example, 
the noncoding variant rs12248560 is vital to calling the 
CYP2C19*17 increased function allele, which increases 
CYP2C19 gene expression. In combination with a normal 
function allele, the *17 allele results in a RM phenotype. 
In case of two *17 alleles, there is an UM phenotype. 

Lastly, combinations of *17 with reduced function or loss 
of function alleles can result in IM phenotypes. Since 
rs12248560 was not included in the exome capture, it had 
to be filled in using the array data.

Gene‑drug interaction analyses
We evaluated number of gene-drug interactions within 
the PMBB with medications with CPIC level A or B 
guidelines available. We extracted 16 loci (15 genes + the 
rs12777823 SNP) as listed in Table 3 that have gene-drug 
interactions. Among the ~ 43,000 genotyped individu-
als, all individuals (100%) have at least one non-reference 
allele in the subset of loci we genotyped. PharmCAT 
annotation also identified that 98.9% of individuals are 
carriers of one or more PGx actionable phenotypes that 
would result in a pharmacotherapy modification. The 
mean number of genes per patient with an actionable 
phenotype was 4.1. A t-test comparing EUR (µ = 4.088, 
n = 30,008) and AFR (µ = 4.282, n = 11,156) actionable 
phenotype counts showed that AFR has a significantly 
higher mean count of phenotypes that correspond to 
treatment modification than EUR (p < 0.0001). The 

Fig. 2  Number of prescriptions for three drug classes (NSAIDs, proton-pump inhibitors, and antidepressants) for each year. Three classes of drugs 
are in separate panels, x-axis is year and y-axis are the prescription count normalized by the number of encounters in each year. Note that the y-axis 
scale differs between drug class
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Table 3  Number of participants in the PMBB with PGx phenotypes by ancestry based on PharmCAT annotation

Gene Phenotype Genetic Ancestry

EUR AFR EAS SAS AMR UNK TOTAL

CACNA1S Malignant Hyperthermia Susceptibility 4 0 0 0 0 0 4

Uncertain Susceptibility 30.000 11.154 676 562 580 376 43.348

No Result 4 2 1 0 0 0 7

CFTR Ivacaftor responsive in CF patients 474 337 3 7 16 4 841

Ivacaftor non-responsive in CF patients 29.512 10.808 674 555 564 372 42.485

No Result 22 11 0 0 0 0 33

CYP2B6 Intermediate Metabolizer 10.475 5204 222 253 241 142 16.537

Ultrarapid Metabolizer 30 11 3 3 0 0 47

Ambiguous 9 0 0 0 0 0 9

Rapid Metabolizer 965 266 57 19 15 17 1339

Indeterminate 1398 149 2 3 13 7 1572

Normal Metabolizer 15.056 3086 350 199 235 155 19.081

Poor Metabolizer 1776 2060 34 80 69 48 4067

No Result 299 380 9 5 7 7 707

CYP2C19 Intermediate Metabolizer 7538 3465 322 246 119 119 11.809

Ultrarapid Metabolizer 1389 542 0 29 12 12 1984

Likely Poor Metabolizer 3 71 0 0 1 1 76

Likely Intermediate Metabolizer 25 276 0 0 6 2 309

Rapid Metabolizer 8092 2603 9 90 126 68 10.988

Indeterminate 7 278 0 1 3 2 291

Normal Metabolizer 12.208 3441 245 122 305 153 16.474

Poor Metabolizer 692 423 98 67 8 19 1307

No Result 54 57 3 7 0 0 121

CYP2C9 Intermediate Metabolizer 6889 2369 11 48 110 71 9498

Ambiguous 4125 341 38 107 56 43 4710

Indeterminate 769 204 17 21 19 13 1043

Normal Metabolizer 18.170 8177 611 386 395 247 27.986

Poor Metabolizer 7 33 0 0 0 0 40

No Result 48 32 0 0 0 2 82

CYP3A5 Intermediate Metabolizer 3898 5512 294 208 167 110 10.189

Poor Metabolizer 25.959 3283 333 309 388 247 30.519

Indeterminate 2 1 0 0 0 0 3

Normal Metabolizer 146 2357 50 45 25 19 2642

No Result 3 3 0 0 0 0 6

CYP4F2 Not actionable 16.837 9289 420 257 339 221 27.363

Actionable 13.171 1867 257 305 241 155 15.996

DPYD Intermediate Metabolizer 2028 676 16 50 21 18 2809

Ambiguous 8 7 0 0 1 0 16

Indeterminate 642 511 6 23 16 10 1208

Normal Metabolizer 27.283 9952 655 487 542 348 39.267

Poor Metabolizer 47 10 0 2 0 0 59

IFNL3/4 not actionable 13.637 2078 571 345 245 196 17.072

actionable 16.371 9078 106 217 335 180 26.287
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number of individuals stratified by each ancestry group 
for gene-phenotype combination are listed in Table  3. 
Next, we examined how many individuals with actionable 
alleles were prescribed drugs that would be impacted by 
those alleles as represented in Table  4. Among the top 
prescribed CPIC drugs where prescribed individuals 
have an actionable PGx allele are warfarin, clopidogrel, 
and omeprazole.

Since our data show a higher frequency of CYP2C19 
reduced function alleles in East Asian ancestry indi-
viduals, we decided to see if this trend resulted in larger 

proportions of clopidogrel users of East Asian ancestry 
having actionable CYP2C19 IM and PM phenotypes. 
We performed a Fisher’s exact test to compare these 
proportions of individuals of EUR and Asian ancestry 
(EAS & SAS) prescribed clopidogrel who had IM or PM 
phenotypes. In the EUR group there were 537 IMs and 
PMs (actionable for clopidogrel), and 1451 patients with 
nonactionable phenotypes. In the Asian ancestry group, 
there were 22 without and 30 with actionable pheno-
types. We found a significantly larger proportion of Asian 
ancestry individuals taking clopidogrel are IMs and PMs 

*Indeterminate means the called genotype did not have an assigned function in the CPIC guidelines. No Result means that the genotype could not be called due to missing or invalid positions 

Table 3  (continued)

Gene Phenotype Genetic Ancestry

EUR AFR EAS SAS AMR UNK TOTAL

NUDT15 Intermediate Metabolizer 317 36 103 53 40 20 569

Indeterminate 163 77 38 1 13 7 299

Normal Metabolizer 29.526 11.043 524 506 527 349 42.475

Poor Metabolizer 1 0 6 2 0 0 9

Possible Intermediate Metabolizer 0 0 6 0 0 0 6

No Result 1 0 0 0 0 0 1

RYR1 Malignant Hyperthermia Susceptibility 23 11 0 0 0 0 34

Uncertain Susceptibility 29.979 11.143 676 562 580 376 43.316

No Result 6 2 1 0 0 0 9

TPMT Intermediate Metabolizer 2293 1068 17 18 68 36 3500

Indeterminate 466 995 16 10 15 11 1513

Normal Metabolizer 27.118 9007 643 533 493 325 38.119

Poor Metabolizer 54 34 0 0 1 1 90

Possible Intermediate Metabolizer 61 48 1 1 1 3 115

No Result 16 4 0 0 2 0 22

UGT1A1 Intermediate Metabolizer 14.594 5708 274 316 276 182 21.350

Ambiguous 11 6 0 0 0 0 17

Indeterminate 1322 702 3 44 24 6 2101

Normal Metabolizer 11.966 3233 328 140 232 146 16.045

Poor Metabolizer 1528 1199 67 44 37 31 2906

No Result 587 308 5 18 11 11 940

VKORC1 Actionable 19.264 2327 663 183 389 252 23.078

Not actionable 10.744 8829 14 379 191 124 20.281

SLCO1B1 Increased Function 1280 155 0 1 9 5 1450

Poor Function 825 66 11 5 7 10 924

Possible Decreased Function 28 160 0 0 0 4 192

Ambiguous 479 29 0 0 6 1 515

Normal Function 19.382 7234 509 452 408 243 28.228

Indeterminate 250 2279 14 39 7 12 2601

Decreased Function 7764 1233 143 65 143 101 9449

rs12777823 Not actionable 29.406 10.501 618 499 572 359 41.955

Actionable 602 655 59 63 8 17 1404
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than in EUR (p < 0.0001) with an odds ratio of 3.68, indi-
cating that clopidogrel users of Asian ancestry are 3.68 
times more likely than individuals of European ancestry 
to have actionable PGx alleles for clopidogrel.

Not all genes could be genotyped unambiguously for 
all patients due to missing alleles. PharmCAT provides 
output as several genotypes with the highest match-
ing score. In many cases, the ambiguous genotypes (i.e. 
two or more genotypes) result in the same phenotype. In 
cases when they do not, the phenotype is ambiguous as 
well. For example, 10.9% of patients had an ambiguous 
CYP2C9 phenotype, which likely resulted in an underes-
timate of patients with actionable CYP2C9 phenotypes 
taking ibuprofen, the second most common PGx drug in 
Penn Medicine. A full breakdown of uncalled or ambigu-
ous genotypes and phenotypes from PharmCAT is avail-
able in Additional file 1: Table S2.

CYP2D6 analysis
Despite a lack of copy-number and structural variant 
information for CYP2D6, SNP-based genotyping may 
still provide some estimates into the burden of CYP2D6 
IM and PMs at the population level with the caveat that a 
number of no function alleles (defined by structural vari-
ants and the gene deletion *5) cannot be captured and 
samples including these are determined as IM or NM 
depending on the second allele. PharmCAT was able to 
call CYP2D6 normal and reduced function phenotypes 
(NM/IM/PM) for 14,581 (33.6%) of the PMBB individu-
als; all other individuals were either Indeterminate due to 
the presence uncertain or unknown function alleles, or 
No Result for un-callable individuals (Additional file  1: 
Table  S3). Of those called, 7,254 (16.7%) had reduced 
function phenotypes (IM/PM). If we calculate gene activ-
ity scores from diplotypes, only 14,460 (33.3%) are unam-
biguous since metabolizer phenotypes encompass a range 
of activity scores and some individuals with multiple pos-
sible genotypes can have multiple activity scores which 
all fall under the same metabolizer category (Additional 

file 1: Table S4). Using these phenotypes, we provided a 
lower-bound estimate of the number of patients receiv-
ing drugs for which they have an actionable CYP2D6 IM/
PM phenotype (Table 5). However, in the absence of copy 
number variation, we could not call RM or UM pheno-
types, which are also actionable for many CYP2D6-influ-
enced drugs. Despite these limitations, we were able to 
detect 792 patients prescribed codeine and 761 patients 
prescribed tramadol with an actionable IM/PM pheno-
type in CYP2D6. For ondansetron, our most prescribed 
PGx-affected drug, only the UM phenotype is considered 
actionable and therefore we could not assess this drug-
gene interaction.

Discussion
The identification of many clinically actionable alleles 
and their interactions with medications has led investiga-
tors to critically think about implementing PGx testing 
of these alleles into clinical practice. Our study examined 
approximately 3.3 million individuals from Penn Medi-
cine and identified that 21.3% of patients have been pre-
scribed at least one CPIC guideline medication and 9.3% 
were prescribed two or more. This evidence suggests 
that the clinical testing of pharmacogenetic alleles could 
help in informing patient care at Penn Medicine and 
other large healthcare systems. Our analyses on ~ 43,000 
genotyped individuals from PMBB demonstrate that the 
frequency of participants with one or more clinically 
actionable alleles is very high. 100% of participants in our 
biobank population are carriers of at least one non-ref-
erent allele in a gene with a CPIC Level A or B guideline, 
out of which 98.9% of participants have a PGx phenotype 
that would lead to change in the prescription or dosage 
of at least one drug. More than 14% of patients were pre-
scribed a drug for which they carry an actionable allele in 
our 8-year study period (2012–2020). These results sug-
gest strong evidence for the benefits of integrating phar-
macogenomic testing with current clinical practice for 
precision health care. Pharmacogenomic testing can be 
beneficial in reducing the number of drug adverse effects 
and nonresponse outcomes as well as minimize trial and 
error for dose specification. As more pharmacogenetic 
associations are discovered for more drugs, and as exist-
ing PGx-affected medications continue to grow in usage, 
the utility and clinical impact of pharmacogenomic infra-
structure will only grow. At scale, these interventions can 
be a powerful and cost-effective method for improving 
patient care.

In this study, we aimed to observe the landscape of 
prescription trends of drugs that have a pharmacologi-
cal impact in the Penn Medicine EHR to make necessary 
decisions about where and how to implement pharma-
cogenomics. Similar findings have also been reported 

Table 5  Proportion of PMBB participants with actionable 
CYP2D6 IM/PM phenotypes from PharmCAT research-mode 
annotation for drugs they have been prescribed

Drug Actionable Total prescribed Proportion

amitriptyline 160 1068 0.1498

atomoxetine 29 77 0.3766

codeine 792 5278 0.1501

nortriptyline 105 865 0.1214

paroxetine 9 489 0.0184

tamoxifen 42 304 0.1382

tramadol 761 5194 0.1465
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by several other previous studies [11, 12, 16, 20] but to 
our knowledge, our study is unique in analyzing phar-
macogenomic alleles among already genotyped indi-
viduals across multiple ancestry groups for identifying 
individuals that could benefit from pharmacotherapy. We 
evaluated the potential impact of PGx testing by retro-
spective analyses in our PMBB population and compared 
our findings to similar studies in one or multiple health 
systems. We identified different challenges in collecting 
and mining data from the EHR to observe these trends. 
Our analyses aimed at identifying individuals who could 
benefit from pharmacogenomic testing while highlight-
ing essential considerations for clinicians and researchers 
for implementing pharmacogenomics in clinical prac-
tice. Genotyping individuals with a one-time panel of 
PGx genes would impact medication prescribing over the 
course of care. Among the most prescribed medication 
classes affected by PGx alleles include pain medications, 
anti-emetics, and proton pump inhibitors. These medica-
tions are often prescribed in the post-operative or acute 
care setting and represent a high-risk patient population 
that will benefit from implementation of pre-emptive 
PGx panel testing [21]. In one retrospective analysis in 
patients who underwent panel based PGx testing, the 
presence of a gene-drug interaction for CPIC guideline 
medications was associated with an increased risk of 
90-day hospital readmission by more than 40% [22]. An 
ongoing prospective study will determine whether PGx 
panel testing is feasible in the acute care setting [23].

Our study examined the evidence based CPIC guide-
lines and applied them in a clinical setting to quantify 
their burden on actual patients. Based on the widespread 
prevalence of PGx alleles and PGx-affected medication, 
there would be substantial benefit to preemptive, univer-
sal PGx testing in both patient outcomes and healthcare 
costs. Warfarin is a prime example for a drug in wide-
spread use where genetic information may inform dos-
ing in a large proportion of patients. Prior knowledge 
of warfarin responsiveness can reduce trial and error in 
dose titration towards a safe and effective dose. Three 
randomized controlled trials of PGx guided warfarin 
dosing have been performed and one found PGx testing 
to increase the time in therapeutic range [24] and one 
of the studies showed an improvement in the compos-
ite clinical outcome of major bleeding, supratherapeutic 
International Normalized Ratio (INR), venous thrombo-
embolism, or death [25]. While the use of reactive PGx 
testing may not be clinical feasible, the use of preemptive 
testing for PGx genes to guide cardiovascular medica-
tions including warfarin was found to be cost-effective 
[26]. In addition to dose-modifying effects, pharma-
cogenomic analyses have identified many gene-drug 

interactions such as clopidogrel where patient carrying 
an alternate allele is entirely indicated against taking a 
drug due to high risk of nonresponse leading to adverse 
outcomes. Nonresponse to clopidogrel treatment result-
ing in stroke or myocardial infarction is a severe outcome 
for patients that leads to dramatic economic costs but is 
preventable. Information on an individual patient’s drug 
metabolizer status can aid clinicians in making informed 
decisions regarding which drug regimen should be 
selected for patients based on their genetic information. 
Owing to the ancestry diversity of the PMBB, we were 
able to demonstrate that the burden of PGx alleles dispro-
portionately affects certain ancestry groups. We report 
notable differences in phenotype frequency for many of 
the studied genes in each ancestry group. In aggregate, 
European ancestry individuals have significantly lower 
average counts of actionable alleles than individuals of 
African ancestry (p < 0.0001), as well as compared to all 
non-European ancestry combined. Furthermore, patients 
of Asian ancestry taking clopidogrel therapy have greatly 
increased rates of treatment modifying CYP2C19 
reduced metabolizer phenotypes than individuals of 
European ancestry, quantifying a burden of PGx in actual 
patients. IM and PM phenotypes may result in increased 
risk of major adverse cardiovascular events in clopi-
dogrel users, and therefore this demonstrates an unequal 
burden of PGx-related harms in clopidogrel patients of 
Asian ancestry. We found similar trends of differential 
PGx burden across ancestry groups for other widely used 
drugs including tacrolimus and voriconazole. Despite 
the observation of ancestry-specific patterns in PGx, we 
strongly discourage the use of ancestry as a proxy for 
PGx testing. In the case of clopidogrel, although a major-
ity of clopidogrel-prescribed patients of Asian ancestry 
have actionable PGx alleles in CYP2C19, 42.3% still do 
not. Furthermore, in clopidogrel-prescribed patients of 
European ancestry, a still-notable 27.0% of patients have 
actionable CYP2C19 alleles. These findings demonstrate 
how inaction towards the implementation of pharmaco-
genetic testing harms all patients, but disproportionately 
harms patients of non-European ancestry.

Although our study highlighted a large proportion of 
pharmacogenomic alleles with CPIC guidance in the 
PMBB population, several limitations should be noted. 
We identified variations based on an integrated call set 
of genotype chip and whole exome data in VCF format, 
which does not capture PGx-relevant copy number or 
structural variations (in CYP2D6) and is also not well 
suited to calling HLA polymorphisms. As a result, we 
used presumptive CYP2D6 calls from PharmCAT which 
must be interpreted carefully. Another limitation is that 
although we were able to collect data on the prescribed 
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medications during encounters at Penn Medicine, we 
are unable to confirm if the prescription is new or was 
prescribed at another clinical care setting. Thus, identi-
fication of patients with adverse reactions to drugs with 
CPIC Level A or B guidelines from the EHR has also been 
challenging. To address this, future work could involve 
developing algorithms for identifying previously admin-
istered drugs by mining through patient notes and EHR 
fields, and mining through longitudinal EHR data, allergy 
fields, and notes for adverse reactions and nonresponse 
to drugs. This would allow us to further quantify the 
burden of PGx as a measure of actual health outcomes. 
It should also be noted that although the integrated call 
set allowed us to genotype and average of 66% of PGx 
sites included in CPIC Level A or B guidelines, the miss-
ing sites in some cases limit our ability to call phenotypes 
resulted in some patients having missing or ambiguous 
calls for certain genes. Targeted PGx panels or whole-
genome sequencing could largely avoid this issue, but 
targeted panels would eventually become obsolete as new 
alleles are discovered. Our study is unique in that it spe-
cifically explores how ancestry-specific patterns in PGx 
allele frequencies are reflected in patients receiving drugs 
for which they have a gene-drug interaction. Although 
we have more than 500 patients in every studied ances-
try group which is enough to confidently demonstrate 
differences in phenotype frequencies, the relatively small 
proportion of patients who have been prescribed each 
drug limits our power to draw conclusions about ances-
try-specific drug-gene interactions. As more patients 
are enrolled and genotyped by PMBB, and other data 
becomes available in resources like All of Us, we will gain 
more power to disentangle these ancestry-specific asso-
ciations, which carry major implications for the effect of 
PGx across different ancestry groups [27]. It is important 
to consider relevant PGx alleles in all ancestry groups 
as more health systems consider clinical implementa-
tion of PGx; broad, diverse inclusion of multiple ances-
try groups in clinical implementation has the potential to 
reduce health disparities. Lastly, the CPIC guidelines are 
easily accessible, but implementation of these guidelines 
poses several challenges in a clinical setting. One impor-
tant challenge is the ability to return timely genotyping 
results prior to prescription of the drug. Based on our 
findings, it seems appropriate to perform genetic testing 
on patients preemptively and universally before they are 
prescribed a relevant PGx-informed drug. However, this 
poses many challenges which include but are not limited 
to cost effectiveness, insurance coverage, future discov-
ery of new actionable genes and alleles, integration of real 
time clinical decision support, availability of resources, 
patient-prescriber education, and review of genetic 
reports among others.

Conclusions
With the increasing availability of clinical decision sup-
port tools like PharmCAT, it will soon be possible to 
add pharmacogenetic information to EHR systems such 
as Epic. With proper education and resources, along 
with increased adoption of PGx testing, healthcare 
professionals will be able to utilize this information to 
make genetics-informed drug dosing and prescription. 
Addressing these barriers will be imperative before 
widespread adoption of clinical PGx can be achieved. 
Implementation of PGx into clinical workflows has the 
potential to affect clinical care for a very large propor-
tion of the health care population and is a significant 
contributor to fully realizing the practice of precision 
medicine.
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