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Abstract 

Objective:  This paper intends to propose a method of using TransResSEUnet2.5D network for accurate automatic 
segmentation of the Gross Target Volume (GTV) in Radiotherapy for lung cancer.

Methods:  A total of 11,370 computed tomograms (CT), deriving from 137 cases, of lung cancer patients under 
radiotherapy developed by radiotherapists were used as the training set; 1642 CT images in 20 cases were used as 
the validation set, and 1685 CT images in 20 cases were used as the test set. The proposed network was tuned and 
trained to obtain the best segmentation model and its performance was measured by the Dice Similarity Coefficient 
(DSC) and with 95% Hausdorff distance (HD95). Lastly, as to demonstrate the accuracy of the automatic segmenta-
tion of the network proposed in this study, all possible mirrors of the input images were put into Unet2D, Unet2.5D, 
Unet3D, ResSEUnet3D, ResSEUnet2.5D, and TransResUnet2.5D, and their respective segmentation performances were 
compared and assessed.

Results:  The segmentation results of the test set showed that TransResSEUnet2.5D performed the best in the DSC 
(84.08 ± 0.04) %, HD95 (8.11 ± 3.43) mm and time (6.50 ± 1.31) s metrics compared to the other three networks.

Conclusions:  The TransResSEUnet 2.5D proposed in this study can automatically segment the GTV of radiotherapy 
for lung cancer patients with more accuracy.

Keywords:  Lung cancer, GTV, Medical image segmentation, Radiotherapy, Residual connection, Dual attention 
mechanism
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Innovation

(1)	 The proposed 2.5D architecture for residual con-
nection uses 2D convolutional layers to extract 2D 
edge feature information of targets in CT images 

and accurately restore edge details in segmenta-
tion results, and 3D convolutional layers to extract 
abstract semantic features by exploiting interlayer 
information in CT images.

(2)	 We proposed the adoption of Res-Dual-Attention 
Module, which uses the dual attention mechanism 
of channel attention brought by SE Block and global 
attention brought by Transformer, and combines 
two different operators, Convolution and Trans-
former, to extract local features and global features 
simultaneously.
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Introduction
In February 2022, the National Center of Cancer (China) 
released the latest national cancer statistics [1]: lung 
cancer is the number one malignant tumor in China in 
terms of incidence and the number one cause of can-
cer deaths. According to the International Agency for 
Research on Cancer (IARC) of the World Health Organi-
zation (WHO) [2], the number of new lung cancer cases 
in 2021 was 2.2 million, ranking second only to breast 
cancer with 2.26 million cases; and there were 1.8 million 
lung cancer deaths, out of the 9.96 million cancer deaths 
worldwide, far exceeding the death rate of other cancers 
and making lung cancer the mostly deadly cancer type. 
It is clear that lung cancer poses a great threat to human 
health.

Radiation therapy is one of the main treatments for 
lung cancer, and about 60%-70% of lung cancer patients 
need to receive radiation therapy [3]. In recent years, 
with the rapid development of medical imaging technol-
ogy and computer technology, we have entered the era 
of image-guided high-precision radiotherapy in tumor 
radiotherapy. Precision radiotherapy is initially based on 
the manual outlining of the radiotherapy target area and 
the endangered organs by the medical professionals [4]. 
The normal delineation of target areas and organs-at-risk 
(OARs) is a key step in tumor radiotherapy planning. In 
order to reduce the complications of radiotherapy and 
the risk of secondary malignant tumor caused by radia-
tion, it is necessary to accurately delineate the target area 
and OARs. Even though there are unified principles and 
consensus for reference, the manual outlining of radio-
therapy targets is still largely based on the experience of 
the practitioner [4]. This method is highly variable and 
time-consuming, which has an impact on the efficacy 
of radiation therapy. Artificial intelligence is increas-
ingly used in the medical field [5], and the use of artificial 
intelligence techniques can provide optimized and effec-
tive decisions with minimal error, offering unparalleled 
advantages in improving the efficiency and consistency 
of target outlining in radiotherapy. Convolutional neural 
network (CNN) is a type of deep learning and has bet-
ter results in medical image segmentation because CNN 
is insensitive to image noise, blur, and contrast [6] and 
is currently one of the most successful algorithms to 
achieve image segmentation. In the field of tumor radi-
ology, a trained CNN model, accelerated by a graphics 
processing unit (GPU), can achieve the task of fast seg-
mentation of the Gross Target Volume (GTV) as well 
as normal tissues and organs. Rhee et al. [7] used CNN 
for automatic segmentation of the clinical target vol-
ume (CTV) of pelvic tumors on CT localized in radio-
therapy and achieved a DSC of 0.86. Men et al. [8] used 
an end-to-end Deep Deconvolutional Neural Network 

to segment the primary lesion of nasopharyngeal car-
cinoma with a DSC of 0.809. Wang et al. [9] proposed a 
new patient-specific adaptive convolutional neural net-
work (A-net), which used the weekly MRI images and the 
segmentation of the GTV to train this network, with a 
DSC of 0.82 ± 0.10. Zhang et al. [10] introduced a modi-
fied ResNet to segment the GTV of non-small cell lung 
cancer patients on the CT images, with the average DSC 
level of 0.73. Although deep learning based automatic 
segmentation techniques have rapidly applied in delin-
eating the OARs and GTV in lung cancer radiotherapy, 
when it comes to automatic segmentation of the GTV in 
radiotherapy planning for lung cancer, the studies are still 
not much or deep enough, and the segmentation perfor-
mance is not very well. Therefore, there is an urgent need 
for a method to automatically segment the GTV of lung 
cancer in the field of radiotherapy to improve the effi-
ciency and accuracy of GTV outlining.

In this paper, we propose that a TransResSEUnet2.5D 
network can perform accurate segmentation of GTV in 
radiotherapy for lung cancer, and greatly save the time for 
segmentation.

Materials and methods
TransResSEUnet2.5D network
Network architecture design
The TransResSEUnet 2.5D network proposed in this 
study is a 3D CNN network based on an Encoder-
Decoder architecture (3D Unet [11]), as shown in Fig. 1. 
The encoder part is used to extract edge features and 
semantic features, and the decoder part performs Feature 
Concatenate by fusing low-level features with high-level 
features through Skip Connection, and up-samples high-
level features using Transpose Convolution to gradually 
recover to the original resolution of the input image. The 
probability maps of the background and target classes are 
calculated as the output of the network using a convolu-
tional layer with a 1 × 1×1 kernel and a Softmax layer.

Res‑SE module
The TransResSEUnet2.5D uses the Res-SE Module as the 
basic unit for feature extraction. As shown in Fig. 2, the 
Res-SE Module consists of two parts, Res-SE Block-A 
and Res-SE Block-B, where the use of residual connec-
tion [12] effectively alleviates the problem of gradient dis-
persion. The difference between the two is that, Res-SE 
Block-A serves to reduce the spatial resolution and the 
number of channels of the feature map by modifying the 
convolution step and the number of output channels of 
the convolution layer in the red dashed box, while Res-
SE Block-B does not have any effect on the spatial resolu-
tion and the number of channels of the feature map and 
is only used to extract features.
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Since the activation function ReLU [13] (Linear recti-
fication function) is constant to 0 in the negative region, 
when the learning rate is too high and the parameters 
of the model are adjusted too much, it may cause the 
output of a large number of neurons to be set to 0. If 
all the neurons in a certain hidden layer are set to 0, 
it will cause an interruption in training, and once the 
neurons are set to 0, they will not recover and proceed 

to a permanent death, as the neuronal parameters will 
not be updated and the Leaky ReLU [14] (Leaky linear 
rectification function) gives a non-zero slope to all neg-
ative values; therefore, Leaky ReLU is used as the acti-
vation function and the slope is set to 0.01.

Batch Normalization [15] (BN) layer is introduced 
between each convolutional layer and the activation 
function, and the BN layer is used to calculate the mean 

Fig. 1  Overall network architecture diagram

Fig. 2  Res-SE Module
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and variance of the output of the previous convolutional 
layer to transform the data into a stable distribution 
with the mean of 0 and deviation of 1. By doing so, we 
can effectively prevent gradient explosion or dispersion, 
reduce the dependence on the initialization parameters 
of the network, allow the use of a larger learning rate in 
training, and regularize the network to a certain extent, 
thus the convergence speed of the network will be accel-
erated, and the accuracy of target recognition will be 
enhanced.

The squeeze and excitation module (SE Block) is 
introduced after the second BN layer in each Res-SE 
Block. The SE Block was first used for target classifi-
cation [16] and is now increasingly used in segmenta-
tion tasks. As shown in Fig.  3, the first step of the SE 
Block uses the Global Average Pool (GAP) layer to 
compress the spatial resolution of the feature map to 
a size of 1 × 1×1 and collapse the feature map into a 
one-dimensional vector. The second step uses the Mul-
tilayer Perceptron [17] (MLP, Multilayer Perceptron), 
wherein the number of channels in the implicit layer is 
reduced to one rth of the input channels; the reduction 
of the number of channels leads to information loss and 
facilitates the removal of redundant information, and 
the decay factor r, which controls the degree of infor-
mation loss, is a hyperparameter. Hu et  al. [16] have 
experimented with different values of 2, 4, 8, 16, etc., 
and found that the classification accuracy is highest 
when r = 16, and since the minimum number of chan-
nels in the convolutional layer in our study is a 1/4 of 
that of the Hu’s study [16], so r = 16/4 = 4 is taken. The 
third step uses Sigmoid to normalize the feature values 
to between 0 and 1 and restore them to their original 
dimensions to obtain the weights of each feature chan-
nel in the input feature map. Finally, the weights of the 

feature channels are multiplied with the input feature 
map to play the role of enhancing useful features and 
suppressing useless features, so that subsequent layers 
learn from them. The weights of the feature channels 
are multiplied with the input feature map to enhance 
the useful features and suppress the useless features, so 
that the subsequent layers can learn new features with 
more discriminative power for target segmentation and 
finally achieve a more accurate target segmentation.

2.5D architecture
Chen et  al. [18] found that the pixel spacing of aniso-
tropic CT causes the edges of segmented targets to be 
sharper in two dimensions and rougher and fuzzier in 
three dimensions, leading to the difficulty for the network 
to learn the edge detail features of the target and result-
ing in the outcome that the final segmented target con-
tours are less close to the edges of the segmented targets. 
In deep neural networks, the lower layer features carry 
more edge information, while the higher layer features 
carry more abstract semantic information. The 2D con-
volutional layers are better at extracting the edge features 
of the segmentation target, while the 3D operation is bet-
ter at extracting the semantic features of the segmenta-
tion target in three dimensions, so Chen [18] proposed 
a 2.5D architecture, in which 2D convolutional layers are 
used in the upper part of the network to extract the 2D 
edge feature information of the target in the CT image 
and accurately restore the edge details in the segmenta-
tion result; and 3D Convolutional layers are used in the 
lower part to extract abstract semantic features from the 
interlayer information in the CT images. The layer thick-
ness of CT in the dataset of our study is about 5 times 
the pixel spacing in x and y directions, which is 3 times of 
that of the study of Chen [18], so it is more suitable to use 
2.5D architecture [18] (See Fig. 4).

As shown in Fig. 1, the Res-SE Module in the encoder 
and decoder parts of Stage 1 and Stage 2 of the network 
is defined as a 2D module, i.e., the convolutional kernel 
size and convolutional step size in all convolutional layers 
are set to 1 in D dimension to focus on learning the 2D 
edge features of the segmentation target; and then the 3D 
Res-SE Module in the encoder and decoder parts of Stage 
3 and Stage 4 is used to learn the semantic features of the 
segmentation target in 3D space; and lastly, the Res-Dual-
Attention Module is used in Stage 5 to extract more dis-
criminative features using a dual-attention mechanism.

Res‑dual‑attention module
Local features are compact vector representations of 
local neighborhood, while global features include con-
tour representations, shape descriptors, and object Fig. 3  SE Block
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representations over long distances, etc. Both are 
extremely important for image segmentation tasks. In 
CNN, convolutional operations are good at extract-
ing local features, but still have limitations in capturing 
global feature representations. In contrast, Transformer 
[19], designed for sequence-to-sequence prediction, has 
an innate global self-attention (GSM) mechanism, which 
is not only powerful in modeling global context, but 
also shows excellent transferability to downstream tasks 
under large-scale pre-training. It has been successfully 
used in machine translation and natural language pro-
cessing [20, 21]. In recent years, the attempts at various 
image recognition tasks with Transformer have also met 
or even exceeded state-of-the-art performance [22–24].

However, because Transformer treats the input as a 
1D sequence and focuses on modeling the global con-
text at all stages, it leads to low-resolution features that 
lack detailed localization information. As such informa-
tion cannot be recovered efficiently by directly up-sam-
pling to full resolution, coarser segmentation results 
are consequently produced. Therefore, our study pro-
poses the adoption of the Res-Dual-Attention Module, 
which utilizes the dual attention mechanism of chan-
nel attention brought by SE Block and global attention 
brought by Transformer and combines two different 
operators of convolution and Transformer to extract 
local features and global features simultaneously.

Res-Dual-Attention Module is divided into two serially 
connected sub-modules. The first step uses Res-SE Block-
A to downsample the input feature map and increase 

the feature channel to C2, and the second step uses Res-
Trans Block to extract global features. Res-Trans Block is 
divided into four steps.

Image Serialization: Res-Trans Block first uses a convo-
lutional layer for linear mapping, increasing the feature 
channels to C3 = 512, and then tokenizes the feature map 
by collapsing the D2, H2, and W2 dimensions into one 
dimension to form a feature map f of C3 x P (P = D2 x H2 
x W2), which can be treated as P tokens whose individual 
lexical element is encoded with the length C3.

Position Embedding: To encode the spatial location 
information of each lexical element, this study uses a 
learnable position embedding module and preserves the 
spatial location information by adding it directly to the 
feature map f.

Transformer Layers: Res-Trans Block uses M Trans-
former layers, where each Transformer layer consists of 
Multi-Head Self-Attention (MSA) and Multi-Layer Per-
ceptron (MLP) (Eqs.  2–3), so the output of the Trans-
former in the mth layer can be expressed as the following 
equation

LN refers to Layer Normalization (Layer Normaliza-
tion [25]),zm denoting the output of the Transformer at 

(1)z0 = F + PE

(2)z∗m = MSA(LN (zm−1))+ zm−1

(3)zm = MLP
(

LN
(

z∗m
))

+ z
∗
m

Fig. 4  Res-Dual-Attention Module
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the mth layer; MSA contains H self-attentive modules; 
and MLP is a three-layer perceptron with an implicit 
layer h. By experiments, the segmentation is best when 
M = 4, H = 8, and h = 4096.

Image deserialization: Since the input dimension of 
the subsequent decoder part is a 4-dimensional tensor, 
the feature sequence output from Transformer Layers is 
expanded into a 4-dimensional tensor, and a convolution 
layer is used to reduce the number of feature channels to 
256 and add up with the input feature maps of sub-mod-
ules to form a residual structure, which is beneficial to 
the training of Transformer Layers with a higher number 
of parameters.

Experiment and analysis
Construction of the data set
The dataset for this study was obtained from the local-
ized CT images of 127 lung cancer patients from the 
Radiotherapy Center of Xiangnan College Hospital, and 
the CT images of 50 lung cancer patients, which were 
provided by the Automatic Structure Segmentation for 
Radiotherapy Planning Challenge 2019 (MICCAI Struct-
Seg2019) in the dataset titled Gross Target Volume seg-
mentation of lung cancer [26]. The applied images in this 
study were collected by a large-aperture slice spiral CT 
simulator (Phillips  Medical  System,  Brilliance CT Big 
Bore, OH,  USA) of the Affiliated Hospital of Xiangnan 
University, according to a standardized CT acquisition 
protocol: tube voltage 120 V, tube current 250 mAs, layer 
thickness 5  mm, layer spacing 5  mm, resolution Stand-
ard, matrix 512 × 512. By parsing the DICOM file, the 
grayscale values of the original image CT were mapped 
to the range of 0–255, and the window width of 400 and 
window position of 40 were adjusted to change the con-
trast and brightness of the images. The GTV contour of 
lung cancer, which was manually outlined by the oncol-
ogy radiologist, was mapped onto the original image 
with a resolution of 512 × 512, and the grayscale values 
were filled according to the key values of GTV to gener-
ate a mask map as the label for training. All datasets were 
manually segmented by two radiotherapists, who fol-
lowed the guidelines for lung cancer treatment provided 
by the Chinese Society of Clinical Oncology (CSCO, 
CSCO) [27] and the National Comprehensive Cancer 
Network (NCCN) network [28], and then confirmed by 
two radiotherapists with the title of associate chief physi-
cian or higher.

The training set includes a total of 11,370 CT images, 
which were taken from 87 patients from the hospital 
where the authors of this study work, and 50 patients 
whose information became available through the mic-
cai StructSeg2019. The validation set is 1642 CT 
images of 20 patients from our hospital. The test set 

consists of 1685 CT images of 20 patients. After data 
cleaning and enhancement, they were transported to 
TransResSEUnet2.5D for training.

Implementation details
The input image size is 32 × 256×256, batch size is 4, the 
optimization method is Adam, the initial learning rate is 
1e-3, the weight decay factor is 1e-4, and the polynomial 
learning rate decay strategy with a power of 0.9 is used 
to train a total of 500 epochs. Software and systems used 
in the study include Ubuntu Server 20.04, CUDA11.1, 
cuDNN8.4, and the PyTorch deep learning framework 
of v1.10.0. All training was done on two RTX3090 model 
GPUs. To prevent overfitting, data enhancement tech-
niques such as random cropping, random panning, ran-
dom rotation, random scaling, random Gaussian noise, 
and random mirroring were used to expand the size of 
the training set. The training loss function uses the aver-
age Dice loss function [29] and the cross-entropy loss 
function, and the loss values of both are summed as the 
total loss value.

Experimental design
To demonstrate the effectiveness of TransResSEUnet2.5D 
and the improvement of each part, four experiments 
were done separately. (1) Unet3D uses the classical 3D 
Unet architecture with two 3DConv + BN + LeakyReLU 
Modules for the encoder and decoder parts of 
each stage, respectively; (2) ResSEUnet3D replaces 
3DConv + BN + LeakyReLU with 3D Res-SE Mod-
ule; (3) ResSEUnet2.5D replaces the 3D Res-SE Mod-
ule with 2D Res-SE Module in the first two stages; (4) 
TransResSEUnet2.5D is the network proposed in this 
paper.

Splitting accuracy evaluation
In this study, we calculated Dice for the entire image 
sequence of each patient, three-dimensionally, and the 
Dice Similarity Coefficient (DSC) [29] and 95% Hausdorff 
Distance (HD95) [30] were used to evaluate the auto-
matic segmentation results of the test set.

VA : segmentation results provided by radiothera-
pists;VB : segmentation results obtained from the 
network.

SA : surface of the segmentation results provided by 
radiotherapists; SB : surface of the segmentation results 

(4)DSC =
2|VA = VB|

|VA| + |VB|

(5)
HD95 =

1

2
[K95 min d(z, SA)+ K95(min d(z, SB))]
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obtained from the network; d(z, SA) is the shortest dis-
tance from the surface voxel Z of the segmentation 
results obtained from the network to the surface of the 
segmentation results provided by radiotherapists.
SA;d(z, SB) is the shortest distance from the surface 

voxel Z of the segmentation result provided by the radi-
otherapists to the surface of the segmentation result 
obtained from the network SB;K95 indicates 95%.

Statistical analysis
Statistical analysis was performed using SPSS 21.0 sta-
tistical software. The measurement data were tested for 
normal distribution using the Kolmogorov–Smirnov test 
and expressed as the mean ± standard ( x ± s ). One-way 
analysis of variance (ANOVA) with Dunnett’s multiple 
comparisons test was used for multiple comparisons of 
normal distribution between groups. Dunnett’s T3 was 
used for multiple comparisons of non-normality distribu-
tion between groups. The significance alpha level was set 
at 0.05, and P < 0.05 indicated that the difference was sta-
tistically significant.

Results
In this study, a total of 11,370 CT images of radiotherapy 
for lung cancer patients and the GTVs manually outlined 
by radiotherapists were used as the training set to train 
our newly designed TransResSEUnet2.5D network for 
automatic image segmentation. The consistency of the 
tuned and trained TransResSEUnet2.5D network model 
was verified by using 20 sets of 1642 CT images and 
GTVs outlined by radiotherapists as the validation set, 
and the accuracy of the network for automatic segmenta-
tion was determined by DSC and HD95 analysis. Finally, 
the validity and accuracy of the TransResSEUnet2.5D 
network model were tested with a test set consisting of 
20 sets of 1685 CT images, and the automatic segmenta-
tion performance of the network model for radiotherapy 
localized images was assessed thoroughly.

TransResSEUnet2.5D network training
During the segmentation training of the network, the 
CT images of the validation set are input to the cur-
rent model every training cycle (epoch) to get the pre-
dicted segmented images, and the average value of DSC 
is counted based on the real segmented images. If this 
DSC value is larger than the DSC values of all previous 
training cycles, the training model is saved and recorded 
as the best training model. When the training is finished, 
the CT images of the test set are input to the best training 
model to get the predicted segmented images, and the 
average values of DSC and HD95 are counted based on 
the real segmented images. Figure 5A, B demonstrate the 
convergence of the loss and DSC values of the training 

set as the iteration period increases during the training 
of the network, and Fig. 5C, D show the convergence of 
the loss and DSC values of the validation set as the itera-
tion period increases during the training of the network 
model. By comparing the training and validation curves, 
it is easy to observe that the training DSC and loss are 
worse than the validation DSC and loss, which might be 
because the training is a random crop of 32 × 256×256 
size image blocks for 3D images, the validation is to crop 
32 × 256×256 image blocks in the center of the GTV, 
the difficulty of these two is not the same, and the image 
block during the validation is easier to segment out of the 
GTV, so that the DSC is larger and the loss is smaller. The 
TransResSEUnet2.5D network constructed in this study 
has converged after 500 epochs during the training pro-
cess. The model also has a relatively stable generalization 
ability after 300 epochs.

Network architecture comparison
Figure  6 shows the results of automatic segmentation 
of the GTV of radiotherapy for lung cancer patients 
using UNet2D, UNet2.5D, Unet3D, ResSEUnet3D, 
ResSEUnet2.5D, and TransResUnet2.5D networks, 
respectively. Compared to the other network models, the 
segmentation results presented in this study are closer to 
the manual outline results of the radiotherapists. It can 
also be seen from Fig.  6 that the segmentation results 
of the remaining five automatic segmentation networks 
showed false-positive discrete regions and under-seg-
mentation. The TransResSEUnet 2.5D network, on the 
other hand, has constraints on the strong shape of the 
segmentation, the segmentation results are more com-
plete, and the problems of false-positive region and 
under-segmentation are effectively controlled. At the 
same time, the GTV edges manually outlined by the radi-
otherapists have jagged noise because the radiotherapists 
cannot do pixel-level adjustment when outlining, while 
the GTV regions segmented by the TransResSEUnet2.5D 
model have smoother boundaries and better fit the actual 
GTV state because they are detected at the pixel level.

From Table  1 the statistical results of the six network 
models for automatic segmentation of the GTV in radio-
therapy for lung cancer patients are more clearly shown, 
including the mean DSC, mean HD95 and mean time of 
each model. In comparison to the other network mod-
els, the TransResSEUnet2.5D network model proposed 
in this paper has the highest DSC of (84.08 ± 0.04) % and 
the lowest HD95 of (8.11 ± 3.43) mm, indicating that the 
TransResSEUnet2.5D network model that we proposed 
can obtain superior automatic segmentation results than 
the other models. However, in terms of statistical mul-
tiple comparisons, compared with the other five mod-
els, TransResSEUnet 2.5D does not show differences in 
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DSC and HD95. Table 1 also implied that TransResSEU-
net 2.5D presented in this study takes the longest time 
to automatically segment GTV in lung cancer patients 
(6.50 ± 1.31) S. Compared with Unet 2.5D (3.69 ± 0.72), 
Unet3D (3.51 ± 0.58), and ResSEUnet 2.5D (5.52 ± 1.10), 
TransResSEUnet 2.5D shows statistical difference in the 
average segmenting time (P < 0.05). This might be due to 
the complexity of the model.

Discussion
During the planning of radiotherapy, radiotherapists 
need to outline the GTV on CT images layer by layer. 
The quality of GTV outlining determines 60% of the 
overall radiotherapy effectiveness [31]. Manual outlin-
ing by physicians is prone to introduce subjective errors 
and poor traceability. Therefore, a rapid and automated 
GTV outlining method is important for improving the 
overall efficiency and performance stability of radio-
therapy in clinical practice. Currently, researchers have 
used machine learning methods to achieve automatic 

GTV segmentation during radiation treatment for naso-
pharyngeal carcinoma [32, 33], brain tumors [34], and 
breast cancer [35]. Li et al. [32] used a U-net network to 
automatically segment the primary lesion of nasopharyn-
geal carcinoma with a DSC of 0.659; Cardenase et al. [33] 
used a two-channel 3D convolutional neural network 
for automatic segmentation of the GTV of nasopharyn-
geal carcinoma with a DSC accuracy of 0.75, and some 
later studies on automatic segmentation in nasopharyn-
geal carcinoma achieved a DSC accuracy of up to 0.835 
[36].Yang et al. [34] proposed a DCU-Net model with a 
DSC of 0.91 for automatic segmentation of intracranial 
tumors. In another study using DD- Res Net network for 
postoperative breast cancer also achieved a DSC of 0.91 
for automatic segmentation of CTV [35]. In lung can-
cer, some progress has been made. For example, Jiang 
et  al. [37] proposed a multi-resolution residual connec-
tion network for lung tumor volume segmentation and 
showed that the DSC accuracy of automatic segmenta-
tion was 0.74; and Zhang et al. [38] improved the Res Net 

Fig. 5  TransResSEUnet2.5D network training and validating. Training loss function curve for each epoch (A), and training DSC curve for each epoch 
(B), validation loss function curve for each epoch (C), and validation DSC curve for each epoch (D)
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network and applied it to the GTV segmentation of non-
small cell lung cancer, and the DSC accuracy of segmen-
tation could reach 0.73. Through these studies, it can be 
seen that accurate automatic segmentation of the GTV 
for lung cancer radiation therapy can be achieved using 
the correct method.

In this study, we proposed a TransResSEUnet2.5D 
network to explore the accurate segmentation of the 
GTV for radiation treatment of lung cancer patients. 

According to the segmentation results, our proposed net-
work segmentation is relatively effective, especially in the 
margins of the burr, where we automatically segmented 
the DSC of (84.08 ± 0.04) %. This is due to the special 
2.5 D architecture of the TransResSEUnet 2.5D network. 
2.5D architecture uses 2D convolutional layers, which 
can restore edge details in segmentation results more 
accurately for 2D edge feature information, to extract 
features in CT images, and it also uses 3D convolutional 

Fig. 6  Results of different network structures for the GTV segmentation of radiotherapy for lung cancer
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layers, which extract interlayer information in CT images 
by using abstract semantic features. Such a special net-
work architecture is compatible with the advantages of 
both 2D and 3D convolutional layers. Compared with the 
simplest Unet2D DSC (77.07 ± 0.09) %, 7% higher, which 
also fully demonstrates the advancement of our research 
work. The lack of statistically significant differences may 
be due to the small sample size, but in later experiments 
the sample size can be expanded this year to explore the 
statistical significance.

In the test set of automatic segmentation of GTV 
in 20 lung cancer patients, the DSC metric of the 
TransResSEUnet2.5D network was higher than all other 
five network models, and the variance was smaller. It 
indicates that the automatic segmentation effect of 
TransResSEUnet2.5D is more stable and the gener-
alization performance of the model is better. HD95 is a 
measure of the degree of distortion of the segmentation 
results, and its magnitude is influenced by the num-
ber of outlier points [30]. Through statistical analysis, 
TransResSEUnet2.5D segmented images with greater 
continuity and produced fewer outliers in 20 test set 
patients, and the HD95 metric was superior to other 
network models. Currently, HD95 is in the range of 7.19- 
9.35 mm in most studies [39]. In our study, the HD95 of 
TransResSEUnet2.5D was (8.11 ± 3.43) mm, and it was 
better than the other models, to some certain, but there 
was no statistical difference, which might be due to the 
small sample size. The study by Cui et al. [40] used DVNs 
network to automatically segment lung tumors with DSC 
of 83.2% and HD95 of 4.57 mm; hence the index of HD95 

was superior to our study. One possible reason lies in the 
differences of the CT thickness between our studies. All 
patients in our study were treated with IMRT and the 
layer thickness of their CT was 5 mm, whereas Cui et al. 
[40] studied non-small cell patients treated with SBRT 
and the layer thickness of their scanned CT was 2 mm or 
3.3 mm. Besides, lung cancer patients treated with SBRT 
had smaller tumors (in the Cui et al. [40] study, the GTV 
mean effective diameter of GTV was 11.039 mm). None-
theless, the result differences between our studies suggest 
that there is a need to further improve the segmenta-
tion accuracy of our proposed network by regulating the 
parameters and the depth of iteration during automatic 
segmentation training. In addition, the amount of data 
in this study is still relatively small, especially lacking 
multicenter data, which will affect the robustness of the 
segmentation model. These are some issues that require 
further attention in our follow-up research.

The TransResSEUnet 2.5D network proposed by this 
research achieves the clinical applicability requirements 
in the indicators of GTV automatic segmentation of 
DSC and HD95 for lung cancer radiotherapy patients, 
and also greatly improves the efficiency of radiotherapy 
delineation. It has been reported that radiotherapy tar-
gets for lung cancer are manually delineated by experi-
enced radiotherapy physicians, which took nearly 32 min 
[41]. Ermiş et al. automatically segmented the target area 
of one glioma patient based on deep learning methods, 
which took about 10  s [42]. In our study, the automatic 
segmentation time of GTV for each lung cancer patient 
was shortened to less than 8  s, about (6.50 ± 1.31) s. 

Table 1  Multiple comparison of experimental result indicators of 6 networks ( x ± s)

Metric Model(X ± S) P 95% Confidence interval

Lower bound Upper bound

DSC (%) TransResSEUnet2.5D (84.08 ± 0.04) Unet2D (77.07 ± 0.09) 0.090 − 0.006 0.146

Unet2.5D (81.51 ± 0.06) 0.910 − 0.032 0.083

Unet3D (74.53 ± 0.17) 0.358 − 0.419 0.233

ResSEUnet3D (80.56 ± 0.06) 1.000 − 0.042 0.064

ResSEUnet2.5D (82.97 ± 0.06) 0.456 − 0.018 0.088

HD95 (mm) TransResSEUnet2.5D (8.11 ± 3.43) Unet2D (15.25 ± 9.04) 0.050 − 14.278 0.002

Unet2.5D (9.69 ± 6.30) 0.996 − 6.797 3.625

Unet3D (13.91 ± 13.47) 0.662 − 16.179 4.594

ResSEUnet3D (11.14 ± 5.43) 1.000 − 4.932 3.550

ResSEUnet2.5D (8.80 ± 4.81) 0.486 − 7.658 1.612

Average prediction time 
of single series (s)

TransResSEUnet2.5D (6.50 ± 1.31) Unet2D (6.30 ± 2.29) 0.944 − 1.377 0.807

Unet2.5D (3.69 ± 0.72) 0.000 1.644 3.889

Unet3D (3.51 ± 0.58) 0.000 1.853 4.035

ResSEUnet3D (4.69 ± 0.96) 0.301 − 0.318 2.191

ResSEUnet2.5D (5.52 ± 1.10) 0.001 0.557 2.9574
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Great progress has been made while ensuring accuracy. 
TransResSEUnet 2.5D network prediction time is longer 
than Unet 2.5D (p = 0.000), Unet3D (p = 0.000), and Res-
SEUnet 2.5D (p = 0.001). This might be due to the fact 
that the TransResSEUnet 2.5D network adds Transform-
er’s modules to the ResSEUnet2.5D, making the model 
more complex, with more parameters and longer natu-
ral prediction times. When the segmentation accuracy is 
not high, even if the prediction time is short, this is also 
not clinically meaningful. Therefore, the TransResSEUnet 
2.5D network we proposed is of clinical significance.

In summary, on the automatic GTV segmentation 
task for radiation treatment of lung cancer patients, 
the TransResSEUnet2.5D network that we proposed 
can effectively prevent the occurrence of overfitting 
even when the training set is not large enough, and it 
effectively mitigates the vanishing gradient problem by 
repeatedly utilizing the feature maps of different layers 
during the training process—providing a new method for 
medical image segmentation.
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