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a Neutrophil prognostic model for predicting 
immune responses in non-small cell lung cancer
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Abstract 

Non-small cell lung cancer (NSCLC) is the most widely distributed tumor in the world, and its immunotherapy is not 
practical. Neutrophil is one of a tumor’s most abundant immune cell groups. This research aimed to investigate the 
complex communication network in the immune microenvironment (TIME) of NSCLC tumors to clarify the interac-
tion between immune cells and tumors and establish a prognostic risk model that can predict immune response 
and prognosis of patients by analyzing the characteristics of Neutrophil differentiation. Integrated Single-cell RNA 
sequencing (scRNA-seq) data from NSCLC samples and Bulk RNA-seq were used for analysis. Twenty-eight main cell 
clusters were identified, and their interactions were clarified. Next, four subsets of Neutrophils with different differen-
tiation states were found, closely related to immune regulation and metabolic pathways. Based on the ratio of four 
housekeeping genes (ACTB, GAPDH, TFRC, TUBB), six Neutrophil differentiation-related genes (NDRGs) prognostic risk 
models, including MS4A7, CXCR2, CSRNP1, RETN, CD177, and LUCAT1, were constructed by Elastic Net and Multivari-
ate Cox regression, and patients’ total survival time and immunotherapy response were successfully predicted and 
validated in three large cohorts. Finally, the causes of the unfavorable prognosis of NSCLC caused by six prognostic 
genes were explored, and the small molecular compounds targeted at the anti-tumor effect of prognostic genes 
were screened. This study clarifies the TIME regulation network in NSCLC and emphasizes the critical role of NDRGs 
in predicting the prognosis of patients with NSCLC and their potential response to immunotherapy, thus providing a 
promising therapeutic target for NSCLC.
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Introduction
Lung cancer is a common malignant tumor in clinics 
worldwide, and about 85% are non-small cell lung cancer 
(NSCLC) [1]. Despite the progress of various treatment 
methods, the 5-year survival rate of NSCLC patients is 
still meager [2]. Immunotherapy checkpoint inhibitors 
have been used for the first-line treatment of patients 
with advanced NSCLC [3], but the proportion of effective 

responders to immunotherapy only reaches 63% [4]. It 
can be seen that an in-depth understanding of NSCLC 
tumor immune microenvironment (TIME) and detec-
tion of immunosuppressive resistance are vital issues 
in current immunotherapy. Due to the heterogeneity of 
immune cells, TIME is a complex system, and the hetero-
geneity of immune cell infiltration is a key factor affecting 
the response and prognosis of NSCLC and other tumor 
types. Therefore, the prognosis model based on specific 
immune cell biomarkers can predict immune response 
and patient prognosis more accurately. Neutrophils 
play a crucial role in resisting infection and maintaining 
dynamic tissue balance, accounting for about 70% of the 
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white blood cells in the human peripheral blood [5, 6]. It 
is worth noting that Neutrophils are also involved in the 
occurrence and development of cancer, which affects the 
initiation, growth, and metastasis of primary tumors [7–
10]. Neutrophils play a role in tumor promotion and anti-
tumor, including promoting tumor cell clearance and 
toxicity to tumor cells [11–14]. It can be seen that Neu-
trophils play an essential role in the immune system and 
cancer. Hence, Neutrophil biomarkers help detect the 
prognosis of NSCLC patients and the immunotherapy 
effect. Single-cell RNA sequencing (scRNA-seq) technol-
ogy is the next generation of high-throughput sequencing 
technology, aiming to detect a single cell’s genetic infor-
mation [15], and reveal heterogeneity between different 
cells. As a powerful tool for exploring TIME, scRNA-seq 
plays an essential role in revealing the TIME map, analyz-
ing the fate of cells, and exploring cell interactions.

In this study, to overcome the shortcomings of the 
small sample, we integrated two large data sets of 
scRNA-seq. On this basis, we analyzed cell communi-
cation to understand the interactions between different 
cells. Then, the pseudotime analysis of Neutrophils was 
carried out to explore the different differentiation states 
of Neutrophils, and the genes related to Neutrophil dif-
ferentiation were screened. Next, based on the propor-
tion of four housekeeping genes, we use the Elastic Net 
regression algorithm and Multivariate Cox regression 
to construct a prognostic risk model and prove that this 
model is an excellent biomarker for predicting the prog-
nosis and immunotherapy effect of NSCLC patients. 
Finally, based on the genes in the prediction model, we 
conducted functional exploration and molecular docking 
research to understand the performance of these genes 
and ways to improve them (Additional file 1: Fig. S1).

Methods
Data sources used for analysis
The NSCLC scRNA-seq datasets were downloaded 
from the GEO Database [16], including GSE131907 and 
GSE148071. GSE131907 dataset contains 58 lung adeno-
carcinomas, and GSE148071 dataset contains 42 NSCLC 
patient data. Bulk RNA-seq data were downloaded from 
the TCGA Database [17] and GEO Database, including 
TCGA-LUAD, TCGA-LUSC, and GSE81089. The TCGA 
cohort was used to analyze the cell type percentages and 
the test set for the prognostic model establishment. The 
GEO cohort was used as the validation set of the prog-
nostic model.

Comprehensive analysis of single cell datasets and cell 
cluster annotation
scRNA-seq dataset analysis was performed using the 
Seurat (v4.1.1) in R. First, the two large scRNA-seq 

datasets were integrated and batch corrected by the 
“IntegrateData” function. Disqualified cells were then 
excluded from the integrated dataset according to 
the following quality control criteria. (1) 500 < nFea-
ture_RNA) < 5000; (2) 200 < nCount_RNA) < 35,000; (3) 
percentage.mt ≥ 10%. The result is a comprehensive data-
set of 202,424 cells. Next, the analysis was performed 
through the standard Seurat workflow. SingleR (v1.8.1), 
CellMarker database [18] and PanglaoDB database 
[19] were used for cell type annotation. In addition, the 
CopyKAT (v1.0.8) was used to distinguish cancer cells 
from normal cells, distinguishing between aneuploid and 
euploid cell populations.

Annotating cell types in bulk RNA‑seq datasets
CIBERSORT is a suite of algorithms for calculating cell 
abundance. The algorithm calculates a non-negative gene 
expression matrix based on the marker gene expression 
of a specific cell type and finally obtains the relative pro-
portions of various cell subsets. Here, we used as input 
all Marker genes of a subpopulation of cells to compare 
differences between different cell types in tissues and 
between normal and tumor tissues [20].

Cell communication analysis
The interaction patterns between cancer cells and other 
cells in the tumor microenvironment were calculated 
using the iTAKL package (v0.1.0) in R. The top 50% of 
highly expressed genes were selected as an input, and 
their location in the cellular communication network was 
determined through the ligand-receptor database.

Determining different differentiation states of cell subsets
Pseudotime trajectories of Neutrophils were constructed 
using the Monocle (v2.22.0). The algorithm uses machine 
learning techniques to arrange cells into trajectories with 
branch points based on a specific set of genes as input. 
The results explain that different clades are cell popula-
tions with different differentiation states. Here we used 
Gene Set Enrichment Analysis (GSEA) to perform func-
tional enrichment analysis of cells in different states. 
Differential analysis was performed between branches, 
and the differentially expressed genes were defined as 
branch-dependent or state-specific genes. These Neu-
trophil marker genes located in different branch states 
were defined as Neutrophil differentiation-related genes 
(NDRGs). In addition, somatic mutation analysis of 
NDRGs was performed using the maftools (v2.10.05) in 
R.

Calculate the prognostic risk model
In order to make the model prediction effect more 
accurate, we used the Elastic Net Regression and the 
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Multivariate Cox Regression method to construct the 
prognostic risk model. The cost function of the Elastic 
Net Regression combines the regularization methods of 
Lasso Regression and Ridge Regression. The size of the 
penalty term was controlled by two parameters, λ, and 
ρ. Here we use the caret (v6.0–92) and glmnet (v4.1–4) 
in R to select the best ρ and λ, identify reliable progno-
sis-related genes, and then determine the prognosis risk 
model based on Multivariate Cox Regression. Finally, we 
tested the performance of the prognostic model using 
the receiver operating characteristic curve (ROC) and 
nomogram in R to judge the predictive accuracy of the 
prognostic risk model and validated the prognostic risk 
model’s effectiveness using the survival analysis in R.

Immune infiltration analysis
In order to evaluate the relationship between the prog-
nostic risk model and immune infiltration, we used the 
single sample Gene Set Enrichment Analysis (ssGSEA) 
algorithm in R to calculate the degree of immune infil-
tration of 28 kinds of immune cells in the TCGA cohort 
to observe the relationship between prognostic risk and 
immune infiltration [21].

Functional research of prognostic gene
To further explore why prognostic gene lead to adverse 
prognosis, we defined the top 30% and bottom 30% of 
patients with prognostic gene expression in the TCGA 
cohort as overexpression and low expression groups. 
Then, differences between groups were analyzed, and 
changes in pathway activity were analyzed by gene set 
variation analysis (GSVA).

Drug screened and docking
Based on functional studies of six prognostic genes, 
we screened five protein-coding genes in addition to 
LUCAT1 for targeted drugs. Drug selection criteria 
focused on the expression of prognostic genes in cancer 
patients, namely increased mRNA expression of MS4A7, 
CXCR2, RETN, and CSRNP1. Since CD177 is known to 
be associated with neutrophils and immune prognosis, 
targeted drugs that promote CD177 expression were 
selected. We used Autodock (Linux, v4.2) for molecular 
docking to study small molecules compound interacting 
with prognostic genes. Firstly, we downloaded the cata-
log of small molecules that interacted with prognostic 
genes from the CTD Database [22], followed by the small 
molecule structures from the PubChem Database [23]. 
Next, we searched and downloaded the biological macro-
molecular structures translated by the prognostic genes 
from the Uniport Database [24]. Finally, the automatic 
docking of biological macromolecules and small molecu-
lar compounds is carried out according to the standard 

docking process, and the small molecule with the sub-
stantial interaction with the biological macromolecules 
is determined by the lowest binding energy. Moreover, 
visualize the results by PyMol (v2.6, Open-Source).

Statistical analysis
R version 4.1.1 was used for statistical analysis. Non-
parametric tests were used for statistical tests between 
different groups, and log rank test was used to test for 
significant differences in survival probability between 
samples, with P-value < 0.05 indicated statistical signifi-
cance. Spearman Rank Correlation Analysis was used to 
calculate correlations.

Results
Identification of cell types
All cells were clustered into 28 clusters by standard pro-
cedure and further annotated into ten cell types: T Cell, 
B Cell, Plasma Cell, Mast Cell, Monocyte, Dendritic 
Cell, Fibroblast, Endothelial Cell, Epithelial/Cancer Cell, 
Oligodendrocytes (Fig.  1A and B). Next, we performed 
further subgroup clustering on lymphoid immune cell 
clusters (T Cell, B Cell, Plasma Cell), myeloid immune 
cell clusters (Monocyte, Dendritic Cell), and Epithelial/
Cancer Cell respectively.

The lymphoid immune cell cluster is further divided 
into 14 clusters. Seven main subgroups are identified by 
annotation: Natural Killer (NK) Cell, CD4 + T Memory 
Cell, CD8 + T Cell, B Cell, Natural Killer T (NKT) Cell, 
Regulatory T (Treg) Cell, and Plasma Cell (Fig.  1D and 
E). Subsequently, myeloid immune cells were roughly fur-
ther divided into 15 cell clusters. The annotation identi-
fied seven major subgroups: Monocyte, Macrophage, 
Dendritic Cell, Granulocyte-Monocyte Progenitor 
(GMP), Plasmacytoid Dendritic Cell, Granulosa Cell, and 
Neutrophil (Fig.  1F and G). For Epithelial/Cancer Cell, 
we used the CopyKAT algorithm to distinguish between 
normal epithelial cells and cancer cells (Additional file 2: 
Fig. S2B). We then further analyzed normal epithelial 
cells to obtain 18 cell clusters. The annotation identi-
fied nine main subgroups: Basal Cell, Pulmonary Alveo-
lar Type II Cell, FOXN4 + Cell, Luminal Epithelial Cell, 
SLC16A7 + Cell, Ionocyte Cell, Langerhans Cell, Cili-
ated Cell, and Secretory Cell (Fig. 1H and I). Marker gene 
expression levels for 28 cell types were shown in Fig. 1C, 
indicating that different cell types had their own specific 
marker genes. Cell annotation information is shown in 
the Additional file 5: Table S1.

Communication network research in the TIME
We then annotated the above 28 cells in the TCGA 
cohort, displayed the proportion of cellular abundance 
(Additional file 2: Fig. S2C), and found that most of the 
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cells were significantly different between normal and 
tumour patients (Fig.  2A). It is interesting to note that 
Neutrophil content was higher in patients, especially in 
tumor patients, and was significantly higher than in regu-
lar patients, which may be related to the tumor promot-
ing and tumor suppressing properties of Neutrophils in 
tumors.

Subsequently, the cellular interaction network in 
the microenvironment was investigated based on 28 
cell clusters (Fig.  2B). Concerning immune check-
points, highly expressed TNFSF14 in Neutrophils, NK 
Cells, and Monocytes, BTLA in Treg Cells, Granulosa 
Cells, and B Cells, together with LTBR and TNFRSF14 
in Cancer Cells, interact to help kill Cancer Cells. In 
addition, CD24, which is highly expressed in Cancer 
Cells, synergizes with SIGLEC10 in Dendritic Cells, 
Macrophages, GMP Cells, B Cells, and Mast Cells to 
mediate tumor immune escape. For cytokines, CCL5 is 
highly expressed in CD8 + T cells, NK Cells, NKT Cells, 
CD4 + T Memory Cells, Plasma Cells, and Langerhans 

Cells and strongly interacts with SDC1 and SDC4 in 
Cancer Cells, affecting cancer progression, develop-
ment, and the survival. Chemokines CXCL1, CXCL2, 
and CXCL8 are highly expressed in Cancer Cells and 
act on CXCR1 and CXCR2, which are highly expressed 
in Neutrophil chemotactic the activity of Neutrophils 
and promote the generation of tumor immune micro-
environment. Regarding growth factors, HBEGF in 
Monocytes, Neutrophils, Dendritic Cells, GMP Cells, 
Macrophages, Alveolar type II Cells, SLC16A7 + Cells, 
and Endothelial Cells, Basal Cells, and Luminal epithe-
lial Cells was associated with high levels in Cancer Cells 
expressed CD9 interacts to mediate tumorigenesis and 
proliferation. We also found that Cancer Cells interact 
with ITGB1 expressed in Fibroblasts, Endothelial Cells, 
SLC16A7 + Cells, FOXN4 + Cells, Basal Cells, GMP 
Cells, Monocytes, and NKT Cells through angiogenic 
signal molecules (VEGFA), which may stimulate tumor 
growth and metastasis.
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were obtained after the first level classification, and ten cell types (B) were identified by marker gene annotation. Fourteen cell clusters (D) were 
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cell clusters (F) were obtained after the second-level classification of myeloid immune cells, and seven cell types (G) were identified by marker gene 
annotation. Eighteen cell clusters (H) were obtained from normal epithelial cells after secondary classification, and then nine cell types (I) were 
identified by marker gene annotation. (C) Heatmap of the expression level of Marker genes from twenty-eight cell types



Page 5 of 16Pang et al. Journal of Translational Medicine          (2022) 20:531  

Different differentiation characteristics of neutrophils
Next, we used Monocle for pseudotime trajectory anal-
ysis of Neutrophil subsets. The results showed that 
Neutrophils were divided into four different differentia-
tion states (Fig.  3A and B). In the NDRGs of mutation 
frequency top 30% (Fig.  3 H), seven genes with muta-
tion rate ≥ 10% were found, and the mutation rates of 
NDRGs in different differentiation states were all over 
91% (Fig.  3I and Additional file  3: Fig. S3D). The above 

results demonstrate that NDRGs are highly mutated and 
heterogeneous, suggesting that NDRGs play a critical 
role in Neutrophils influencing tumorigenesis and devel-
opment. Subsequently, GSEA was performed on the four 
states (Fig.  3C–F and Additional file  3: Fig. S3A–C). It 
was found that state one was significantly up-regulated 
in Metabolic and showed a down-regulation trend in 
the TNF signaling pathway and regulation of apoptotic 
signaling pathway, indicating that state one is mainly 
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Fig. 3 Pseudotime analysis of Neutrophils and mutational analysis of NDRGs. According to the pseudotime (A) of Neutrophils, the cell population 
was divided into four different differentiation states (B), and NDRGs (G) were obtained by difference analysis of differentiation states. GSVA (KEGG 
terms) analyzes four different differentiation states (C–F). Top 30% mutation frequency of NDRGs and mutation type (H) and mutation status of 
NDRGs in different states (I)
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differentiated related to the initial state and participates 
in the occurrence and development of tumors, showing 
a tumor-promoting effect. State two was down-regu-
lated in multiple metabolic processes, including peptide 
biosynthetic process, and was highly down-regulated in 
Ribosome-related pathways, indicating that state two 
is a new state with complete differentiation and down-
regulation of metabolism. State three is similar to state 
two, but state three is significantly up-regulated in Neu-
trophil extracellular trap formation, Neutrophil chemo-
taxis, and GTPase activity, suggesting that state three is 
involved in Neutrophil chemotaxis. Prominently, state 
four is significantly up-regulated in Antigen processing 
and presentation, positive regulation of leukocyte activa-
tion, and signaling receptor regulator activity. Compared 
with the other states, the activity of Coronavirus dis-
ease—COVID-19 was increased in state four, indicating 
that state four is a state that produces immunoreactive 
activity, which manifests as an immune antitumor effect. 
Overall, we found four distinct states of Neutrophil dif-
ferentiation and their NDRGs of high mutagenicity and 
heterogeneity.

Establish a stable and effective prognostic risk model
To construct a prognostic risk model, the TCGA cohort 
was split into the training sets (n = 731) and the internal 
validation sets (n = 283), and the GEO cohort (n = 80) 
for external validation sets. In addition, NDRGs and 
DEGs (Fig. 4A) were intersected (Fig. 4B), and the inter-
sected genes were used to build the prognostic risk 
model. Firstly, we used the rate of intersection genes/
housekeeping genes (ACTB, GAPDH, TFRC, TUBB) to 
establish the prognostic risk model so that the results 
obtained can be more widely used. Then, using the 
Elastic Net Regression algorithm, eight critical genes 
related to prognosis were identified (Fig.  4C and D). 
Finally, six stable essential prognostic genes (Fig.  4E) 
and their regression coefficients were identified by Mul-
tivariate Cox Regression, and the final prognostic model 
was: Risk Score = 0.193*RETNExp-0.285*MS4A7Exp-
0.165*CXCR2Exp-0.206*CD177Exp +  0.287*CSRN-
P1Exp + 0.138*LUCAT1Exp.

The time-dependent ROC curve was used to evalu-
ate the prognostic ability of the risk scoring model, and 
the 1-year, 3-year, and 5-year AUCs of the training set, 
internal validation set, and external validation set were 
all greater than 0.6, indicating that the prognostic risk 
model has a strong predictor for the survival of NSCLC 
patients. Kaplan–Meier survival curves showed that sur-
vival rates were significantly different among the three 
cohorts grouped by risk score (Log-rank, P < 0.0001), 
showing that the risk score could be used as a predic-
tor of patient prognosis. (Fig.  4F–H). In addition, we 

established a nomogram using the prognostic signature 
(Fig. 4I). The calibration curves for the 1-year, 3-year, and 
5-year survival indicate a high degree of overlap between 
the actual survival rate and the survival rate predicted by 
the nomogram (Fig. 4J). This suggests that the nomogram 
has an excellent predictive value.

Immune prediction and clinical application of prognostic 
risk model
The ssGSEA result found that the content of most 
immune cells in the high-risk group was significantly 
lower than that in the low-risk group, indicating that 
there were more immune components in the tumor 
microenvironment of the low-risk group and also that 
the immune prognosis of the high-risk group was worse 
(Fig. 5A). As the risk score increases, immune cell com-
position decreases, and the effect of immunotherapy 
worsens. The above results showed that the prognostic 
risk model was involved in regulating the immune micro-
environment and can be used as an indicator to predict 
the efficacy of immunotherapy.

After confirming the performance of six prognos-
tic genes in predicting immune response in patients 
with NSCLC, we investigated the relationship between 
clinical characteristics and risk score. There was a sig-
nificant statistical difference between Age and T stage 
(Fig. 5C–H), showing that risk score was related to Age 
and T stage. Next, we explored the clinical application 
of the six prognostic gene models in predicting patient 
outcomes using Univariate Cox Regression and Multi-
variate Cox Regression analyses. Univariate Cox results 
showed that risk score was significantly associated with 
prognosis (P = 0.02, HR = 1.3, 95% CI 1–1.6) (Fig. 5I), and 
Multivariate Cox results also proved that risk score was 
an independent prognostic factor for NSCLC (P = 0.02, 
HR = 1.29, 95% CI 1.05–1.59) (Fig. 5J). These results con-
firmed that the six prognostic gene risk model has per-
fect prognostic efficiency.

Explore the functional of six prognostic genes
Next, we further explored the six prognostic genes’ 
expression, survival, and pathway alterations. Firstly, 
for MS4A7, it was down-regulated in tumors, and the 
Kaplan–Meier survival curves indicated that low expres-
sion of MS4A7 predicts a worse prognosis (Fig. 6B). The 
results of GSVA after low expression showed that the 
activities of various immune response pathways, includ-
ing Immune Receptor activity were down-regulated, indi-
cating that MS4A7 was involved in various immune and 
anti-inflammatory responses (Fig. 6H). Similarly, CXCR2 
is expressed at a low level in tumor tissues (Fig. 6A), and 
the prognosis of CXCR2 with low expression is worse 
(Fig.  6D). After the low expression of CXCR2, it was 



Page 8 of 16Pang et al. Journal of Translational Medicine          (2022) 20:531 

LUCAT1

CSRNP1

CD177

CXCR2

IGHG1

IGHG3

RETN

MS4A7

(N=731)

(N=731)

(N=731)

(N=731)

(N=731)

(N=731)

(N=731)

(N=731)

1.15

1.33

0.81

0.85

1.01

0.96

1.21

0.75

(1.03 − 1.28)

(1.14 − 1.56)

(0.72 − 0.92)

(0.73 − 0.99)

(0.79 − 1.29)

(0.75 − 1.21)

(1.02 − 1.44)

(0.63 − 0.89)

0.014 *

<0.001 ***

<0.001 ***

0.034 *

0.958

0.71

0.029 *

0.001 **

# Events: 320; Global p−value (Log−Rank): 3.2041e−07 
AIC: 3618.2; Concordance Index: 0.61 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Hazard

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

Log lambda

C
oe

ffi
ci

en
ts

0 17 31 38 41 45

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12
.4

12
.5

12
.6

12
.7

12
.8

12
.9

13
.0

Log(λ)

46 46 44 43 41 40 38 37 30 21 16 10 8 7 4 1 1

0.0

0.5

1.0

0 200 400 600

Low

0

3

6

9

0 200 400 600

0

0.5

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC of Training Set

++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++ ++ ++++++ +
++++

+ ++ ++++ ++ +++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++ ++ + ++

++++ ++

0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10

+
+ Low

0.0

0.5

1.0

0 100 200

Low

0

3

6

9

0 100 200

0

0.5

1

0

1

0 20 40 60 80

Low

0

2

4

6

0 20 40 60 80

0

0.5

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC of Internal Validation Set

+
++++++++++

+
++++

+++++++
++++

+++

++++
+++

++++ +++
+
+

+

+++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++
++++++

++ +
++++++

+++++

+ +
+

++ +++

0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10

+
+ Low

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC of External Validation Set

++
+
+
++++

++
+ ++ + +++ +

++++
+++

+
++++

++++++++++

+ + +

+ +

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

+
+ Low

A B

C D

E

F G H

I J
0 10 20 30 40 50 60 70 80 90 100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 10 20 30 40 50 60 70 80 90 100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.9 0.8 0.7 0.6

0.8 0.7 0.6 0.5 0.4 0.3 0.2

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Fig. 4 Construction and verification of the prognostic risk model. The intersection (B) of the differential gene (A) and NDRGs. Eight NDRGs with 
prognostic characteristics were screened by the Elastic Net Regression algorithm (C, D), and six prognostic risk model genes were confirmed by 
Multivariate Cox (E). The risk score distribution, patient status, mRNA expression heatmap, ROC curve, and KM survival curve of the training sets (F), 
the internal validation set (G), and the external validation sets (H). (I) Nomogram of the prognostic risk model. (J) The nomogram calibration curves 
to predict the 1-, 3-, and 5-year survival



Page 9 of 16Pang et al. Journal of Translational Medicine          (2022) 20:531  

found that the immune activity-related pathways such 
as Cytokine and Cellular Calcium Ion Homeostasis also 
showed a down-regulated state (Fig.  6I), indicating that 
tumor down-regulated some immune stress responses 
by decreasing the expression of CXCR2 to ensure that 
it was not killed by immune cells. As for LUCAT1, it is 
involved in various processes promoting the occurrence 
and development of NSCLC, which was fully illustrated 
by the evidence of its high expression level in tumors 
and worse prognosis after high expression (Fig.  6A and 
C). Furthermore, after the overexpression of LUCAT1, 

most biological Metabolic pathways, including Glyc-
erolipid metabolism and cancer-related pathways such as 
the Chemical carcinogenesis−receptor activity pathway, 
increased significantly (Fig.  6J), which also proved the 
role of LUCAT1 in promoting cancer.

On the contrary, the CD177 gene is highly expressed 
in tumor tissues (Fig.  6A). However, the prognosis was 
relatively better after its high expression (Fig. 6G), which 
may be related to the activation of Neutrophils promoted 
by CD177, and the content of neutrophils is higher in 
tumor tissue. After overexpression, it was found that 

******* **** ***** **** ******* **** ns****** ******** ************ns **** ***ns****** **** ***ns **
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the activities of signal pathways such as IL-17 signaling 
pathway were significantly up-regulated (Fig.  6K), and 
CD177 was positively correlated with the abundance of 
most immune cells (Additional file 4: Fig. S4E), suggest-
ing that CD177 plays an immune effect of chemotactic 

neutrophils in NSCLC. Furthermore, CSRNP1 and RETN 
were down-regulated in tumor tissues (Fig. 6A), but the 
down-regulation of both predicted a better progno-
sis (Fig.  6E and F). The results of Spearman correlation 
analysis showed that they were positively correlated 
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Fig. 6 Expression levels, survival analysis and functional studies of six prognostic genes in the TCGA cohort. A Expression levels of six prognostic 
genes in the TCGA cohort. B–G KM survival curves of six prognostic genes in the TCGA cohort. After grouping MS4A7 (H), CXCR2 (I), LUCAT1 (J), 
CD177 (K), CSRNP1 (L) and RETN (M) at high and low levels, the enriched KEGG and GO pathways were scored for GSVA
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with the abundance of most immune cells (Additional 
file 4: Fig. S4D and F). After low expression of CSRNP1, 
it was found that the activity of many transcription-
related pathways, including spliceosomal snRNP assem-
bly, was decreased (Fig. 6L), speculated that CSRNP1 was 
involved in the growth and differentiation of cells. After 
low expression of RETN, it was found that the activi-
ties of the Chemokine signaling pathway and Neutro-
phil related pathways were significantly down-regulated 
(Fig. 6M), suggesting that RETN was related to multiple 
immune stress responses.

Small molecular compounds docking of prognostic genes
In this study, we used screening of the CTD database, 
Autodock molecular docking, and drug toxicology stud-
ies to identify drugs targeted to prognostic genes. We 
found that Estradiol was able to bind tightly to MS4A7 
(Fig. 7A) and upregulate MS4A7 mRNA expression, and 
their simulated binding energy for molecular docking was 
− 4.23 (kcal/mol). Estradiol, a naturally occurring endog-
enous circulating hormone in women, is often used in the 
treatment of conditions associated with estrogen deple-
tion. Estradiol overdose can cause changes including red 
number of red blood cells and uterine weight. The results 
of the molecular docking analysis indicated that among 

the small molecule compounds that ameliorated the 
increase in mRNA expression of CXCR2, Abrine stood 
out with an optimal docking binding energy of −  4.58 
(kcal/mol) (Fig.  7B). Abrine, also known as N (alpha)-
methyl-L-tryptophan, is an N (alpha)-methyl derivative 
of L-tryptophan, which effectively reduces the break-
down activity of tryptophan and improves the efficacy 
of immunotherapies. At this time, there are no details of 
the toxic effects other than the lethal dose reports. Iono-
mycin can efficiently bind RETN and increase its level of 
mRNA expression (Fig. 7C), their docking energies being 
− 7.91 (kcal/mol). Ionomycin is a calcium ion transporter 
with antitumor activity produced by Streptomyces poly-
merases, which may increase the intracellular calcium 
ion level and ultimately result in apoptosis. No toxic-
ity has been reported for Ionomycin, except for lethal 
dose reports. Interestingly, Beclomethasone exhibited 
a high level of docking binding energy of up to − 10.97 
(kcal/mol) when searching for small-molecule com-
pounds that enhance the expression of CSRNP1 (Fig. 7D). 
Beclomethasone is a prototypical glucocorticoid recep-
tor agonist that functions as an anti-inflammatory as well 
as an anti-asthma. No details of the toxic effects were 
reported except for the value of the lethal dose. Finally, in 
screening for small molecule compounds that upregulate 

A B

C D

E

Fig. 7 The docking results of proteins encoded by prognostic genes with small molecular compounds. The docking results of MS4A7 with 
Estradiol (A). The docking results of CXCR2 with Abrine (B). The docking results of RETN with Ionomycin (C). The docking results of CSRNP1 with 
Beclomethasone (D). The docking results of CD177 with XL147 (E)
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CD177 mRNA, XL147 distinguished itself by its −  8.36 
(kcal/mol) molecular docking binding energy (Fig.  7E). 
The combination of XL147 and N-nitroso-tris-chloroeth-
ylurea resulted in increased gene expression of CD177. 
XL147, a sulfonamide, is a selective PI3K inhibitor for 
cancer treatment. More than or equal to 0.1% composi-
tion of XL147 was certified by the International Agency 
for Research on Cancer as a non-human carcinogen. In 
summary, we have selected five small molecular com-
pounds that are conducive to improving the worse prog-
nosis caused by five prognostic genes, providing a new 
research idea for targeted therapy of NSCLC.

Discussion
Lung cancer is the most widespread cancer globally, 
and NSCLC is the primary subtype of lung cancer. Most 
patients are resistant to immunotherapy, which may 
be related to their TIME. With the rapid development 
of scRNA-seq in cancer medicine, it is now possible to 
study highly heterogeneous tumors, including NSCLC, 
which will bring epochal shifts in the understanding of 
TIME and the exploration of novel cellular biomarkers 
[25, 26].

This study comprehensively analyzes TIME in NSCLC 
by integrating two large scRNA-seq datasets. After qual-
ity control and dimensionality reduction clustering, ten 
cell types were initially annotated, and further subdivi-
sions resulted in 28 major cell types. Annotation of cel-
lular abundance in patients in the TCGA cohort based 
on the overall expression of mRNAs characteristic of 28 
cells found that most cells differed significantly between 
tumors and normal tissues. Neutrophils were more abun-
dant in tumor tissue, consistent with previous studies 
[27]. Tumor-immune cell interactions lead to metabolic 
competition within the tumor ecosystem, which lim-
its the effective supply of nutrition, and thereby hinders 
immune cell function. It has been reported that IL-18 
may positively regulate autophagy to promote myocar-
dial cell mitochondrial function and the steady state 
maintenance of gap junctional turnover [28]. Close bind-
ing between mitochondria and gap junctions regulates 
the ionic permeability of gap junctions and influences 
metabolic reprogramming [29, 30]. Multiple reliable 
ligand-receptor pairs were collected using cellular com-
munication analysis in the research, characterizing the 
complex regulatory network in the NSCLC tumor micro-
environment. The immune checkpoint TNFSF14 in Neu-
trophils, NK Cells, and Monocytes and BTLA in Treg 
Cells, Granulosa Cells, and B Cells interact with LTBR 
and TNFRSF14 in Cancer Cells to mediate cytotoxicity 
and promote tumor killing [31–34]. In addition, the high 
expression of CD24 in Cancer Cells affects the expres-
sion of SIGLEC10 in Dendritic Cells, Macrophages, 

GMP Cells, B Cells, and Mast Cells, which in turn affects 
immune disorders and leads to tumor immune escape 
responses [35]. The highly expressed cytokine CCL5 in 
CD8 + T Cells, NK Cells, NKT Cells, CD4 + T Memory 
Cells, Plasma Cells, and Langerhans Cells work together 
with SDC1 and SDC4 in Cancer Cells to affect the occur-
rence, development, and mediation of cancer survival of 
cancer cells [36]. Cytokines CXCL1, CXCL2, and CXCL8 
in Cancer Cells interact with CXCR1 and CXCR2 in 
Neutrophils, chemotactic the activity of Neutrophils, 
and promote the generation of tumor immune micro-
environment [37]. The growth factor HBEGF, which is 
highly expressed in Monocytes, Neutrophils, Dendritic 
Cells, GMP Cells, Macrophages, and various Epithelial 
Cells, interacts with CD9 expressed in Cancer Cells to 
help mediate tumorigenesis and proliferation [38]. We 
also found that Cancer Cells interact with ITGB1, highly 
expressed in multiple cells such as Fibroblasts, Endothe-
lial Cells, and Basal Cells, through angiogenesis sig-
nal molecules (VEGFA) to stimulate tumor growth and 
metastasis [39]. This discovery provides a new research 
idea for tumor immunotherapy. Further mining the high 
heterogeneity of Neutrophils, we identified Neutrophil 
states with four distinct differentiation fates through 
developmental trajectory analysis. Using GSEA to func-
tionally characterize signatures of differentiation, we 
found that this pattern of differentiation is intrinsically 
linked to intratumoral immune and metabolic biology as 
well. NDRGs in different differentiation states showed a 
highly mutated state, with a mutation rate greater than 
91%, indicating that NDRGs play a crucial role in the 
occurrence and development of tumors. Based on the 
above findings, we established a prognostic risk model 
consisting of six NDRGs, MS4A7, CXCR2, CSRNP1, 
RETN, CD177, and LUCAT1, according to the rate of 
four reference genes (ACTB, GAPDH, TFRC, TUBB). 
Overall, the model was suitable for various detection data 
and can effectively predict the prognosis and immuno-
therapy response of NSCLC patients, providing a theo-
retical basis for formulating individualized treatment for 
patients.

Studies have shown that MS4A7 has a particular prog-
nostic value in ovarian cancer [40] and glioma [41]. 
Our research found that MS4A7 mainly mediates most 
immune-related pathways, such as immune receptor 
activity, but MS4A7 is down-regulated in tumor tissues, 
and its low expression levels indicate a worse progno-
sis. It is speculated that the tumor produces immune 
tolerance by down-regulating the expression of MS4A7, 
leading to a worse prognosis. As a LncRNA, LUCAT1 is 
involved in the occurrence and development of lung can-
cer. Studies have found that LUCAT1 can promote the 
metastasis of lung adenocarcinoma cells and glycolysis 
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by regulating the miR-4316/VEGFA axis [42]. It has been 
found in this research that the overexpression of LUCAT1 
increases the activity of most metabolic and carcinogenic 
pathways, and LUCAT1 has a significant negative corre-
lation with immune cells. It indicated that LUCAT1 was 
an oncogene that promoted the occurrence and develop-
ment of tumors by affecting metabolic pathways in the 
tumor microenvironment and inhibiting the immune 
response of immune cells, resulting in a lousy prognosis. 
Recent studies have shown that CXCR2 can be used as a 
valuable independent prognostic marker in patients with 
cholangiocarcinoma, and its mediated immune response 
may have a tumor inhibition effect on cholangiocarci-
noma cells [43]. Our study confirmed that the down-
regulation of CXCR2 is associated with a poor prognosis. 
CXCR2 has a significant positive correlation with most 
immune cells, and the activity of most immune response 
pathways, including acute inflammatory reactions, is 
increased, suggesting that CXCR2 can inhibit cancer by 
inducing immune responses, and significant down-regu-
lation of tumor tissues is also the main reason for worse 
prognosis. The tumor occurrence is usually related to the 
inflammatory reaction caused by excessive adipose tissue. 
It has been reported that the fat factor RETN can acti-
vate obesity-related inflammatory responses through the 
combined action of the pro-inflammatory cytokine IL-1β 
[44]. Studies have found that high expression of RETN 
predicts a adverse prognosis because RETN promotes 
an inflammatory response. Interestingly, RETN is low 
expressed in the tumor. After the simulation of down-
regulation, it was found that the activities of immune 
cell chemotactic related pathways were decreased, and 
a positive correlation between RETN and immune cells. 
It indicated that RETN helped improve the chemotaxis 
of immune cells, and tumors could ensure their survival 
by down-regulating RETN. It has been reported that the 
CSRNP1 gene can be used as a prognostic biomarker [45, 
46] for many cancers, indicating the essential prognos-
tic value of CSRNP1. When CSRNP1 is simulated to be 
down-regulated, the activities of various biological modi-
fication-related pathways, including Spliceosome activity, 
are down-regulated. In addition, CSRNP1 was positively 
correlated with most immune cells. It is speculated that 
CSRNP1 is involved in the growth and development of 
immune cells, and the tumor produces immune resist-
ance by down-regulating CSRNP1. However, because 
CSRNP1 is also involved in the growth and modification 
of tumor cells, its high level of expression will lead to a 
dreadful prognosis and high-risk score. As a Neutrophil 
surface glycoprotein, CD177 triggers Neutrophil degran-
ulation and superoxide production. Recently reported, 
CD177 can regulate PDPN and thus affect the physiologi-
cal changes of cancer-related fibroblasts, which seems to 

be a new therapeutic target [47]. CD177 was up-regulated 
in tumor tissue and correlated with Neutrophil content in 
this study. When CD177 is overexpressed, many immune 
response pathways and biological regulatory pathways 
are significantly up-regulated, such as the IL-17 signaling 
pathway and the protein oxidation pathway. Therefore, 
low expression of CD177 indicates a decrease in the con-
tent of immunocytes, especially Neutrophils, and a cor-
responding decrease in antitumor activity, resulting in a 
worse prognosis. Understanding the function of prognos-
tic genes and their causes of dreadful prognosis will help 
to propose targeted therapy options.

Today, reorientation of drug function is a novel strat-
egy for disease treatment. As disease mechanisms con-
tinue to deepen and treatment plans continue to be 
refined, a variety of drugs for treating disease including 
Valproic acid [48] for the treatment of epilepsy have been 
applied to the treatment of cancer. Therefore, based on 
this strategy, we conducted targeted drug screening of 
prognostic genes with a view to proposing a therapeutic 
approach that modulates poor prognosis. As a small mol-
ecule compound that can efficiently bind to and upreg-
ulate MS4A7 expression, more than 95% of estradiol in 
the bloodstream binds to sex hormone-binding globulin 
(SHBG) and alumina, which is commonly used to treat 
diseases related to estrogen reduction. However, exces-
sive intake of estrogen can result in side effects such as 
nausea, vomiting, and vein thrombosis. Furthermore, 
estradiol functions as an immunomodulator in immune 
and inflammatory processes [49]. Abrine also showed an 
exceptional performance in increasing CXCR2 expres-
sion. Abrine was shown to be a competitive inhibi-
tor of indoleamine-2,3-dioxygenase (IDO) in in  vitro 
experiments, which could effectively reduce tryptophan 
degradation activity and enhance the efficacy of immu-
notherapies. Abrine is currently being used in conjunc-
tion with a series of chemotherapeutic drugs such as 
cisplatin, doxorubicin and paclitaxel, and has been shown 
to have excellent synergistic effects [50]. Zhang et  al. 
has shown that Abrine can regulate hepatocellular car-
cinoma cell growth and apoptosis via the KAT5/PD-L1 
axis [51]. The natural product ionomycin used in this 
study had high affinity to RETN. The natural product of 
Ionomycin, which is found in Streptomyces polymerases, 
is also a calcium transporter that can increase the intra-
cellular calcium level, which is linked to the activation of 
the endonuclease in lymphocytes and the reduction in 
the ratio of Bcl-2 to Bax, ultimately mediating apopto-
sis [52, 53]. Beclomethasone was one of the compounds 
with up-regulation of CSRNP1 that exhibited high affinity 
docking binding energy. Beclomethasone is a Corticos-
teroid with anti-inflammatory and immunomodulating 
properties for chronic obstructive pulmonary disease 
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and COVID-19. It has been reported that Beclometha-
sone inhibits normal physiologic neutrophil migration 
and neutrophil chemotaxis upon detection of trauma 
induced inflammation [54, 55]. In the cohort screened 
for drugs that promoted increased CD177 mRNA 
expression, XL147 was found to have high affinity for 
the CD177 mRNA. XL147 is a potent inhibitor of oral 
bioavailability and a member of the class I PI3K family 
of lipid kinases. In a variety of clinical cancer models, 
XL147 treatment has been found to significantly inhibit 
PI3K pathway signaling in tumors and lead to significant 
inhibition of tumor growth or tumor shrinkage [56, 57]. 
Based on the data from the five targeted drugs target-
ing the five aforementioned prognostic genes, our study 
has proposed a novel targeted therapy scheme consist-
ing of a combination of multiple drugs, which will help 
improve the poor prognosis brought by the five prognos-
tic genes and improve patient survival rate. Among vari-
ous targeted therapeutics, there has also been increased 
interest in novel biomaterials, including nanomaterials 
[58] and hydrogel materials for hyaluronic acid [59]. As 
a novel antioxidant with low toxicity and high efficacy, 
the nano-antioxidant is superior to the traditional anti-
oxidant in improving superoxide dismutase and catalase 
activities in organisms, and has a lower biological toxicity 
[60]. Hyaluronic acid-constructed hydrogel materials are 
brand new drug delivery vehicles, which can effectively 
reduce cytotoxicity, deliver drugs safely and efficiently to 
the site of action, and allow drugs to play the largest role. 
Of the five gene-targeted drugs chosen in this study, the 
primary goal is to regulate mRNA expression of prognos-
tic genes. However, further research is needed on how to 
deliver drugs to drug targets. The drug delivery scaffold 
built with novel biomaterials may be an excellent choice.

The novelty of this study lies in the integration of 
large scale scRNA-seq to analyze the NSCLC regula-
tory network and further resolve the complex interac-
tions within the TIME. We also employ a novel strategy 
of combining the Elastic Net Regression algorithm with 
housekeeping genes ratios for prognostic risk modeling. 
Further investigation discussing prognostic gene func-
tion and drug targeting research is also novel in this 
study. At the same time, there remain limitations to this 
study. First, although we had performed a batch cor-
rection for the two scRNA-seq data, the essential batch 
effect still exists. In that regard, future integration studies 
could begin with sequenced documents to ensure con-
sistency and accuracy of data. Secondly, our results are 
still in the analytical and speculative stage and have not 
been experimentally validated, which is what future work 
will need. The combined therapeutic value of these five 
targeted drugs at the cellular and animal level will be the 
subject of future work. Furthermore, on the basis of our 

prognostic risk model, we hope to establish a shared net-
work platform to aid in clinical diagnosis and prognostic 
therapy in NSCLC.

Conclusion
In this research, we combine two large-scale scRNA-seq 
data to illustrate the complex cellular communication 
network in TIME and characterize four differentiation 
states and NDRGs of Neutrophils. We were able to estab-
lish a prognostic risk model that could be used to predict 
patient prognostic performance and immunotherapeu-
tic efficacy. Lastly, causes of adverse prognosis caused 
by prognostic genes were discussed, and drugs were 
screened for the presence of prognostic genes, leading to 
new insights for targeted therapy.
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