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Abstract
Background Previous studies on European (EUR) samples have obtained inconsistent results regarding the genetic 
correlation between type 2 diabetes mellitus (T2DM) and Schizophrenia (SCZ). A large-scale trans-ethnic genetic 
analysis may provide additional evidence with enhanced power.

Objective We aimed to explore the genetic basis for both T2DM and SCZ based on large-scale genetic analyses of 
genome-wide association study (GWAS) data from both East Asian (EAS) and EUR subjects.

Methods A range of complementary approaches were employed to cross-validate the genetic correlation between 
T2DM and SCZ at the whole genome, autosomes (linkage disequilibrium score regression, LDSC), loci (Heritability 
Estimation from Summary Statistics, HESS), and causal variants (MiXeR and Mendelian randomization, MR) levels. Then, 
genome-wide and transcriptome-wide cross-trait/ethnic meta-analyses were performed separately to explore the 
effective shared organs, cells and molecular pathways.

Results A weak genome-wide negative genetic correlation between SCZ and T2DM was found for the EUR 
(rg = − 0.098, P = 0.009) and EAS (rg =- 0.053 and P = 0.032) populations, which showed no significant difference 
between the EUR and EAS populations (P = 0.22). After Bonferroni correction, the rg remained significant only in the 
EUR population. Similar results were obtained from analyses at the levels of autosomes, loci and causal variants. 25 
independent variants were firstly identified as being responsible for both SCZ and T2DM. The variants associated with 
the two disorders were significantly correlated to the gene expression profiles in the brain (P = 1.1E-9) and pituitary 
gland (P = 1.9E-6). Then, 61 protein-coding and non-coding genes were identified as effective genes in the pituitary 
gland (P < 9.23E-6) and were enriched in metabolic pathways related to glutathione mediated arsenate detoxification 
and to D-myo-inositol-trisphosphate.
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Background
As human economic development as progressed, both 
schizophrenia (SCZ) and type 2 diabetes mellitus 
(T2DM), complex polygenic inherited disorders, have 
become growing challenges that, to date, lack effective 
solutions [1, 2]. Accumulating evidence from clinical 
samples demonstrates that the prevalence of T2DM in 
patients with SCZ is elevated 2 to 3 times compared with 
the general population, whereas the aetiology for the 
co-occurrence of SCZ and T2DM is multifactorial [3]. 
Recent studies have shown that drug-naive patients with 
their first episode of SCZ have an increased risk of T2DM 
[4, 5]. Moreover, the increased risk of T2DM is more 
apparent in young adults with SCZ [3, 6]. Therefore, a 
better understanding of the genetic relationship between 
and common genetic basis of SCZ and T2DM is pivotal 
for providing insights into the treatment and prevention 
of these diseases.

Since inherited factors rarely correlate with confound-
ers and exhibit no reverse causation, several studies with 
limited sample sizes have investigated the involved genes 
common to both SCZ and T2DM and have reported 
negligible genetic correlations between SCZ and T2DM 
[7, 8]. This conflicts with a weak genome-wide negative 
correlation between SCZ and T2DM (rg = − 0.07 and 
P = 0.002) identified in a forthcoming article with a large-
scale sample size of European (EUR) subjects[9]. These 
inconsistent genetic analysis results may be because the 
use of limited sample sizes and certain analytical meth-
ods potentially result in underpowered correlation analy-
ses, produce bias, and overestimate the results. Moreover, 
genome-wide association studies (GWASs) involving 
different population groups can provide samples from 
global populations to address some of the existing Euro-
centric bias, which enhances the ability to identify dis-
ease associations and ensures that the findings are mostly 
relevant to all populations [10]. Thus, a large-scale trans-
ethnic genetic analysis can provide new and cross-vali-
dated evidence by employing a range of complementary 
approaches.

In this study, based on GWAS summary data from 
European (EUR) and East Asian (EAS) populations 
including a total of 1,466,906 subjects, multiple comple-
mentary genomic analysis approaches were utilized to 
explore the genetic basis for T2DM and SCZ at differ-
ent levels, such as the whole-genome, autosomes, loci 

and causal variants. We aimed to provide more evidence 
of the genetic basis for the comorbidity of these two dis-
eases. First, in addition to performing a linkage disequi-
librium (LD) score regression analysis (LDSC) to estimate 
the genome-wide correlation of SCZ with T2DM, a strat-
ified autosome-based LDSC was used to estimate auto-
some correlation. Second, Heritability Estimation from 
Summary Statistics (HESS) method was performed to 
estimate the locus-level genetic correlation. Third, based 
on the causal variants of each disease, polygenic over-
lap and Mendelian randomization (MR) analyses were 
performed to examine the genetic link between these 
two diseases. Furthermore, to identify the basic mecha-
nisms underlying the comorbidity of SCZ and T2DM, a 
genome-wide cross-trait/ethnic meta-analysis was per-
formed to identify the pleiotropic genes shared between 
SCZ and T2DM and to determine the common effective 
organs and blood cell types. Finally, a cross-trait/ethnic 
meta-analysis based on transcriptome-wide association 
study (TWAS) data was carried out to explore the canon-
ical pathways in the effective organs (Figure S1).

Data and methods
GWAS data sets for SCZ and T2DM
GWAS data were collected from the databases of the Psy-
chiatric Genomics Consortium (PGC) and the DIAbetes 
Genetics Replication And Meta-analysis (DIAGRAM) 
consortium upon request. The EAS GWAS T2DM data-
set included 433, 540 subjects from 23 projects, and the 
EUR T2DM dataset contained 898, 130 subjects from 32 
projects. The EAS GWAS SCZ dataset included 58, 140 
subjects, and the EUR SCZ dataset contained 77, 096 
subjects[10–13]. The detailed demographic characteris-
tics and quality controls are summarized in Supplemen-
tary Material part 1.1.

The quality of the GWAS datasets was controlled 
by applying the following data filters: variants with 
INFO ≥ 0.80 if they existed were filtered in; variants with 
consistent alleles among each dataset were checked to 
adjust two situations: palindromic alleles and opposite 
alleles. In total, 8, 335, 938 variants for SCZ_EAS and 9, 
745, 488 for SCZ_EUR, 11, 825, 585 for T2DM_EAS and 
13, 583, 104 for T2DM_EUR were considered for the next 
analysis.

Conclusion Here, we show that a negative genetic correlation exists between SCZ and T2DM at the whole 
genome, autosome, locus and causal variant levels. We identify pituitary gland as a common effective organ for both 
diseases, in which non-protein-coding effective genes, such as lncRNAs, may be responsible for the negative genetic 
correlation. This highlights the importance of molecular metabolism and neuroendocrine modulation in the pituitary 
gland, which may be responsible for the initiation of T2DM in SCZ patients.
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Genetic correlation analysis
First, the heritability of each disorder (single-trait) and 
the genome-wide correlation (rg) between SCZ and 
T2DM in either the EAS or EUR samples were estimated 
using linkage disequilibrium (LD) score regression soft-
ware (LDSC, v1.0.1) and the precomputed LD scores for 
each population as a reference, which were obtained from 
the 1000 Genomes (1kG) project phase 3 [7, 14]. Prior 
to analysis, we filtered out those SNPs that were within 
the major histocompatibility complex (MHC) but were 
not within HapMap3 or had a MAF < 5% within the 1kG 
EUR or EAS reference samples. Furthermore, Fisher’s 
Z score transformed from rg was calculated to compare 
the significance of the difference in the genetic correla-
tions between the EAS and EUR samples (Supplementary 
materials part 1.2). Moreover, partitioned LDSC analy-
sis was performed to estimate the genetic correlation of 
these two diseases for each autosome.

Second, the Heritability Estimation from Summary Sta-
tistics software package (HESS, v0.5.3-beta) was applied 
to explore the local-level heritability of each disorder and 
the genetic correlation between SCZ and T2DM within 
independent LD blocks obtained from the 1kG refer-
ence panel in three steps: S1, preparing the LD block and 
eigenvalues; S2, estimating the local SNP-heritability of 
each trait; and S3, estimating the local genetic covari-
ance and standard error [15]. A total of 1, 443 and 1, 702 
approximately independent LD blocks for the EAS and 
EUR samples, respectively, were checked as genome par-
tition loci by HESS [16]. The local genetic correlation was 
calculated with the following formula:

 

rL =
covL√

h2
L (SCZ) h2

L (T2D)  (1)

Here, covL is the local genetic covariance obtained from 
the third step of HESS, and h2

L (SCZ) and h2
L (T2DM) are 

the estimated local heritability of each disease obtained 
from the second step.

Finally, to qualify the polygenic overlap of these two 
disease, the total number of shared and trait-specific 
causal variants between the two diseases was estimated 
using MiXeR v1.3 with default parameters [17]. To avoid 
taking infinitesimally small effects, the presented num-
bers of causal variants accounted for more than 22.6% of 
their total estimate and jointly accounted for 90% of the 
heritability of the SNP in each disease.

Mendelian randomization analysis
To obtain reliable and noteworthy results, bidirectional 
MR analyses were performed with multiple MR methods 
based on different assumptions about horizontal plei-
otropy. First, GCTA v1.93.3beta2 software was used to 

analyze the bidirectional causal links between SCZ and 
T2DM with the generalized summary-data-based Men-
delian randomization (GSMR) method [18] with the fol-
lowing parameters: P ≤ 5 × 10− 8 as the GWAS threshold 
to select variants for clump analysis; r2 ≤ 0.05 as the LD 
threshold to identify independent SNPs based on the 
1kG Project (phase 3) population reference; P = 0.01 as 
the threshold for heterogeneity in dependent instruments 
(HEIDI) outlier analysis to remove horizontal pleiotro-
pic SNPs; and 10 as the minimum number of significant 
and independent instrumental SNPs required for the MR 
analysis. Then, three more methods, i.e., inverse vari-
ance weighting (IVW), maximum likelihood (ML), and 
weighted median (WMe), were utilized to explore puta-
tive causal relationships between SCZ and T2DM in the 
EUR population using the R package TwoSampleMR 
with the following parameters: P ≤ 5 × 10− 8 and r2 ≤ 0.05 
[19]. MR-Egger regression and MR-PRESSO models with 
the corresponding R packages were used to determine 
directional pleiotropy [20].

Genome-wide cross-trait/ethnic meta-analysis
The Cross Phenotype Association (CPASSOC) method 
[21] was employed to identify shared variants between 
SCZ and T2DM. This method allows the presence of het-
erogeneous effects across traits and provides statistical 
SHet and P values weighted by sample size. The Z score 
for each variant for SCZ or T2DM from each population 
was used as the input source data for the cross-trait/eth-
nic meta-analysis. A significance level of P = 5 × 10− 8 was 
applied as in the GWAS.

Among the genome-wide cross-trait/ethnic significant 
SNPs, independent cross-trait significant SNPs that met 
the following two criteria were prioritized: (1) the SNP 
was not identified as significant in the single-trait GWAS, 
and (2) the SNP was independent with LD r2 < 0.05 within 
1,000-kb windows based on the 1kG population refer-
ence, evaluated by LD clumping using PLINK v1.970.

Positional gene mapping
To map and prioritize genes, MAGMA gene analysis 
was performed with the SNP-wide mean model using 
the 1kG Phase 3 population reference [22]. During the 
analysis, genes within 100 kb of each candidate SNP were 
mapped and prioritized, which were in LD with genome-
wide significant SNPs at the adjusted r2 threshold using 
the Functional Mapping and Annotation (FUMA) GWAS 
web tool [23]. Furthermore, to identify the tissue speci-
ficity of the SCZ and T2DM cross-traits, MAGMA gene 
property analyses in FUMA were performed to test cor-
relations between tissue specific gene expression profiles 
and trait-gene associations based on the full distribution 
of SNP P values.
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Cell type-specific analysis
To determine the effective cell type in human periph-
eral blood mononuclear cells (PBMCs) for both SCZ and 
T2DM, 10x genomics’ single-cell RNA-seq (scRNA-seq) 
data were extracted [24]. Based on the regression model 
with SNPs, MAGMA gene-property analysis was per-
formed to test the cell type-specificity of phenotypes with 
GWAS summary statistics using the FUMA platform 
[23].

Transcriptome-wide cross-trait/ethnicity meta-analysis
The Functional Summary-based Imputation (FUSION) 
package was used to perform TWAS analysis [25]. The 
pituitary gland-related expression weights were prepared 
with the aid of the FUSION website and were then inte-
grated with the GWAS data to identify the gene expres-
sion associated with either disease in either population.

Then, association analysis was performed on SubSets 
(ASSET v2.4.0), which can exhaustively explore all pos-
sible subsets of inputs to identify the strongest associa-
tion signal in both positive and negative directions [26]. 
The above TWAS data and sample size information for 
SCZ_EAS, T2DM_EAS, SCZ_EUR and T2DM_EUR 
were input as trait 1 to trait 4, and the two-sided statis-
tic was generated with the default setting parameters. 
Finally, we took the beta and P values for each gene to use 
in the subsequent Ingenuity Pathway analysis (IPA).

IPA analysis
With the above effective genes in the pituitary gland 
identified for both SCZ and T2DM, IPA software (Inge-
nuity Systems; Qiagen China Co., Ltd.) was employed to 
perform the core analysis on the measurement of expres-
sion logOR as previously described [27].

Statistical analyses
All statistical analyses were performed using R 4.1.1 
and/or Python 2.7/3.7 in the Linux environment, which 
was run in the π 2.0 cluster supported by the Center for 
High Performance Computing at Shanghai Jiao Tong 
University. Detailed descriptions of the genetic correla-
tion analysis, MR analysis and GWCTM are provided in 
the Supplementary Materials. P values < 0.05 were con-
sidered statistically significant, and multiple tests were 
adjusted by the Bonferroni method to reduce the risk of 
type I statistical error.

Results
Genetic correlations between SCZ and T2DM
The results of the single-trait LDSC showed that the 
genome-wide SNP heritability was 44.22 ± 2.33% and 
45.06 ± 1.69% for SCZ, and 7.98 ± 0.49% and 4.45 ± 0.27% 
for T2DM, in the EAS and EUR samples, respectively. 
The intercepts of the LD score regression were ≤ 1.003 
and 1.05 separately in the EAS and EUR samples, indi-
cating slight bias from population stratification and 
cryptic relatedness[28]. A negative genetic correla-
tion between SCZ and T2DM was found (rg = − 0.053 
and − 0.098, P = 0.032 and 0.009, for the EAS and EUR 
samples, respectively, Table  1), with no significant dif-
ference between the two populations based on Fisher’s 
Z-transformation method (Z score = 1.23, P = 0.22)[29]. 
Only in the EUR samples did the negative genetic corre-
lation of SCZ with T2DM remain Bonferroni significant 
(P < 0.05/2 = 0.025). The intercept of genetic covariance 
between SCZ and T2DM for each population was ≤ 0.01, 
indicating negligible sample overlap between these two 
diseases in the current analysis[7].

Furthermore, the partitioned genetic correlation 
analysis results demonstrated that in the EUR samples, 
chromosomes 1, 3, and 13 had significant correlations 
(rg = − 0.22, − 0.25, and − 0.31, and P = 0.0042, 0.0033, and 
0.039, respectively), and in the EAS samples, chromo-
somes 10 and 2 had significant correlations (rg =- 0.20 
and − 0.23, and P = 0.035 and 0.044, respectively, Table 
S1 and Fig. 1 A). Nevertheless, only chromosomes 1 and 
3 in the EUR samples remained Bonferroni significant 
(P < 0.05/2 = 0.025).

The results of the local genetic correlation analysis 
with HESS showed that in the EUR samples, 157 loci 
had a correlation with a P value less than 0.05; and in the 
EAS samples there were 23 loci (Table S2). Neverthe-
less, only chr18:51554175–55,213,838 (P = 2.03 × 10− 6) 
and chr6:63552888–65,765,742 (P = 4.36 × 10− 6) in the 
EUR samples remained Bonferroni significant [P < 0.05/
(2 × 1702) = 1.47 × 10− 5]. Furthermore, the number of loci 
containing the GWAS significant SNPs that were specific 
to SCZ, specific to T2DM, related to both diseases and 
related to neither were 69, 62, 5 and 1566, respectively, in 
the EUR samples, and 14, 150, 2 and 1277, respectively, in 
the EAS samples. Additionally, the genetic correlations of 
both the SCZ- and T2DM-specific loci largely had nega-
tive values, which supported the genome-wide results 

Table 1 Genetic correlation and polygenic overlap analyses of the SCZ and T2D
Traits Genetic correlation analysis Polygenic overlap analysis

rg± se P PBonferroni NSCZ±se NT2D±se NSCZ−T2D±se ρSCZ−T2D±se rg±se
SCZvs T2D
(EAS)

-0.054 ± 0.025 0.032 0.064 6566.74 ± 401.14 580.35 ± 273.78 665.77 ± 259.24 -0.28 ± 0.17 -0.049 ± 0.0083

SCZ vs T2D
(EUR)

-0.098 ± 0.029 0.009 0.0018 8488.47 ± 483.84 211.65 ± 205.38 1176.33 ± 244.79 -0.24 ± 0.06 -0.076 ± 0.0066
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from the LDSC analysis (Fig. 1B and C). SCZ- or T2DM-
specific loci, rather than common loci were more likely to 
have a negative maximum genetic correlation in the EUR 
samples than those in the EAS samples.

The polygenic overlapping analysis results also sup-
ported the negative correlation of SCZ and T2DM 
effect sizes within the shared causal variants, with 
ρ = − 0.24 ± 0.057 and − 0.28 ± 0.17, and rg = − 0.049 ± 0.0083 
and − 0.076 ± 0.0066 for the EAS and EUR populations, 
respectively (Table  1; Fig.  1D). Furthermore, SCZ and 
T2DM had a low polygenic overlap, sharing only approxi-
mately 0.7 K of the 7.9 K causal variants (8.9%) and 1.2 K 
of the 9.9 K causal variants (12.1%) for the EAS and EUR 
populations, respectively. However, common causal vari-
ants accounted for 85.7% of the T2DM causal variants in 
EUR populations.

Mendelian randomization analysisThe results of the 
MR analyses based on the four methods (GSMR, IVW, 
ML, and WMe) indicated that SCZ may have a geneti-
cally negative causal effect on T2DM in the EUR samples 
with 66 instrumental variants (P = 2.84 × 10− 7, 3.18 × 10− 4, 

3.34 × 10− 7 and 0.014 for GSMR, IVW, ML and WMe, 
respectively, Fig. 2 A and Table S3). However, the Bon-
ferroni-corrected P value from the WMe method was 
0.056. In these analyses, the Mendelian randomization-
Egger (MR-Egger) and Mendelian Randomization Pleiot-
ropy RESidual Sum and Outlier (MR-PRESSO) tests did 
not support the existence of pleiotropic effects biasing 
the estimates of the causal effects of SCZ on T2DM in 
the EUR samples (MR Egger intercept, − 0.01; P = 0. 23; P 
value for the outlier test∈[0.23,1]).

Genome-wide cross-trait/ethnic meta-analysis
A total of 24, 627 genome-wide significant SNPs were 
found with the CPASSOC method, which were located 
on almost all the autosomes (Fig.  3  A). Furthermore, 1, 
313 SNPs were identified that had not been reported 
as significant variants in either of the previous SCZ or 
T2DM GWASs (Figure S2). Among these 1, 313 SNPs, 
25 SNPs were independent variants responsible for the 
comorbidity of SCZ and T2DM (Table S4, Fig. 3B).

Fig. 1 Genetic correlation between SCZ and T2DM. (A) partitioned genetic correlation between SCZ and T2DM in terms of 22 autosomes in both EUR 
and EAS populations with LDSC method. Mean and standard error bars are shown. (B) and (C) density distribution of local genetic correlation between 
two disorders identified with HESS method within four different disease-related regions in the EUR and EAS populations. (D) Venn diagrams of unique 
and common causal DNA loci between SCZ (left blue) and T2DM (right pink) identified with the MiXeR analysis, the estimated quantity of causal variants 
(in thousands) is upper, its standard error is down
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Positional gene mapping
Based on the results from the genome-wide cross-
trait/ethnic meta-analysis with the CPASSOC 
method, a total of 1, 033 common protein-cod-
ing genes were mapped. Among them, the top 6 
genes were CDKAL1 (chr6:20,534,688 − 21,232,635, 
based on GRCh37/hg19), KCNQ1 (chr11:2,466,238-
2,870,340), HIST1H2AL (chr6:27,833,095 − 27,833,576), 
AUTS2 (chr7:69,063,461 − 70,258,492), ARL6IP4 
(chr12:123,464,780 − 123,467,456) and HMGA1 
(chr6:34,204,650 − 34,214,008, Fig.  3  C). Furthermore, 
the MAGMA gene property analysis results for tissue 
specificity demonstrated that the cross-strait associated 
genes were significantly correlated with the brain and the 
pituitary gland (P = 1.1 × 10− 9 and 1.9 × 10− 6, respectively, 
Fig. 3D).

Cell type-specific analysis
To explore the effective cell types in SCZ and T2DM, the 
scRNA-Seq dataset was used, including a total of 68, 579 
cells and 32, 738 annotated genes. Under the regression 
model, CD19 + B cells were identified to be potentially 
trans-ethnic effective cells for SCZ and T2DM (Figure 
S3).

Transcriptome-wide cross-trait/ethnicity meta-analysis
With the TWAS data obtained from the FUSION anal-
ysis, the ASSET results suggested that 5, 417 genes had 
combined beta and P values (Table S5). Among these 
genes, 61 genes exceeded the Bonferroni significance 
threshold of P < 0.05/5417 = 9.23 × 10− 6. The genes TCF19 
and SNX11 and the lncRNA NFE2L1-DT had signifi-
cantly positive effects on either SCZ, T2D, or both in the 
EUR or EAS samples, while the lncRNA RP5_890E165 
had significantly negative effects. Among these 61 genes, 
33 genes had positive beta values, of which 24 genes 
(72.7%) were protein-coding ones; and 28 had negative 
beta values, of which 14 (50%) encoded proteins.

IPA analysis
Among the above 5, 417 genes, 5, 359 genes were 
mapped to known gene symbols. Using beta values as 
the input, the whole mapped genes were significantly 
enriched in the following top 5 canonical pathways: the 
up-regulated glutathione-mediated detoxification path-
way (P = 5.89 × 10− 6), nucleotide excision repair path-
way (P = 4.85 × 10− 3), glutathione redox reactions I 
(P = 6.84 × 10− 3), acyl-CoA hydrolysis (P = 1.25 × 10− 2) and 
the down-regulated pyrimidine ribonucleotides de novo 
biosynthesis pathway (P = 1.53 × 10− 2, Fig.  4  A). Using 

Fig. 2 Mendelian Randomization (MR) analyses between SCZ and T2DM/T2DM-related trait of diastolic blood pressure. (A) The dual directional causal ef-
fect between SCZ and T2DM in different population with four methods, i.e. GSMR in blue, IVW in red, ML in yellow, WMe in purple. (B) Relationship of 45 in-
strumental variants’ effects on SCZ and those on DBP (diastolic blood pressure), each dot represents an instrumental variant, its 95% CIs for the estimated 
effect on SCZ and DBP denote horizontal and vertical lines, respectively, and the lines represent the causal effects of SCZ on DBP in the EUR population 
with four methods. (C) Sensitive analysis of each instrumental variant’s influence on the estimated causal effects of SCZ on DBP using the IVW method
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P values as the inputs, the genes with P values less than the threshold of 9.33 × 10− 6 (0.05/5359) were significantly 

Fig. 3 Genome-wide cross-trait/ethnic meta-analysis results of SCZ and T2DM through using CPASSOC methods. A. A representative Manhattan plot of 
meta-analysis result of combined EAS and EUR population. The x-axis is the chromosomal position of SNPs and the y-axis is the significance of the SNPs 
(-log10P). B: One representative genomic risk locus containing a novel top independent cross-trait significant SNP (indSigSNPs), i.e. rs35929648. IndSig-
SNPs are SNPs independent of each other (r2 < 0.6) with P ≤ 5.0 × 10 − 8, top IndSigSNPs are IndSigSNPs with the minimum P value within a 250 kb window. 
Genomic risk loci were identified by merging IndSigSNPs if they were closer than 500 kb apart. In this genomic risk loci, there are three independent 
significant SNPs. Each SNP is color-coded based on the highest r2 to one of the independent significant SNPs (indSigSNPs) if that is greater or equal to the 
r2 threshold of 0.6. Other SNPs (below the r2 of 0.6) are colored in grey. Gene property analysis results. C. Positional genes mapping results with the top 6 
genes labelled. D. Tissue specificity of indsigSNPs in GTEx V8 30 tissue types using the MAGMA tool
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enriched in the following top 5 canonical pathways: arse-
nate detoxification I (glutaredoxin, P = 8.31 × 10− 3) and 
four other pathways associated with D-myo-inositol 
(1,4,5)-triphosphate metabolism (Fig. 4B).

Discussion
Here, we employed a series of genomic analysis 
approaches, which were complementary and leveraged 
GWAS summary data, to explore the genetic basis for 
the comorbidity of SCZ and T2DM. Moreover, large-
scale trans-ethnic data were used to minimize the effects 
of potential confounding factors and some Eurocentric 
bias and to enhance the power of the analysis with regard 
to identifying trait associations. Finally, additional evi-
dence was reported for the genetic correlation between 
SCZ and T2DM, and the pituitary gland was identified as 
a common effective organ for these two diseases. These 
results suggest that the comorbidity between SCZ and 
T2DM could be partially attributed to shared effective 
genes in particular organs rather than to genes in the 
whole body or to environmental factors alone.

Based on the heritability distributed over many variants 
with small effects and on the analysis using genome-wide 
variants instead of variants significantly associated with 
a disorder [30], we found that SCZ had a significantly 
negative genetic correlation with T2DM in both the EUR 
and the EAS populations. Although the negative correla-
tion remained significant only in the EUR samples after 
Bonferroni correction, there was no significant difference 
in the genetic correlation between the two populations. 

Similar results were obtained from the partitioned LDSC 
analysis of each autosome and the HESS analysis of dif-
ferent loci in each autosome. Next, based on the variants 
significantly associated with a disorder, which represent a 
substantial fraction of heritability in many diseases [31], 
the MiXeR analysis results also supported the negative 
genetic correlation between the two diseases, and the MR 
analysis results suggested that in the EUR population, a 
genetic predisposition to SCZ tended to prevent T2DM. 
The effective gene analysis results suggested that more 
non-protein-coding genes, such as lncRNAs, were likely 
to take part in such prevention in the pituitary gland.

The reported Bonferroni-significant negative whole-
genome correlation between SCZ and T2DM in Euro-
peans was not observed in previous studies, in which 
nonsignificant negative whole-genome correlation was 
found with EUR sample sizes close to 140,000 [7, 8]. 
However, a forthcoming article also found a significant 
negative whole-genome correlation on about 7 times 
more EUR subjects than those in previous studies using 
the same method of LDSC [9]. This inconsistence may be 
because more recent GWAS data are used and a larger 
sample size may enhance the power of the correlation 
analysis. Furthermore, at the autosomes and loci level, 
we found multiple regions of positive and negative cor-
relation between T2D and SCZ, a large sample size in the 
LDSC analysis may eliminate the biased estimates to null 
and provide more reliable overall analysis results[32].

The reported genetic predisposition to SCZ with the 
tendency to prevent T2DM is incompatible with the 

Fig. 4 IPA analysis results. (A) with the Beta values of whole mapped genes as input; (B) with the P values of the genes with P < 9.33E-6 (0.05/5359) as input
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epidemiological data indicating an elevated risk of T2DM 
in SCZ[3, 4]. SCZ patients may have some lifestyle factors 
that predispose them to T2DM, such as an unusual diet 
and easy access to antipsychotics, which may outweigh 
the presence of the moderate genetic preventive factors 
and initiate T2DM by modulating non-protein-coding 
genes. It has been speculated that SCZ risk alleles should 
be naturally selected for elimination as patients with 
SCZ have reduced fertility and increased mortality. Con-
versely, the MiXeR analysis results demonstrated that the 
SCZ causal variants were of a larger number than those 
of T2DM and that the majority of T2DM causal variants 
overlapped with those for SCZ. Interestingly, in the EUR 
samples, single disorder-specific genomic regions rather 
than common regions were found to be more likely to 
cause the maximum negative genetic correlation than 
was the case in the EAS samples. According to the mor-
phological evolution standpoint that negative genetic 
correlations between traits may result in a substantial 
change in morphology [33], there are microevolutionary 
responses to the negative genetic correlation between 
SCZ and T2DM. These suggest that the impairment of 
molecular modulation in certain organs rather than in 
the whole body is responsible for the comorbidity of SCZ 
and T2DM.

Through genome-wide cross-trait/ethnic meta-anal-
ysis and positional gene mapping, the top six genes of 
CDKAL1, KCNQ1, HIST1H2AL, AUTS2, ARL6IP4 and 
HMGA1 are mainly located on chromosomes 6, 7, 11 
and 12, while the top SNPs in chromosomes 9 and 10 
are located on the non-protein-coding region. The top 
one gene CDKAL1 encoding a member of the methyl-
thiotransferase family, a subfamily of the radical S-ade-
nosylmethionine (SAM) superfamily, has been reported 
be involved in the susceptibility to T2DM in Europeans 
and Japanese [34, 35] and to bipolar disorder in Euro-
peans[36]. Recent research demonstrates that Cdkal1 is 
necessary for normal mitochondrial morphology by reg-
ulating mitochondrial activity. HIST1H2AL located in a 
histone gene cluster region on chromosome 6p, encodes 
one of the core histone proteins, Histone H2A type. His-
tone variants involved in nucleosome composition and 
histone modification are important for neurodevelop-
ment and are related to the susceptibility of psychiatric 
disorders[37, 38]. HMGA1 encoding a nonhistone archi-
tectural transcription factor is involved in fundamental 
cellular processes by regulating chromatin structure and 
multiple gene expression including the insulin receptor 
(INSR) and Forkhead box protein O1 (FoxO1)[39]. INSR 
is a master regulatory factor for insulin action and glu-
cose homeostasis, and FoxO1 is a critical regulatory fac-
tor for gluconeogenesis and glycogenolysis[40]. AUTS2, 
i.e. autism-susceptibility-gene-2, encodes an activator of 
transcription and regulates neurodevelopment. AUTS2 

variants can cause a neurodevelopmental and somatic 
malformation with diverse phenotypes[41]. KCNQ1 
located on chromosome 11q, encodes a member of volt-
age-gated potassium channel subfamily that can affect 
cardiac and neuronal action potentials. KCNQ1 has been 
reported to be associated with SCZ and T2D[42, 43]. 
ARL6IP4 encodes ADP ribosylation factor like GTPase 6 
(ARL6) interacting protein 4 is predicted to be involved 
in RNA splicing and mRNA processing and has been 
reported to be associated with SCZ[44]. Although the 
roles of ARL6IP4 is unknown, ARL6 is known to regulate 
intracellular protein traffic[45].

Through genome-wide cross-trait/ethnic meta-analysis 
and integration analysis of tissue-specific gene expression 
profiles, the pituitary gland was identified as the effec-
tive organ for both SCZ and T2DM. Furthermore, the 
molecular metabolism pathways related to glutathione 
mediated arsenate detoxification and D-myo-inositol-tri-
sphosphate metabolism were identified as potential basic 
molecular modulation mechanisms. The pituitary gland 
is a highly plastic system that can integrate the informa-
tion from both external and internal environments and 
maintain homeostasis by the rhythmic secretion of key 
hormones, such as adrenocorticotrophic hormone and 
growth hormone, in pulse manner in all vertebrates[46]. 
The pituitary is called the master gland since it controls 
the function of most other endocrine glands, such as the 
thyroid and adrenal cortex [47]. In humans, the pituitary 
can be divided into three anatomically and developmen-
tally distinct constituent parts, i.e. the neurohypophysis 
(posterior lobe), the adenohypophysis (anterior lobe) and 
the intermediate lobe[48]. And pituitary cells have been 
found to organize in tightly wired networks in both homo 
and heterotypic manners and communicate with each 
other[48]. Thus, the pituitary gland can quickly integrate 
the hypothalamic and systemic stimuli and optimize its 
function. It is a central part of the hypothalamic-pituitary 
gland-adrenal (HPA) axis, which is an important neu-
roendocrine system with a fundamental role in physi-
ological adaptive responses to stressors [49]. Cumulative 
psychiatric stress may induce allostatic load, and exert 
additional systemic and detrimental effects on neuroen-
docrine dysfunction, ultimately leading to the onset of 
T2DM.

Furthermore, it has been reported that chronic inor-
ganic arsenic exposure can lead to neurobehavioral 
alterations and T2DM [50, 51]. Although our previous 
study did not find a significant association of serum arse-
nic concentration with the risk of SCZ [1], we found that 
the GSTM1 (glutathione S-transferase Mu-1 (GSTM1) 
gene) null genotype had a risk ratio of 1.14 for SCZ [52]; 
GSTM1 is involved in arsenic metabolism and detoxifi-
cation in humans [53]. D-myo-inositol-trisphosphate is 
a second messenger and mobilizes calcium (Ca2+). SCZ 



Page 10 of 12Cai et al. Journal of Translational Medicine          (2022) 20:501 

involves an abnormality in second messenger precur-
sor availability [54] and thus is characterized by reduced 
D-myo-inositol-trisphosphate levels. However, inosi-
tol supplementation is an effective and safe strategy for 
treating T2DM [55].

CD19, i.e. Cluster of Differentiation 19, is expressed in 
all B lineage cells in humans and is a B-Lymphocyte sur-
face biomarker[56]. CD19 + B cells are so important that 
they can mediate immune response and regulation by 
the activation of T cells, the release of antibodies and the 
secretion of cytokines[57]. Through producing antigen-
specific antibody, CD19 + B cells can build the first line of 
defense against exogenous antigens and further facilitate 
phagocytosis for destruction and antigen-presentation. 
During the process, polyclonal B cells may be produced 
through a mechanism called bystander activation, which 
can enhance the excessive inflammatory response and 
self-destruct normal cells[58]. B-cells have been sug-
gested to be potentially therapeutic targets for SCZ and 
T2D[57, 59]. However, no evidence is found for altered 
numbers of the CD19 + B cells in blood of patients with 
SCZ except the B-cell related cytokines and certain auto-
antibodies[59]. And compared to obese subjects with 
non-T2D, obese subjects with T2D have been found 
to have several B cell defects in blood, including lower 
IL-10 production and ineffective antibody response to 
new antigens, but present much higher levels of poly-
clonal activation and antibody secretion[60]. However, it 
is unclear if these findings result from T2D development 
or contribute to T2D pathogenesis in obesity. Although 
our study has identified CD19 + B cells as potentially 
trans-ethnic effective cells for SCZ and T2DM, a detailed 
mechanistic framework requires more actual laboratory 
work for explanation.

The main limitations of this study as follows: First, the 
lack of actual laboratory work validated the findings. 
Nevertheless, the current work strived to obtain the vali-
dated findings using a set of complementary methods to 
perform large-scale analyses at different levels. Second, 
the stringent Bonferroni correction led to some findings 
not reaching the threshold of significance. However, this 
is an effective method of controlling the risk of a type I 
statistical error. Third, the lack of individual data made 
it impossible to stratify the analysis by the severity of 
SCZ. Forth, only SNPs with MAF > 5% were included in 
these genetic analyses. These are common limitations to 
approaches based on summary GWAS data. Finally, no 
T2DM- or SCZ-related traits were analyzed here to pro-
vide more evidence. Our future research will investigate 
the corresponding traits.

The current study identified the pituitary gland as 
a common effective organ for both T2DM and SCZ, 
despite T2DM showing a negative genetic correlation 
with SCZ. Further research may consider T2DM-related 

glycaemic/lipid/blood pressure traits, including two-hour 
glucose, fasting glucose, fasting insulin, proinsulin, gly-
cated hemoglobin A1c (HBA1c), low-density lipoprotein 
cholesterol (LDL), high-density lipoprotein cholesterol 
(HDL), total cholesterol, triglycerides, systolic blood 
pressure, diastolic blood pressure, and pulse pressure, 
and may also consider other mental disorders, such as 
depression. Future spatial transcriptomics studies using 
fresh samples may help to verify our findings and to pro-
vide new insights into the comorbidity of T2DM and 
SCZ.

Conclusion
In summary, a negative genetic correlation exists between 
SCZ and T2DM at the whole genome, autosome, locus 
and causal variant levels, which suggests that shared 
effective genes in a particular organ may contribute to 
the comorbidity of SCZ and T2DM. The pituitary gland 
was identified as a common effective organ for T2DM 
and SCZ, in which more non-protein-encoding effec-
tive genes, such as lncRNAs, may be responsible for the 
identified negative genetic correlations. This highlights 
the importance of molecular metabolism and neuroen-
docrine modulation in the pituitary gland, which may be 
responsible for T2DM in SCZ patients.
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