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Abstract
Background  Periodontitis is a major inflammatory disease of the oral mucosa that is not limited to the oral cavity 
but also has systemic consequences. Although the importance of chronic periodontitis has been emphasized, the 
systemic immune response induced by periodontitis and its therapeutic effects remain elusive. Here, we report the 
transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with periodontitis.

Methods  Using single-cell RNA sequencing, we profiled PBMCs from healthy controls and paired pre- and post-
treatment patients with periodontitis. We extracted differentially expressed genes and biological pathways for each 
cell type and calculated activity scores reflecting cellular characteristics. Intercellular crosstalk was classified into 
therapy-responsive and -nonresponsive pathways.

Results  We analyzed pan-cellular differentially expressed genes caused by periodontitis and found that most cell 
types showed a significant increase in CRIP1, which was further supported by the increased levels of plasma CRIP1 
observed in patients with periodontitis. In addition, activated cell type-specific ligand-receptor interactions, including 
the BTLA, IFN-γ, and RESISTIN pathways, were prominent in patients with periodontitis. Both the BTLA and IFN-γ 
pathways returned to similar levels in healthy controls after periodontal therapy, whereas the RESISTIN pathway was 
still activated even after therapy.

Conclusion  These data collectively provide insights into the transcriptome changes and molecular interactions that 
are responsive to periodontal treatment. We identified periodontitis-specific systemic inflammatory indicators and 
suggest unresolved signals of non-surgical therapy as future therapeutic targets.
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Background
Periodontitis is a highly prevalent disease in humans and 
is the sixth most common human disease [1]. As reclas-
sified at the World Workshop in 2017, periodontitis has 
a clear distinction from gingivitis in that periodontitis 
manifests as a loss of alveolar bone and periodontal tis-
sue and has permanent bone defects even after peri-
odontal therapy [1, 2]. In the past, periodontitis has 
been suggested to be a simple inflammatory disease in 
the periodontium that is induced by providing a habi-
tat for microbes. However, it is now defined as a com-
plex disease induced by repeated interactions between 
host modulation of inflammatory and immune activi-
ties, periodontal pathogens, and environmental factors 
[3]. Thus, the susceptibilities to periodontitis are deter-
mined by the host response, specifically the magnitude of 
the inflammatory response and the differential activation 
of immune pathways rather than the amount and/or the 
pathogenicity of periodontal bacteria [4, 5].

Although periodontitis is an inflammatory disease 
localized to the oral cavity, it has been known to be 
associated with various systemic diseases, such as car-
diovascular diseases, diabetes mellitus, and rheumatoid 
arthritis [6, 7]. Several possibilities have been proposed 
for the mechanism by which local tissues exert systemic 
effects. The surface of ulcerated periodontal pockets may 
allow microbial products, such as lipopolysaccharide 
(LPS) or proteases, to enter the circulation, resulting in 
bacteremia [7]. In addition, patients with severe peri-
odontitis have elevated levels of inflammatory media-
tors, such as IL-1, IL-6, C-reactive protein (CRP), and 
fibrinogen, in their blood [8–10]. Thus, periodontitis can 
affect the whole body and induce a systemic inflamma-
tory response through leakage of microbial products into 
the circulatory system [7, 11]. Therefore, treatment for 
periodontitis is fundamental not only to relieve immedi-
ate pain, but also to attenuate the subsequent systemic 
response.

Recent advances in single-cell RNA sequencing 
(scRNA-seq) technology have enabled us to understand 
and elucidate cellular complexities [12]. Since each cell 
type, especially immune cells, has unique functions, 
pathways, and regulatory mechanisms, it is essential to 
characterize cell type-specific genes to identify disease 
biomarkers and therapeutic targets, which is feasible 
using scRNA-seq technology. To examine the main fac-
tors for chronic inflammation induced by periodontitis, 
we compared the expression profiles of peripheral blood 
mononuclear cells (PBMCs) from patients with peri-
odontitis and healthy controls. In addition, to determine 
whether therapeutic intervention can redirect the immu-
nologic status of periodontitis, we delineated therapy-
responsive and -nonresponsive intercellular pathways.

Methods
Sample preparation and inclusion criteria
Participants for scRNA-seq analysis and enzyme-linked 
immunosorbent assay (ELISA) were recruited from the 
Department of Periodontology, Pusan National Univer-
sity Dental Hospital, under protocols approved by the 
Institutional Review Board (IRB no. PNUDH-2020-001, 
and IRB no. PNUDH-2020-032 for scRNA-seq analy-
sis and ELISA, respectively). All participants provided 
written informed consent. All patients diagnosed with 
periodontitis stage III were included in this study, and 
the severity of periodontitis was defined according to 
the 2017 World Workshop criteria, a new classification 
scheme for periodontal and peri-implant diseases and 
conditions [2]. Healthy periodontal status was defined 
as a pocket depth ≤ 3  mm and no bleeding on probing, 
with no signs of clinical inflammation, including red-
ness and swelling. The inclusion criteria were subjects 
with 10 or more teeth and no systemic diseases. In addi-
tion, we excluded subjects who had received periodontal 
treatment within the last 6 months or anti-inflammatory 
drugs or antibiotics within the last 6 weeks. Those who 
were previously or currently heavy smokers (which we 
defined as people who smoked more than one pack per 
day) were also excluded. All participants with periodonti-
tis received non-surgical periodontal treatment from the 
same periodontist. Non-surgical periodontal treatment 
consisted of full-mouth scaling and root planning (SRP) 
performed in a single appointment under local anesthe-
sia using an ultrasonic device and hand instruments. We 
attempted to minimize confounding factors that could 
arise between treatments. Oral hygiene instruction was 
provided and consisted of the Bass brushing technique 
and use of an interdental brush and dental floss. The par-
ticipants were instructed not to use any antimicrobial 
mouth-rinsing solutions for the duration of the study. 
The periodontal clinical parameters before and after one 
month of treatment, as well as the demographic features, 
are presented in Additional file 1: Table S1.

Blood collection and PBMC isolation
Peripheral blood samples were collected in plastic blood 
collection tubes containing EDTA. PBMCs for scRNA-
seq were isolated using SepMate (Stemcell Technolo-
gies Inc.) within 30  min of collection according to the 
manufacturer’s instructions. Briefly, density gradient 
medium and diluted blood samples were added to a Sep-
Mate tube. After carefully mixing the medium and sam-
ples, the tubes were centrifuged at 1200 × g for 10 min. 
The top layers were poured into a new tube and washed 
twice with phosphate-buffered saline containing 2% fetal 
bovine serum. The tubes were then centrifuged at 300 × 
g for 8 min at room temperature. The collected PBMCs 
were frozen and stored at − 80  °C until sequencing. 
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Plasma for ELISA was collected after centrifugation at 
2,000 × g for 10 min at room temperature and stored at 
− 80 °C until use.

Enzyme-linked immunosorbent assay (ELISA)
The blood samples in EDTA were centrifuged at 2,000 
× g for 10  min at 4  °C, and the supernatant was stored 
at − 70  °C until analysis. For the measurement of TNF-
α, IFITM1 and CRIP1 concentrations, Human TNF-α 
Uncoated ELISA (Invitrogen, Vienna, Austria),  Human 
Interferon Induced Transmembrane Protein 1 (IFITM1) 
ELISA (MyBioSource, Vancouver, Canada) and Cyste-
ine-rich protein 1 ELISA (Mybiosoruce, San Diego, CA, 
USA) kits were used, respectively. Briefly, plasma samples 
were added to assay plates pre-coated with anti-TNF-α, 
IFITM1 or CRIP1 antibodies and incubated for 2 h. The 
plates were then incubated with diluted detection anti-
body for 1  h, reacted with the substrate solution for 
30 min, followed by the addition of the stop solution. All 
reactions for TNF-α, IFITM1 and CRIP1 were performed 
at RT and 37 °C, respectively. Standard curves were plot-
ted as control versus the mean optical density at 450 nm. 
TNFα, IFITM1 and CRIP1 concentrations in each sample 
were quantified based on a standard curve. Clinical infor-
mation about the participants whose plasma was used for 
ELISA is shown in Additional files 2, 3: Tables S2, S3.

Library preparation and sequencing of scRNA
Libraries were prepared using the chromium controller 
according to the 10× chromium Next GEM Single Cell 
3ʹ v3.1 protocol. The cell suspension was mixed with the 
master mix and loaded with Single Cell 3ʹ v3.1 Gel Beads 
and Partitioning Oil into a chromium Next GEM chip 
G. RNA transcripts from single cells were uniquely bar-
coded and reverse-transcribed within droplets. cDNA 
molecules were pooled and then subjected to end repair, 
addition of a single ‘A’ base, and ligation of the adapters. 
Next, the products were purified and enriched using PCR 
to create a final cDNA library. Finally, the libraries were 
sequenced using the Illumina HiSeq platform according 
to the read length provided in the user guide.

scRNA-seq data pre-processing
Single-cell gene expression data were processed using 
10× Genomics Cell Ranger v3.1.0. Raw BCL files from 
the Illumina sequencing platform were demultiplexed 
to generate FASTQ files using the ‘cellranger mkfastq’ 
pipeline. Then, raw FASTQ files were analyzed using the 
‘cellranger count’ pipeline. This step includes alignment 
to the human reference genome (GRCh38, v3.0.0) and 
measurement of gene expression with a unique molecu-
lar identifier (UMI) and cell barcode. Consequently, a 
cell-by-gene count matrix was generated. To remove 
low-quality cells, cells with less than 500 UMIs or more 

than 20,000 UMIs and > 20% mitochondrial genes were 
filtered out. In addition, we removed cells with fewer 
than 250 genes or more than 5000 genes, as well as cells 
with less than 80% complexity (number of genes detected 
per UMI with log transformation), which could be inter-
preted as specific cell types, artifacts, or contaminants. 
In addition, we included genes expressed in more than 
0.1% of the cells, not only to eliminate zero counts, but 
also to prevent genes expressed in a few cells from low-
ering the average of all other cells. As some samples had 
a large number of cells (maximum 12,177 cells), possible 
doublets were estimated using Scrublet, and 3.5% of cells 
were eliminated (maximum 11,852 cells) [13].

Analysis of scRNA-seq data
The Seurat (v3.2.2) R package was used to integrate, 
scale, cluster, and visualize data. The remaining count 
data were normalized using the SCTransform function 
based on regularized negative binomial regression on 
total cellular read counts [14, 15]. After normalization 
of each sample, the FindIntegrationAnchors and Inte-
grateData functions were used for integration with the 
largest dataset among the 12 samples, which was used as 
the reference dataset. Then, scaling and principal compo-
nent analysis (PCA) were performed using the ScaleData 
and RunPCA functions, and the first 30 principal com-
ponents that were selected depending on the elbow plot 
were utilized to construct the UMAP dimension reduc-
tion and shared nearest-neighbor graph (SNN) using 
RunUMAP and the FindNeighbors function. Then, cell 
clusters were distinguished using the graph-based modu-
larity optimization algorithm of the Louvain method for 
detecting communities with a setting resolution of 0.6, 
which is able to clearly specify the cell type as well as 
detect tiny molecular signals [16]; ultimately, 26 clusters 
were differentiated. Cell identity markers were identi-
fied using the FindAllMarkers function, and genes with 
a log-fold change threshold > 0.5 and false discovery rate 
(FDR) < 0.01 were regarded as significant differentially 
expressed genes (DEGs).

To annotate each cluster into immune cell types, these 
cell identity markers were supplied into the SingleR 
(v3.12) R package [17]. SingleR first assigned a single cell 
into highly matched cell types and then annotated and 
combined clusters into the most likely cell types. Most of 
the cells in the same cluster were suggested to be of con-
sistent cell type, usually over 70%, whereas clusters with 
low consistency were annotated using multiple genes 
representing cell-specific signatures.

DEG analysis was conducted using edgeR and flexible 
zero-inflated negative binomial-based wanted variation 
extraction (ZINB-WaVE), which accounts for zero infla-
tion and over-dispersion [18, 19]. To identify periodonti-
tis-related genes, we compared the expression differences 
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between the three groups as follows: (1) healthy control 
vs. pre-treatment and (2) pre-treatment vs. post-treat-
ment. In case (2), we compared gene expression with a 
paired test. DEGs with log2FC > 0.3 and FDR value < 0.05, 
were extracted and log2FC was recalculated to compare 
chronic periodontitis status with that of the other two 
groups.

Gene ontology (GO) analysis
To investigate the biological function of the DEGs 
detected in the pre-treatment group, we used the R pack-
age ‘clusterProfiler’ (ver. 4.0.5) [20]. The upregulated 
or downregulated genes in each cell type were used to 
determine the biological function, and the gene set with 
p < 0.05 and more than one enriched gene was considered 
to be significant. For genes with more than five biological 
functions, the top five, in the order of the lowest p-value, 
were extracted.

Cell–cell interaction
We inferred cell‒cell communication based on the 
expression of ligand-receptor pairs from the manually 
curated human database CellChatDB. We followed the 
official workflow for the R package ‘CellChat’ [21]. We 
created normalized count data from the Seurat object 
to the CellChat object and pre-processed with the iden-
tifyOverExpressedGenes, identifyOverExpressedIn-
teractions, and projectData functions. We generated a 
ligand‒receptor interaction database comprising secreted 
signaling, extracellular matrix-receptor, and cell‒cell 
contact interactions. Then, we calculated the communi-
cation probability and inferred cellular communication 
networks with the computeCommunProb and comput-
eCommunProbPathway functions. Finally, we aggregated 
the inferred signaling pathways, compared their strength 
and cellular components, and extracted statistically sig-
nificant pathways with greater than 1.5-fold signal inten-
sity between the two groups.

Statistical analyses
Statistical analyses were performed using R version 4.0.3. 
Kruskal‒Wallis and Wilcoxon rank-sum tests were used 
to compare cellular composition by setting the signifi-
cance level at 0.05. PCA plots for clinical information 
were obtained using the prcomp() function. Receiver 
operating characteristic (ROC) curves were plotted using 
the R package ‘ROCit’ [22].

Results
Single-cell transcriptional landscape of the PBMCs from 
patients with periodontitis
We isolated PBMCs from four healthy donors and four 
paired pre-and post-treatment patients for scRNA-seq 
and obtained 111,213 cells, with an average of 9,268 cells 

per participant (Fig.  1  A, B). Distinct cell populations 
were observed after dimensionality reduction and graph-
based clustering.

We assigned clusters to the cell type with the highest 
probability and confirmed the identities using known 
markers (Fig. 1 C, D). We found 13 major cell compart-
ments that are important for the immune response, 
and each donor’s PBMCs contained all of these clusters 
(Fig. 1E). The PBMC populations comprised T cells (60–
73%), B cells (4–15%), natural killer (NK) cells (5–23%), 
monocytes (5–24%), and dendritic cells (1–2%) with nor-
mal distributions, regardless of the presence of disease 
or chronic inflammation-resolved status via periodontal 
therapy. Although most of the samples showed no sig-
nificant differences in cellular composition among the 
three groups, in patients with periodontitis the propor-
tion of CD8+ T cells was slightly lower, while naïve CD8T 
cells were slightly higher compared to those in healthy 
controls, but these changes were partially rescued after 
therapeutic intervention (p = 0.062 and p =, respectively), 
(Additional file 4: Fig. S1A, B). To verify the clinical 
inflammatory status of the patients with periodontitis and 
resolution by periodontal therapy, we performed PCA 
using six variables: erythrocyte sedimentation rate (ESR) 
and CRP, which are indicators of inflammation; prob-
ing pocket depth (PPD), clinical attachment level (CAL), 
plaque index (PI), and gingival index (GI), which are 
indicators of the severity of periodontitis. The healthy 
controls clustered together but were separated from the 
pre- and post-treatment groups (Fig. 1 F and Additional 
file 5: Fig. S2). The pre-treatment group was distinct from 
the healthy group, while the post-treatment group was 
more similar to the controls, although the clinical vari-
ables of post-treated patients were not comparable to 
those of the healthy controls. This shows that therapeu-
tic intervention improved the inflammatory status and 
altered the clinical characteristics of periodontitis.

Gene expression alterations in innate immune cells of 
patients with chronic periodontitis
Next, we investigated the transcriptome changes in 
innate immune cells, including monocytes, dendritic 
cells (DCs), and NK cells. A subtype of DCs, called 
plasmacytoid dendritic cells (pDCs), which are respon-
sible for antiviral immunity, were excluded as they had 
no detectable transcriptional changes. The monocytes 
obtained from Fig.  1  C were re-clustered and classi-
fied into three subtypes: classical, non-classical, and 
intermediate monocytes (Fig. 2 A). The identities of the 
sub-clusters were determined based on the expression 
of CD14 and FCGR3A (Additional file 6: Fig. S3A). The 
DEGs in innate immune cells are shown in Fig. 2B‒D. An 
increase in cysteine-rich protein 1 (CRIP1) in patients 
with periodontitis is observed in all types of innate 
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immune cells, and CRIP1 levels after therapy are simi-
lar to that in healthy controls, suggesting that CRIP1 

may be an important factor in maintaining chronic 
inflammation. When GO terms were investigated using 

Fig. 1  Composition of peripheral blood mononuclear cells (PBMCs) from healthy donors and pre- and post-treatment periodontitis patients
A. The graphical abstract of this study
B. Bar graph showing cell numbers in each sample. Blue represents healthy donor samples, orange represents pre-treatment patient samples, and yellow 
represents post-treatment patient samples
C. UMAP plot of 111,213 PBMCs from all subjects, colored according to the major cell lineages
D. Scatter plot of canonical marker genes for 13 major lineages projected onto the UMAP plot. The red and gray spectra indicate the expression levels of 
each gene
E. Bar graph showing the proportion of the major cell types for each participant, colored according to the cell type
F. PCA plot of the participants using six clinical variables: ESR, CRP, clinical attachment level, probing pocket depth, plaque index, and gingival index
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pre-treatment group-specific DEGs, classical monocytes 
had low levels of MHC protein complex assembly genes 
and reduced antigen-presenting activity. In addition, 
the lymphocyte-activating activity was reduced in non-
classical monocytes (Additional file 7: Fig. S4). However, 
genes responding to LPS stimulation were increased in 
myeloid DCs (mDCs) of the pre-treatment groups and 
approached intensity levels similar to the controls follow-
ing treatment (Fig.  2E, Additional file 8: Fig. S5). These 
results imply that although monocytes had reduced anti-
gen-presenting function, mDCs actively responded after 
detection of LPS, a virulence factor of the periodontitis 
bacteria Porphyromonas gingivalis and could be rescued 
by periodontal therapy [23].

Systemic properties of adaptive immune cells found in 
patients with chronic periodontitis
Next, we investigated the transcriptomic changes in 
adaptive immune cells. The B, CD4T, and CD8T cell 
groups from Fig. 1 C were extracted and separated into 
more specific subtypes. B cells were separated into non-
switched memory B cells (non-switched MB), switched 
memory B cells (switched MB), exhausted B cells, and 

plasmablasts (Fig.  3  A). CD4+ T cells were divided into 
four subtypes: T helper 1 (Th1), T helper 17 (Th17), 
follicular helper T (Tfh), and regulatory T (Treg) cells 
(Fig. 3B). CD8+ T cells were classified into three subtypes: 
central memory T (TCM), effector memory T (TEM), 
and terminal effector T (TTE) cells (Fig. 3 C). The mark-
ers for each compartment are described in Additional file 
6: Fig. S3B‒D.

The genes that showed altered expression levels in 
the pre-treatment samples compared to those in both 
the healthy and post-treatment samples are shown in 
Fig. 3D‒F. The GO terms of these genes are described in 
Additional files 9‒11: Fig. S6‒S8. The CD4+ and CD8+ T 
cell subsets showed decreased cell migration and motility 
in pre-treatment patients. However, there were no nota-
ble changes in the expression of exhausted B cells, plas-
mablasts, and TEM cells. The lack of differences in TEM 
cells between the groups was expected since TEM cells 
were previously reported to be a part of the acute (but 
not chronic) immune response [24]. This suggests that 
these nonresponsive cells are not affected by the peri-
odontal bacteria-induced systemic inflammation and are 
not the main drivers of chronic inflammation.

Fig. 2  Differentially expressed genes in innate immune cells, monocytes, dendritic cells, and NK cells
A. UMAP plot of the three monocyte subsets: classical, non-classical, and intermediate monocytes
B–D. Dot plot showing differential expression levels of genes in each monocyte subtype (B), NK cells (C) and mDCs (D). Displayed genes showed similar 
expression in control and post-treatment groups, but inverse expression patterns in the pre-treatment group. The color of the dots represents the expres-
sion levels of the gene, whereas dot size represents the percent of cells expressing the gene
E. Activity score of positive regulation of lipopolysaccharide-mediated signaling pathway in mDCs. Enrichment of genes with GO term GO:0031666 was 
calculated using the Wilcoxon rank-sum test. p ≤ 0.1 (•), p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****), p ≥ 0.05 (ns)
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Common DEGs in immune cells are responsive to systemic chronic inflammation

Fig. 3  Periodontitis-induced transcriptional alterations in adaptive immune, B, CD4T, and CD8T cells
A. UMAP plot of the four B cell subsets: exhausted B cells, switched memory B (switched MB) cells, non-switched memory B (non-switched MB) cells, and 
plasmablasts
B. UMAP plot of the four CD4+ T-cell subsets: T helper 1 (Th1), T helper 17 (Th17), follicular helper T (Tfh), and regulatory T (Treg)
C. UMAP plot of the three CD8+ T-cell subsets: central memory T (TCM), effector memory T (TEM), and terminal effector T (TTE) cells
D-F. Dot plot showing differential expression levels of genes in the B cell subtypes (D), CD4T cell subtypes (E), and CD8T cell subtypes (F). Figure descrip-
tions are the same as Fig. 2B-D.
G. The plasma levels of CRIP1, IFITM1, TNF-α, CRP, and ESR in healthy controls and patients with periodontitis were measured using ELISA. P-values were 
calculated using the Wilcoxon rank-sum test to compare the two groups
H. Relationship between CRIP1 and TNF-α, CRP, and ESR measurements. The Pearson correlation coefficient and p-values were calculated from the cor-
relation test
I. Receiver operating characteristic (ROC) curves of CRIP1 and IFITM1 ROC curve analysis showed a clear distinction between the healthy and periodontitis 
groups
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Across all immune cells, we found common DEGs, such 
as CRIP1, macrophage migration inhibitory factor (MIF), 
interferon-induced transmembrane protein 1 (IFITM1), 
and ribosomal protein S17 (RPS17). DEGs that exhib-
ited contrasting expression patterns in the pre-treatment 
group compared to those in the healthy and post-treat-
ment groups and their GO terms in the remaining cell 
types that were not divided into subtypes are shown in 
Additional files 12, 13: Fig. S9, S10. Notably, in more 
than half of the cells, all four genes were highly expressed 
only in pre-treatment patients (Additional File 14: Table 
S4). The relative expression of these four genes in the 
healthy group was visualized along with their localiza-
tion according to clinical inflammatory and periodontal 
measurements in Additional file 15: Fig. S11. Across all 
cell types where differential expression was observed, the 
expression of the four genes increased. CRIP1 was specif-
ically upregulated in the B cell lineage, and IFITM1 was 
upregulated in the T cell lineage. However, they were all 
reduced following therapeutic intervention, thus demon-
strating a relationship between clinical variables and the 
expression patterns of these genes.

Of the four genes, CRIP1 and IFITM1 were over-
expressed in approximately 97% and 71% of the total 
immune cells, respectively (Additional file 14: Table S4). 
An ELISA was conducted on the plasma of the healthy 
and periodontitis groups to measure changes in CRIP1 
and IFITM1 protein concentrations, and compared with 
those of the inflammatory markers TNF-α, CRP, and 
ESR. Although there was a similar concentration of the 
three inflammatory indicators between the healthy and 
periodontitis groups, we found a difference in CRIP1 and 
IFITM1 levels (Fig.  3G). In addition, CRIP1 levels posi-
tively correlated with TNF-α levels (Fig. 3 H, Additional 
file 16: Fig. S12). The ROC curves showed that the area 
under the ROC curve (AUC) for CRIP1 and IFITM1 in 
the healthy and periodontitis groups was 0.94 and 0.66, 
respectively (Fig.  3I, both p-values < 0.001). Thus, these 
results indicate that the levels of these four genes are sen-
sitive to the systemic immune response and that plasma 
CRIP1 could be a marker for the systemic inflammation 
caused by periodontitis.

Cell‒cell communication in immune cells of patients with 
chronic periodontitis
To investigate the intercellular communication between 
immune cells, which could induce or suppress inflamma-
tory signals, we inferred the cell‒cell interactions within 
each group. We then compared the signal length of the 
interactions between the groups (Additional file 17: 
Fig. S13) and found several chronic inflammation-spe-
cific crosstalk proteins: B and T lymphocyte attenuator 
(BTLA), CCL, CD99, SEMA4, RESISTIN, interferon-γ 
(IFNG), THBS, and CD48.

Changes in the BTLA and IFNG pathways by periodontal 
infection are reversible with treatment
The BTLA-mediated pathway was significantly upregu-
lated in pre-treatment patients. The BTLA pathway 
consists of BTLA‒TNFRSF14 as a ligand‒receptor pair 
in every group, and naïve B cells predominantly acted 
as the signal senders (Fig.  4  A‒C). However, unlike the 
other groups, pDCs also exerted a sending function. In 
addition, the proportion of pDCs expressing BTLA was 
higher in the pre-treatment group (Fig.  4D). Based on 
a study where BTLA‒TNFRSF14 crosstalk promoted 
Foxp3 expression in T cells via upregulation of CD5, we 
examined the proportional change in CD5+-expressing 
T cells and FOXP3+ Tregs. As a result, the ratio of CD5+ 
T cells and FOXP3+ Tregs increased in the periodontitis 
pre-treatment group (Additional file 18: Fig. S14). More-
over, in Treg cells, there was a significantly higher pro-
pensity for immune tolerance in the pre-treatment group 
(Fig. 4E). This is consistent with a previous study showing 
that BTLA in DCs modulates the immunotolerance of T 
cells [25]. After non-surgical treatment, the BTLA+ pDC 
ratio and the involvement of pDCs in BTLA interactions, 
and the tolerance of Tregs, were similar to those of the 
healthy group.

Conversely, IFNG-mediated interactions only appeared 
in the periodontal inflammatory group (Fig. 5 A). IFNG 
secreted by NK cells binds to IFNG receptors (IFNGR) 
on mDCs and monocytes. The expression level of IFNG 
and the ratio of IFNG+ NK cells were the highest in the 
pre-treatment group (Fig. 5B, C). In addition, there were 
significant increases in pro-inflammatory cytokines 
released from DCs only in the IFNGR+ mDCs of pre-
treatment individuals (Fig.  5D) [26]. This suggests that 
NK cell-secreted IFNG stimulates mDCs to induce and 
maintain an inflammatory response in patients with peri-
odontitis but can be ameliorated by non-surgical therapy 
[27, 28].

Persistent RESISTIN pathway activation despite 
periodontitis treatment
The RESISTIN pathway was observed in all groups, 
with the weakest signal intensity in healthy subjects 
and increased signal intensity in periodontitis patients 
(Fig.  6  A‒C). In all groups, monocytes interact with all 
cell types as the signal sender, but in the disease state, 
mDCs are also able to initiate signal transduction. The 
RESISTIN pathway consists of interactions with CAP1 
and TLR4 receptors, and there was no compositional dif-
ference in the ligand-receptor pairs between the groups 
(Fig. 6D). Examining the expression pattern of the resis-
tin-coding gene RETN in signal sender cells, RETN was 
most highly expressed in monocytes of the periodontitis 
group, but levels were significantly decreased after treat-
ment, although it was not completely rescued (Fig.  6E). 
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In addition, the proportion of RETN+ monocytes in the 
periodontitis group was twice that of the healthy con-
trols, but decreased to levels similar to the healthy group 
after treatment (Fig.  6  F). In contrast, in mDCs, the 
expression level of RETN and the proportion of RETN+ 
cells were only slightly increased (Fig.  6G, H). There-
fore, it is noteworthy that, unlike the preceding signal-
ing pathways, treatment intervention did not rescue the 
changes in RESISTIN pathway activity due to periodon-
titis. In conclusion, although there was partial rescue in 
some cells that activated the RESISTIN signaling path-
way, mDCs involved in periodontitis were not affected by 
non-surgical treatment and continued to activate RESIS-
TIN signaling.

In addition, there are other therapy-responsive and 
nonresponsive intercellular pathways. The CCL and 
SEMA4 signals, which were elevated in pretreatment 
patients, were weakened after periodontal treatment, 
while CD99, THBS, and CD48 signals were maintained. 

The ligand-receptor pair and cellular networks of these 
pathways are illustrated in Additional file 19: Fig. S15.

Discussion
Periodontitis is caused by periodontal dysbiosis of the 
microbiota, which promotes loss of gingival tissue and 
bone destruction [29]. The risk of periodontitis affects 
not only the local site, but also induces a systemic 
immune response. For example, periodontitis-induced 
chronic inflammation can disturb typical immunological 
mechanisms, including bystander activation, amplifica-
tion of cytokines, epitope spreading, autoantigen com-
plementarity, and activation or inhibition of receptors 
related to microorganism regulation [29]. Consequently, 
pathogenesis models leading to extra-oral diseases, 
such as cardiovascular disease, rheumatoid arthritis, 
adverse pregnancy outcomes, and respiratory disease, 
have been widely investigated [30]. However, beyond the 
pathophysiology of periodontitis, the systemic immune 

Fig. 4  BTLA signaling pathway and proportion of BTLA+pDCs
A–C. Circle plot of BTLA signaling in healthy controls (A), pre-treatment (B), and post-treatment (C) groups. The direction of the arrow indicates the signal 
sender and receiver and the color of the arrow is the same as that of the sender cell. The edge width corresponds to the strength of the ligand-receptor 
pairs
D. Proportion of BTLA+ pDCs in healthy, pre- and post-treatment groups
E. Violin plot for the tolerance score of Tregs. Tolerance was calculated using the gene set from GO:0002645 (termed ‘positive regulation of tolerance 
induction’). Asterisks denote the significance of the differences between the groups calculated using the Wilcoxon rank-sum test. p ≤ 0.05 (*), p ≤ 0.01 (**), 
p ≤ 0.001 (***), p ≤ 0.0001 (****), p ≥ 0.05 (ns)
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response to periodontal treatment remains unclear. To 
expand our knowledge, this study shows the periodon-
tal therapy-induced process and identifies genes that 
are differentially altered according to the disease condi-
tion. Moreover, we focused on the intercellular signals 
between immune cells and further uncovered the interac-
tions that did not respond to periodontal treatment.

In this study, we examined the transcriptional changes 
and related functions in different immune cells. Each 
immune cell had pro-inflammatory cytokines that were 
elevated only in pre-treated periodontitis patients. For 

instance, CCL3L1 (in NK cells), which enhances the 
inflammatory response and increases the risk of autoim-
mune disease [31], S100A12 (in mDCs), which is a valu-
able serum inflammatory marker [32], TNFRSF1B (in 
mDCs), which regulates TNF-α levels [33], and CCR7 
(in Th17 cells), which promotes joint inflammation [34], 
were found to be highly expressed in patients with peri-
odontitis. Unexpectedly, we observed that only a few pro-
inflammatory cytokines were altered in periodontitis. In 
addition, as shown by the ELISA results, the prevalent 
inflammatory markers only showed slightly increased 

Fig. 5  Circle plot and expression level of IFNG signaling pathway
A. Circle plot of IFNG signaling in the pre-treatment group, similar to Fig. 4 A‒C. The edge width corresponds to the strength of the ligand-receptor pairs
B. Violin plot of IFNG expression levels. The horizontal line indicates the average in each group, and the asterisks denote the significance of the difference 
between groups calculated using the Wilcoxon rank-sum test. p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****), p ≥ 0.05 (ns)
C. Proportion of IFNG+ NK cells in the healthy, pre- and post-treatment groups
D. Average expression of cytokines including IL1, IL12, IL23, and TNF-α in dendritic cells by condition and IFNG receptor expression. The horizontal line 
indicates the average in each group, and asterisks denote the significance of the difference between groups calculated using the Wilcoxon rank-sum test. 
p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****), p ≥ 0.05 (ns)
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levels in periodontitis. Altogether, our results indicate 
that periodontitis induces mild systemic inflammation, 
consistent with previous studies [7, 35].

Remarkably, the expression of the CRIP1 gene was dif-
ferentially increased in almost every cell type in the peri-
odontitis samples and the concentration of plasma CRIP1 
protein also increased in the periodontitis group. The 
functional role of CRIP1 has been reported in a previ-
ous study, where transgenic mice overexpressing Crip1 
produced high concentrations of IL-6 and IL-10 after 
LPS treatment [36]. In addition, its role has been studied 
in diverse cancer types, suggesting that CRIP1 might be 
a risk factor for chronic inflammation and systemically 
affects numerous tissues and organs [37–40]. Moreover, 
CRIP1 levels reflect periodontitis-induced inflammation 
more sensitively than typical indicators. Taken together, 
the upregulation of CRIP1 may be a predictive marker for 
systemic inflammation induced by periodontitis.

In the intercellular network, BTLA and IFNG sig-
nals are strongly activated in the circulatory system 
during periodontitis. The BTLA‒TNFRSF14 interac-
tion has been reported to regulate T-cell responses and 
increase disease susceptibility. Here, we confirmed 

that pDCs formed distinct signaling networks, and 
the immunological tolerance of T cells was enhanced 
in periodontal disease [41]. It is speculated that this is 
because BTLA-expressing DCs induce and modulate 
subsequent immune responses of Treg cells by promot-
ing Foxp3 and CD5 expression [25]. Additionally, mDCs 
and monocytes are involved in IFNG network. In par-
ticular, mDCs expressing IFNGR secrete high levels of 
inflammatory cytokines, which may lead to abnormal 
localization or activation of the immune response [28]. 
Similarly, the CCL pathway, which is known to augment 
the production of IFNG from the CCL5‒CCR1 interac-
tion, was strongly upregulated in periodontitis patients, 
which supports the higher activity of INFG [42]. From 
these results, we can infer that patients with periodonti-
tis exhibit antigen-specific tolerance and an imbalanced 
immune response. However, these intercellular networks 
can be resolved using nonsurgical periodontal treatment.

In contrast, the RESISTIN pathway was consistently 
active regardless of non-surgical treatment. Unlike 
rodent adipocytes, human RESISTIN is predominantly 
expressed in macrophages and is produced in response 
to inflammatory stimuli [43–46]. As in previous research, 

Fig. 6  Circle plot and expression level of RESISTIN signaling pathway
A-C. Circle plot of RESISTIN signaling in the healthy (A), pre-treatment (B), and post-treatment (C) groups, similar to Fig. 4 A‒C. The edge width corre-
sponds to the strength of the ligand‒receptor pairs
D. Relative contribution of ligand-receptor pairs for RESISTIN signaling pathway
E. Violin plot of RETN expression levels in monocytes. The horizontal line indicates the average in each group, and the asterisks denote the significance of 
the difference between groups calculated using the Wilcoxon rank-sum test. p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****), p ≥ 0.05 (ns)
F. Proportion of RETN+ monocytes in the healthy, pre- and post-treatment groups
G. Violin plot of RETN expression levels in mDCs. The horizontal line indicates the average in each group, and the asterisks denote the significance of the 
difference between groups calculated using the Wilcoxon rank-sum test. p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****), p ≥ 0.05 (ns)
H. Proportion of RETN+ mDCs in the healthy, pre- and post-treatment groups
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most RESISTIN transcripts were secreted by monocytes 
from healthy donors and patients with periodontitis. 
However, interaction with mDCs appeared in patients 
with periodontitis and was sustained even after peri-
odontal therapy. In addition, RESISTIN binds primar-
ily to the adenylyl cyclase-associated protein 1 (CAP1) 
receptor, which is known to upregulate circulating AMP 
(cAMP) concentrations, protein kinase A (PKA) activ-
ity, and NF-κB-associated transcription of inflammatory 
cytokines [47]. Elevated RESISTIN levels have also been 
demonstrated in various inflammatory diseases, such as 
rheumatoid arthritis (RA), inflammatory bowel disease 
(IBD), type II diabetes, and sepsis. [48–50]. Thus, RESIS-
TIN signaling may systemically increase susceptibility to 
diverse diseases. Moreover, the THBS network, whose 
ligand is highly expressed after LPS stimulation, increases 
the risk of inflammation [51, 52], and the CD48 network, 
which is known to activate NK cells and contribute to 
diverse autoimmune diseases, is maintained even after 
periodontal therapy [53, 54]. All this evidence indicates 
that typical periodontal treatment cannot be the sole 
strategy for complete immune recovery and necessitates 
consideration of other therapeutic approaches.

Nevertheless, this study had some limitations. First, 
there is a gap between the ages of healthy individuals 
and patients with periodontitis. Age is one of the major 
factors that enhance the prevalence of periodontitis and 
chronic inflammation [55–57]. Although all subjects in 
this study were middle-aged, there was a 6-year differ-
ence between the groups on average. This could indicate 
that the patients had higher exposure to a known risk 
factor for chronic inflammation; thus, further research 
under strict control of external factors is required. Next, 
cryopreserved PBMCs were used to generate RNA 
sequence profiles. Despite the general use of frozen 
samples in scRNA-seq, the identification of immune cell 
subpopulations that have not been fully characterized 
may be challenging, considering the comparatively lower 
detection of UMIs in frozen PBMCs than in fresh PBMCs 
[58, 59]. Therefore, fresh samples can assist with produc-
ing more precise results.

Conclusion
In summary, our current study reports transcriptome 
changes in periodontitis at single-cell resolution. In this 
study, we revealed the systemic immunological effects of 
periodontitis and identified periodontitis-specific predic-
tors of inflammation. In addition, based on the immune 
pathways that were responsive to therapy, we found non-
responsive pathways to treatment that can increase the 
risk of comorbidity. Therefore, we suggest target path-
ways that can resolve chronic systemic inflammation 
but these therapeutics targets will require experimental 
validation.
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