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HSD11B1 (encoding 11β-hydroxysteroid dehydrogenase 
type 1 [11β-HSD1]) was the causative gene but no muta-
tion was detected in AME patients; thus, the focus was 
shifted to other candidate genes [3]. In 1995, Wilson et al. 
identified the first HSD11B2 mutation in several siblings 
with typical characteristics of AME from a consanguine-
ous Iranian family, unraveling the genetic defects of AME 
[4]. The molecular pathogenesis of AME primarily results 
from a deficiency in the enzyme 11β-hydroxysteroid 
dehydrogenase type 2 (11β-HSD2), which is involved 
in the peripheral metabolism of cortisol [5, 6]. In 1999, 
Nunez et al. summarized the AME genotype–phenotype 
correlation by studying 14 affected children and pro-
posed that clinical and/or biochemical parameters and 
enzyme activity were closely related [7].

Introduction
Apparent mineralocorticoid excess (AME, OMIM: 
218030) is a rare form of monogenic hypertension that is 
transmitted as an autosomal recessive trait. The clinical 
symptoms of AME were first reported in 1974 by Werder 
et al. in a 3-year-old girl with low birth weight, delayed 
growth, polydipsia, polyuria, and hypertension. In 1977, 
New et al. identified patients with similar symptoms, 
characterized their biochemical profiles, and named 
the disease AME [1, 2]. Initially, it was speculated that 
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Abstract
Apparent mineralocorticoid excess is an autosomal recessive form of monogenic disease characterized by juvenile 
resistant low-renin hypertension, marked hypokalemic alkalosis, low aldosterone levels, and high ratios of cortisol 
to cortisone metabolites. It is caused by defects in the HSD11B2 gene, encoding the enzyme 11β-hydroxysteroid 
dehydrogenase type 2 (11β-HSD2), which is primarily involved in the peripheral conversion of cortisol to cortisone. 
To date, over 50 deleterious HSD11B2 mutations have been identified worldwide. Multiple molecular mechanisms 
function in the lowering of 11β-HSD2 activity, including damaging protein stability, lowered affinity for the 
substrate and cofactor, and disrupting the dimer interface. Genetic polymorphism, environmental factors as well as 
epigenetic modifications may also offer an implicit explanation for the molecular pathogenesis of AME. A precise 
diagnosis depends on genetic testing, which allows for early and specific management to avoid the morbidity 
and mortality from target organ damage. In this review, we provide insights into the molecular genetics of classic 
and non-classic apparent mineralocorticoid excess and aim to offer a comprehensive overview of this monogenic 
disease.
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A timely diagnosis of AME is pivotal because con-
tinuous poor management of blood pressure and potas-
sium can cause end organ damage such as early stroke, 
hypertensive myocardial hypertrophy, hypertensive reti-
nopathy, and deterioration of renal function [8]. Genetic 
analysis, regarded as a unique method for the accurate 
diagnosis of disease, continually broadens the genetic 
spectrum of AME [9]. In recent decades, great progress 
has been made in understanding the pathogenesis of 
AME, which aids the development of targeted therapy 
[10] and a novel clinical condition with a mild phenotypic 
spectrum named non-classic AME was identified. Exam-
ining HSD11B2-related genetic or non-genetic determi-
nants has important implications in understanding the 
special condition. This review summarizes the clinical 
presentation, pathophysiology, molecular genetic basis, 
and genetic testing of AME.

Pathophysiology
Cortisol is a hormone secreted by the zona fasciculata of 
the adrenal cortex, which plays a crucial role in cogni-
tion, development, metabolism, the immune system, and 

the stress response [11, 12]. Cortisol levels are regulated 
by two isoforms of 11β-HSD: 11β-HSD1 and 11β-HSD2. 
11β-HSD2 is widely distributed in various tissues, such as 
the brain, placenta, kidney, and colon [13], and facilitates 
the conversion of active steroid cortisol to its inactive 
metabolite form, cortisone; 11β-HSD1 has the oppos-
ing function (Fig.  1). Both cortisol and aldosterone are 
ligands of mineralocorticoid receptors (MRs). In vitro, 
MRs have equal affinity for both cortisol and aldosterone 
while in vivo MRs are much stronger for aldosterone than 
cortisol [14]. The role of 11β-HSD2 in cortisol metabo-
lism is to mediate the ligand selectivity of aldosterone for 
MRs, and the full abolishment or partial activity loss of 
11β-HSD2 leads to the continuous accumulation of cor-
tisol and MR overstimulation following the upregulation 
of sodium reabsorption, increased potassium loss, and 
low-level renin [5, 15]. In addition, following the failure 
of the conversion of cortisol, the excretion of urinary cor-
tisol metabolites tetrahydrocortisol (THF) and allo-THF 
increases and the cortisone metabolite tetrahydrocorti-
sone (THE) decreases [16]. Moreover, it is worthy to note 
that 11β-HSD2 distributes more widely in the fetus than 

Fig. 1  Mechanisms of apparent mineralocorticoid excess syndrome. 11β-HSD2 enzyme facilitates the conversion from active cortisol to inactive me-
tabolite form, cortisone; 11β-HSD1 has an opposing function. Physically, aldosterone and cortisol are both ligands of mineralocorticoid receptors, which 
results in binding to nuclear hormone response elements, leading to transcription of Na+/K+ ATPase and EnaC channels. The deficiency of 11β-HSD2 
fails in the metabolism of cortisol and results in excessive mineralocorticoid, so as the over-ingestion of licorice and azole antifungals causes the same 
effects. Mineralocorticoid receptor blocker, spironolactone, could block the hyperactivation of mineralocorticoid receptors while amiloride blocks EnaC 
remarkably.
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after birth [17]. Feto-placental 11β-HSD2 is regarded as a 
‘glucocorticoid barrier’ which ensures most maternal cor-
tisol inactivated strictly determining the fetal homeosta-
sis of cortisol [18]. Abolished 11β-HSD2 in the placenta 
causes the fetus to be over-exposed to maternal glucocor-
ticoids, leading to the phenotype of intrauterine growth 
restriction associated to glucocorticoid receptor [19, 20].

Additionally, excessive ingestion of exogenous 11β-
HSD2 inhibitors such as licorice and azole antifun-
gals results in MR induced hypertension; thus, taking a 
detailed personal and pharmacological history is benefi-
cial when identifying acquired forms of AME [21–23].

Phenotype of AME
AME is a rare disorder and the prevalence of AME 
across the hypertensive population has yet to remain 
unclear. Consistent with the nature of autosomal reces-
sive inheritance, predominant causative mutations occur 
in consanguineous or endogamous groups or in families 
affected by a founder effect (Table  1) [8, 24–27]. More-
over, no sex predominance is distributed for the disease 
[28]. Depending on its phenotypic severity, AME can 
be divided into two forms: classic AME and non-classic 
AME (Table 2) [29].

Classic AME
Despite the abolishment of 11β-HDS2 leads to deranged 
cortisol metabolism and decreased urinary excretion 
of cortisol metabolites, patients with AME have normal 
serum cortisol concentration and don’t present with clin-
ical features of Cushing’s syndrome or Addison’s disease 
[14, 30]. Presumably, the prolonged cortisol half-life may 
result in the low rate of cortisol secretion because of nor-
mal hypothalamic-pituitary-adrenal axis (HPA) regula-
tion effect [14, 31]. Classic AME usually starts in infancy 
to juvenile and typically manifests as low birth weight, 
refractory hypertension, delayed growth, polyuria and 
polydipsia, failure to thrive [32]. Marked hypokalemia, 
metabolic alkalosis, suppressed plasma renin activity, 
low levels of aldosterone, and increased urinary or serum 
cortisol to cortisone ratios are typical characteristics of 
classic AME. Additionally, nephrocalcinosis and renal 
cysts are common, possibly ascribing to chronic long-
standing hypokalemia [33, 34].

Non-classic AME
Patients with non-classic AME, also known as AME type 
2, present with milder phenotypes including slight hyper-
tension and subtle biochemical disturbances, which is 
proposed as a novel clinical condition different from clas-
sic AME [32]. In the literature, non-classic AME is com-
monly presented in adolescents or adults which develops 
much later than classic AME. Mainly, non-classic AME 
is characterized by a high urinary cortisol/cortisone 

ratio and low cortisone level [35]. Different from classic 
AME, blood pressure level of non-classic AME is normal 
or slightly elevated, approximately 141.0/88.5  mm Hg 
[36]. Recently, a cross-sectional study identified a partial 
defect of 11β-HSD2 in 7.1% of a primary care cohort in 
Chile [37].

These patients are often undetected, and the disease is 
not usually diagnosed until adulthood. By analyzing met-
abolic changes of non-classic AME patients and healthy 
controls, Tapia‑Castillo et al. found gamma-L-glutamyl-
L-methionine sulfoxide and 5-sulfoxymethylfurfural 
might be sensitive biomarker of non-classic AME [36]. 
Moreover, high levels of inflammatory markers, microal-
buminuria, high-sensitivity C-reactive protein, plasmin-
ogen activator inhibitor-1 are indicated in non-classic 
AME [37].

Of note, some heterozygous AME subjects with a sin-
gle pathogenic mutation display various manifestations, 
ranging from normal to mild or moderate phenotype 
[38, 39]. It is either haploinsufficiency or the dominant 
mutant negative effect that partially explain this pheno-
typic variability [38, 40].

Treatment and long-term follow-up
For the nature of AME is a kind of salt-sensitive hyper-
tension, salt-limited diet is necessary for both classic and 
non-classic AME patients [41, 42]. Targeting the patho-
genic pathway, MR antagonist (spironolactone or eplere-
none) combined with potassium sparing diuretics are 
strongly recommended for both AME individuals with 
satisfactory curative effects. Generally, MR antagonist 
for classic AME at doses ranging from 2 to 10  mg/kg/
day while low dose of MR antagonist (12.5–25  mg/day) 
is advised for non-classic AME [43, 44]. Glucocorticoids 
also have been administrated for suppressing the secre-
tion of endogenous adrenocorticotropic hormone-medi-
ated corticosteroid in adult classic AME patients [45]. 
Moreover, kidney transplantation has also been reported 
in classic AME patients which was shown to “cure” AME 
[46, 47]. So far, there is few data regarding the long-term 
follow-up of classic AME patients. Razzaghy-Azar et 
al. followed an Iranian family of three sibs affected with 
classic AME for 20 years and found that the eldest sibling 
with the longest delay in diagnosis developed left ven-
tricular dysfunction and renal failure who had to undergo 
renal transplantation while other two sibs didn’t suffer 
from end-organ damage [47]. In 2017, Yau et al. reported 
long-term follow-up results of a large series comprising 
36 classic AME patients, including cardiovascular mor-
tality (19%), persistence of nephrocalcinosis (89%), and 
kidney failure (15%) [28]. The long-term outcome associ-
ated with non-classic AME patients remains unclear.
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Pa-
tient 

Fam-
ily 

Eth-
nic-
ity

Con-
san-
guin-
ity

Mu-
ta-
tion

Gen-
der

LBW Clinical manifestations Biochemical profile Ref-
er-
ence

Ear-
ly-
onset 
HT

GR Hx of 
FTT

Hx of PAC/
PRA/
PRC

MA u u F/E Oth-
ers

1 1 Ira-
nian

Y F Y Y Y Y N N hy-
per-
ten-
sive 
ne-

↓ - ↑ - - [4, 8, 
28]

2 1 Ira-
nian

Y F Y Y Y Y Y N - ↓ ↓ - ↑ - - [4, 8, 
28]

3 1 Ira-
nian

Y M Y Y Y Y Y N - ↓ ↓ - ↑ - - [4, 8, 
28]

4 2 Indian Y M - Y - - - Y LVH, 
Hx of 
hy-
poka-
lemic 
paral-
ysis

↓ ↓ - - - albu-
min-
uria

[76]

5 2 Indian Y M - Y - - - Y LVH, 
Hx of 
hy-
poka-
lemic 
paral-
ysis

↓ ↓ - - - - [76]

6 3 Na-
tive 

- M - Y - - - - - - - - ↑ - - [5]

7 4 N M Y Y Y Y - Y facial 
palsy

↓ ↓ Y ↑ - - [28, 
78]

8 4 N M Y Y Y Y - Y facial 
palsy

↓ ↓ Y ↑ - - [28, 
78]

9 5 Saudi 
Ara-
bian

Y F Y Y Y Y Y Y mild 
LVH

↓ ↓ Y - ↑ hy-
per-
calci-
uria

[79]

10 5 Saudi 
Ara-
bian

Y F Y Y Y Y - Y - ↓ ↓ Y - ↑ hy-
per-
calci-
uria

[79]

11 5 Saudi 
Ara-
bian

Y M Y Y Y Y - Y - ↓ ↓ Y - ↑ hy-
per-
calci-
uria

[79]

12 6 - Y F Y Y Y Y Y Y LVH, 
hy-
per-
ten-
sive 
reti-
nop-
athy

↓ ↓ Y - - - [80]

13 7 Na-
tive 

- F - Y Y Y Y - reti-
nal 
vaso-
con-
stric-
tion

↓ ↓ - ↑ - - [5, 
81]

Table 1  Clinical manifestations, biochemical profile of AME patients identified by genetic analysis
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14 7 Na-
tive 

- F - Y Y Y Y - - ↓ - - ↑ - - [5, 
81]

15 8 Alge-
rian

Y M N Y - - Y Y mod-
erate 
LVH

↓ ↓ Y ↑ - hy-
per-
calci-
uria

[39]

16 9 N F Y Y - - - Y renal 
failure

↓ ↓ Y ↑ - - [39]

17 10 Chil-
ean

Y F Y Y - - - Y LVH N ↓ - ↑ ↑ - [35]

18 11 Na-
tive 

- F - Y - - - - - - - - ↑ - - [5]

19 12 Na-
tive 

- M - Y - - - - - - - - ↑ - - [5]

20 13 Na-
tive 

- M - Y - - Y - py-
loric 
ste-
nosis

↓ ↓ Y ↑ - - [5, 
81]

21 14 Na-
tive 

Y M - Y Y - - Y - ↓ ↓ - ↑ - - [78]

22 15 East 
Indian

N M Y Y Y Y Y Y LVH, 
hy-
per-
ten-
sive 
reto

↓ ↓ Y ↑ - - [5, 82, 
83]

23 16 Ira-
nian

N M Y Y - - - N - ↓ ↓ - ↑ - - [28, 
78]

24 17 N M - Y N - Y N - ↓ ↓ - ↑ - - [78]

25 18 N M Y Y - - - Y - ↓ ↓ Y ↑ - - [28, 
78]

26 19 Mexi-
can/

- F - HT - - - - - - - - ↑ - - [5]

27 20 Irish/ - M - Y - - - - - - - - ↑ - - [5]

28 21 Afri-
can 

N F Y Y N - - Y hy-
per-
ten-
sive 
reti-
nop-
athy, 
LVH

↓ ↓ Y ↑ ↑ - [28, 
78, 
82]

29 21 Afri-
can 

N F N Y N - - Y LVH, 
cere-
bral 
palsy, 
deaf-
ness

↓ ↓ Y ↑ ↑ - [28, 
78, 
82]

30 22 Bra-
zilian

Y M Y Y Y Y Y Y mild 
LVH

↓ N Y - - hy-
per-
calci-
uria

[84]

31 23 Na-
tive 

N F Y Y Y Y N N died 
of 
LVH

↓ ↓ Y ↑ - - [2, 
78]

Table 1  (continued) 
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PRC
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32 24 Asian Y M - Y Y Y Y Y LVH, 
DI

↓ ↓ Y ↑ ↑ hy-
per-
calci-
uria

[20, 
85]

33 24 Asian Y M - Y Y - Y Y - ↓ - - ↑ - hy-
per-
calci-
uria

[20, 
85]

34 24 Asian Y M - - - - - - still-
birth 
at 28 

- - - - - - [20, 
85]

35 24 Asian Y M - - - - - - still-
birth 
at 28 

- - - - - - [20, 
85]

36 25 Ira-
nian

Y M - Nor - Y - Y - ↓ - Y - - - [74]

37 26 N F Y Y - - - - di-
lated 
aorta 
de-
scen-
dens, 

↓ ↓ Y ↑ - - [86]

38 26 N M Y Y Y Y Y - reti-
nop-
athy, 
sub-
lux-
ation 
of 
the 
ocu-
lar 
lens-
es, 
LVH, 
hy-
dro-
ne-
phro-
sis

↓ ↓ Y ↑ - - [86, 
87]

39 27 Bra-
zilian

Y F - Y Y Y Y - noc-
turia, 
reti-
nop-
athy, 
LVH

↓ ↓ Y ↑ - - [88, 
89]

40 28 Por-
tu-

Y M N Y - - - - LVH, 
renal 
corti-
cal 
atro-
phy

↓ ↓ N ↑ - - [39]

Table 1  (continued) 
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41 28 Por-
tu-

Y M N Y Y - - - LVH ↓ ↓ N ↑ - pro-
tein-
uria, 
hy-
per-
calci-
uria

[39]

42 29 Japa-
nese

N M N Y - - Y - reti-
nop-
athy, 
LVH

↓ ↓ Y ↑ - - [49, 
90]

43 30 Ital-
ian/
Mo-
roc-
can

N L250R M Y Y N Y Y Y LVH, 
I-

↓ ↓ Y ↑ - hy-
per-
calci-
uria

[8]

44 31 Turk-
ish

N M N Y N Y Y Y con-
geni-
tal 
left 
ptosis

↓ ↓ Y ↑ ↑ - [8, 
28]

45 32 Italian Y F - HT - - - - - ↓ - - ↑ - - [91]

46 32 Italian Y M - Y Y - Y Y - ↓ - - ↑ - - [91]

47 32 Italian Y F - Y Y - Y Y - ↓ - - ↑ - - [91]

48 32 Italian Y F - HT - - - - - ↓ - - ↑ - - [91]

49 33 Y F N Y N N N N - N ↓ N ↑ - - [28, 
32]

50 34 Japa-
nese

- F Y Y - - - - DI, 
paral-
ysis

↓ - - ↑ - - [7]

51 35 Cau-
ca-
sian/
Aus-
tra-
lian

- L179R M Y Y - Y - Y DI, 
LVH

↓ - - ↑ ↑ - [7]

52 36 Cau-
ca-
sian

- M N Y - - - - - ↓ - - ↑ ↑ - [7]

53 37 Cau-
ca-
sian

N M N Y - - Y Y mild 
LVH, 
renal 
cysts

↓ ↓ Y ↑ - - [33]

54 38 Mex-
ican-

- F N Y - Y - - DI ↓ - - ↑ ↑ - [7]

55 39 - Y F - Y Y - - Y LVH ↓ ↓ Y ↑ ↑ hy-
per-
calci-
uria

[55]

56 39 - Y M - Y Y - - Y LVH ↓ ↓ Y ↑ ↑ hy-
per-
calci-
uria

[55]

Table 1  (continued) 
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Fam-
ily 

Eth-
nic-
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Ear-
ly-
onset 
HT

GR Hx of 
FTT

Hx of PAC/
PRA/
PRC

MA u u F/E Oth-
ers

57 40 Y M Y Y - Y Y Y car-
diac 
arrest 
(3.5 
y)

↓ - Y ↑ - - [9]

58 41 Cau-
ca-
sian

- M - HT - - Y Y noc-
turia, 
car-
diac 
arrest 
(21 
y), III-

↓ ↓ - ↑ - - [38, 
92]

59 42 Italian N F - Y - - - - cere-
bral 
aneu-
rysm

↓ ↓ - ↑ ↑ - [38]

60 43 Cau-
ca-
sian

- M - Y - - - - type 
1 dia-
be-
tes, 
hy-
per-
ten-
sive 
renal 
dam-
age

↓ ↓ - ↑ - - [38]

61 44 Chil-
ean

- M - Y Y Y Y Y - ↓ ↓ - - - [40]

62 45 Ku-
waiti

Y F Y Y Y - Y Y - ↓ ↓ Y ↑ - - [44]

63 45 Ku-
waiti

Y F N Y Y - - Y - ↓ - Y ↑ - - [44]

64 46 - - F Y Y - Y - - DI ↓ - Y - - - [93]

65 47 Y R74G M N Y - Y Y Y - ↓ - Y ↑ - - [9]

66 47 Y R74G M Y Y - - - - mild 
LVH, 
con-
ges-
tive 
heart 
failre 
(0.5y)

↓ - Y - - - [9]

67 48 - R74G M Y Y - - Y N mild 
LVH

↓ - Y ↑ - - [9]

68 49 Y M Y Y - Y Y N mild 
LVH, 
re-
spira-
tory 
fail-
ure 
(4.2 
y)

↓ - Y ↑ - - [9]

69 49 Y F Y Y - Y Y N - ↓ - Y ↑ - - [9]

70 49 Y F Y Y - - - Y - N - N ↑ - - [9]

Table 1  (continued) 
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ily 

Eth-
nic-
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guin-
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Ear-
ly-
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GR Hx of 
FTT

Hx of PAC/
PRA/
PRC

MA u u F/E Oth-
ers

71 49 Y F Y Y - Y Y N - ↓ - - ↑ - - [9]

72 50 - M Y Y - Y Y - mild 
LVH

↓ - Y ↑ - - [9]

73 50 - F Y Y - - - - mild 
LVH

↓ - - - - - [9]

74 51 Paki-
stani

Y F Y Y - - - Y dila-
tion 
of 
the 
aortic 
root, 
reti-
nop-
athy

↓ ↓ Y ↑ - - [50]

75 52 N M N Y Y - - N LVH, 
te-
tanic 
con-
vul-
sions

↓ ↓ N ↑ - - [39]

76 53 - F Y Y - - - N LVH N ↓ N ↑ - - [39]

77 54 - - F - Y - Y Y Y Cof-
fin-
Siris 
syn-

↓ ↓ Y - - - [94]

78 55 Mo-
roc-
can

Y M N Y N - - Y mild 
LVH

↓ ↓ Y ↑ - - [39]

79 56 - - F Y Y Y Y Y - end-
stage 
renal 
fail-
ure, 
sub-

↓ ↓ - Plas-
ma ↑

Plas-
ma ↑

- [1, 
52]

80 57 - Y M N Y N - - N - ↓ ↓ Y - - - [95]

81 58 - Y M N Y N - - N mild 
LVH

↓ ↓ - ↑ - - [25]

82 58 - Y M N Y N - - - - ↓ ↓ - ↑ - - [25]

83 59 Qatari Y G89D F Y Y Y Y - - LVH, 
cyst 
fibro-
sis

↓ ↓ Y - - - [24]

84 59 Qatari Y G89D M Y Y Y - - - distal 
ileal 
ob-
struc-
tion, 
LVH, 
cyst 
fibro-
sis

↓ ↓ Y - - - [24]

85 60 Y M Y Y - Y Y Y aortic 
root 
dila-
tion

↓ ↓ N - - - [56]

Table 1  (continued) 
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Pa-
tient 

Fam-
ily 

Eth-
nic-
ity

Con-
san-
guin-
ity

Mu-
ta-
tion

Gen-
der

LBW Clinical manifestations Biochemical profile Ref-
er-
ence

Ear-
ly-
onset 
HT

GR Hx of 
FTT

Hx of PAC/
PRA/
PRC

MA u u F/E Oth-
ers

86 60 Y F N Y - - - Y aortic 
root 
dila-
tion, 
LVH

↓ ↓ Y ↑ - - [56]

87 60 Y F Y Y - - - Y - ↓ ↓ N - - - [56]

88 60 Y F N Y - - - N LVH, 
renal 
cal-
culi, 
aortic 
root 
dila-
tion

↓ ↓ Y ↑ - - [56]

89 60 Y F N Y - - - Y aortic 
root 
dila-
tion, 
LVH

↓ ↓ N ↑ - - [56]

90 60 Y F Y Y - - - Y - ↓ ↓ N ↑ - - [56]

91 61 Chi-
nese

N M Y Y Y - Y - basal 
gan-
glion 
hem-
or-

↓ ↓ - - ↑ - [54]

92 62 Syrian Y M Y Y Y Y - Y cho-
leli-
thia-
sis

↓ ↓ Y - ↑ - [96]

93 62 Syrian Y F Y Y N - - - bor-
der-
line 
LVH

↓ - Y - - - [96]

94 63 Paki-
stani

Y F Y Y Y Y Y Y mild 
LVH

↓ ↓ Y ↑ - hy-
per-
calci-
uria

[97]

95 64 Chi-
nese

N M - Y - - - Y en-
large-
ment 
of 
the 
left 
atri-
um 
and 
ven-
tricle, 
mild 
mitral 
re-
gur-
gita-
tion, 
renal 
cyst

↓ ↓ Y - - pro-
tein-
uria

[77]

Table 1  (continued) 
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Genetics of AME
HDS11B2 gene
The HSD11B2 gene is located on chromosome 16q22.1, 
has an approximate length of 6.2  kb, and consists of 
five exons [48]. Since the first HSD11B2 mutation 
(p.Arg337Cys) was identified, a total of 51 deleterious 
mutations have been reported that are causative of AME 
(Fig.  2) [4]. Most pathogenic mutations occur in exons 
3–5, indicating that these regions are critical for main-
taining stable activity of 11β-HSD2 and/or have an active 
tendency to mutate [49]. Missense mutations at single 
points are the most frequent mutation type, although 
nonsense, frameshift, and splicing mutations leading to 
truncated, inactive proteins, have also been discovered 
at low rates. Several harmful splicing mutations have 
been reported that have varying effects on enzyme activ-
ity. For example, the nucleotide substitution of C to T in 
intron 3 (IVS3 + 14  C > T) changes the structure of the 
pre-mRNA, affects normal splicing, and results in the 
absence of exon 4 which encodes the catalytic domain; 
thus, the translated 11β-HSD2 protein is inactive [5, 7, 
40]. The IVS3 + 1G > A mutation affects the splice donor 

site, causing incomplete expression of exon 3. This 
allows some normal splicing thus constituting moder-
ate impairment of 11β-HSD2. However, the mutant par-
tially reserves some normal splicing process followed by a 
moderate impairment in 11β-HSD2 [38]. Although the de 
novo mutation c.771 C > G, identified in a Caucasian fam-
ily, is silent (p.Val254Val), the mutant minigene contains 
an aberrant consensus donor splice site that results in a 
premature truncation in exon 5 [38].

Molecular pathogenesis of classic AME
11β-HSD2 is a nicotinamide adenine dinucleotide 
(NAD)-dependent dehydrogenase of 405 amino acids 
that contains two main domains: the cofactor (NAD+) 
binding region and the substrate binding region. 11β-
HSD2 only functions in its catalytic role when the coen-
zyme binding site binds to NAD+ and the substrate 
binding site binds to cortisol. Previous work established 
mutant transfectants to investigate enzyme activity and 
expression in vitro or used an in silico model to predict 
potential impacts on protein function, thereby identifying 
possible pathogenic mechanisms [40, 50, 51]. Any muta-
tions potentially influencing protein stability, the affinity 

Pa-
tient 

Fam-
ily 

Eth-
nic-
ity

Con-
san-
guin-
ity

Mu-
ta-
tion

Gen-
der

LBW Clinical manifestations Biochemical profile Ref-
er-
ence

Ear-
ly-
onset 
HT

GR Hx of 
FTT

Hx of PAC/
PRA/
PRC

MA u u F/E Oth-
ers

96 65 - F367I F Y Y Y - Y Y renal 
med-
ullary 
cysts, 
LVH

↓ - N - - - [98]

97 - Y F Y Y - - - Y - ↓ ↓ Y ↑ - - [28]

98 - Y F Y Y - - - Y - ↓ ↓ Y ↑ - - [28]

99 - Y M Y Y - - - Y - ↓ ↓ N ↑ - - [28]

100 - Y F Y Y - - - Y - ↓ ↓ Y ↑ - - [28]

101 - Y M Y Y - - - Y - ↓ ↓ Y - - - [28]

102 - Y M Y Y - - - Y - ↓ ↓ Y ↑ - - [28]

103 - Y M Y Y - - - N - ↓ ↓ N - - - [28]

104 - Y M Y Y - - - Y - ↓ ↓ Y ↑ - - [28]

105 - Y M Y Y - - - Y - ↓ ↓ N ↑ - - [28]

106 - Y F Y Y - - - Y - ↓ PAC 
↓, 
PRA 
↑

N - - - [28]

107 - Y F Y Y - - - Y - ↓ ↓ N - - - [28]

108 - Y M Y Y - - - Y - ↓ ↓ Y ↑ - - [28]

109 - Y F Y Y - - - Y - ↓ ↓ Y - - - [28]

110 - Y M Y Y - - - Y - ↓ ↓ Y ↑ - - [28]
AME, apparent mineralocorticoid excess; Italic mutations mean compound heterozygous mutations; -, not available; Y, yes; N, normal; M, male; F, female; LVH, 
left ventricular hypertrophy; PAC, plasma aldosterone concentration; PRC, plasma renin concentration; PRA, plasma renin activity; MA, metabolic alkalosis; 
LBW, low birth weight (defined as less than 2.5 kg); early-onset hypertension is defined as an increasement in blood pressure aged 18 years or less; Hx of FTT, 
history of failure to thrive; Hx of polyu/polyd, history of polyuria/polydipsia; GR, growth retardation; DI, nephrogenic diabetes insipidus; u THFs/THE, urinary 
(tetrahydrocortisol + 5α-tetrahydrocortisol)/ tetrahydrocortisone or urinary (tetrahydrocortisol + allo-tetrahydrocortisol)/ tetrahydrocortisone; u F/E, urinary cortisol 
to cortisone; the italics represent complex heterozygous mutations

Table 1  (continued) 
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to the substrate or cofactor, and the dimer interface have 
been found to impair enzymatic activity and cause clas-
sic AME [38, 51–53]. Moreover, genetic polymorphism, 
environmental factors as well as epigenetic modifications 
may also offer an implicit explanation for the molecular 
pathogenesis of non-classic AME by having an increased 
salt appetite or affecting HSD11B2 expression.

Impaired stability of 11β-HSD2 protein
The loss of 11β-HSD2 protein stability accelerates its deg-
radation rate in a pathway thought to contribute to the 
development of classic AME. The functional validation 
of mutant 11β-HSD2 in vitro by Nunez et al. revealed a 
more significant reduction in the enzymatic activity of 
mutants Ser180Phe, Ala237Val, and Ala328Val in cell 
lysates than in whole cells, indicating impaired enzyme 
stability [7]. The Arg/Tyr amino acid cluster (residues 

Table 2  Indicative symptoms and markers suggested for classic AME and non-classic AME
Classic AME Non-classic AME

Phenotypes

Range of age at diagnosis Infant to juvenile Adolescent to adult

Blood pressure III grade hypertension or higher Normal /mild hypertension

History of polyuria and polydipsia Y N

Pre- and postnatal growth failure Y N

Failure to survive Y N

Markers

Electrolyte Hypokalemia Normal

Plasma renin activity Low Low

Plasma aldosterone level Low Normal

Urinary F/E High Slightly increased

Urinary THF + allo-THF/THE High Normal/slightly increased

Others Exosomal urinary HSD11B2 mRNA Microalbuminuria, plas-
minogen activator inhibitor-1, 
sensitivity c-reactive protein, 
L-dopachrome, gamma-L-glu-
tamyl-L-methionine sulfoxide, 
5-sulfoxymethylfurfural, 
S-phenylmercapturic acid, 
bilirubin, L-iditol, deoxyribose 
1-phosphate, citric acid
TNF

AME, apparent mineralocorticoid excess; Y, yes; N, normal; F, cortisol; E, cortisone; THF, tetrahydrocortisol; THE, tetrahydrocortisone

Fig. 2  Mutant spectrum of HSD11B2 gene. The italics represent compound heterozygous mutations, and the rest are homozygous mutations.
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335–339) has been shown to be of great importance for 
11β-HSD2 stability [52]. Several AME cases carrying 
mutations at this cluster have been reported to have sig-
nificantly decreased 11β-HSD2 activity [4, 5, 49, 52]. As 
enzymatic stability decreases, the mutant protein deg-
radation rate increases, and its half-life reduces. Com-
pared with wild-type 11β-HSD2 with a half-life of 21 h, 
Tyr338His and Arg337Cys mutations reduce the half-life 
to 3 and 4  h, respectively [52]. Of note, the Tyr338His 
mutation disrupted the normal endoplasmic reticu-
lum and microsome localization of 11β-HSD2, and the 
mutant protein was detected in perinuclear bodies which 
also may influence its stability [52].

Attenuated affinity for the substrate
The substrate binding region of 11β-HSD2 is composed 
of a chain of highly conserved residues, and it is thought 
that the catalytic activity mechanism may rely on the 
interaction between specific hydrophobic residues with 
cortisol. Pizzolo et al. identified the novel homozygous 
Ala221Gly substitution, which had a severely deleteri-
ous effect on 11β-HSD2 activity [25]. As shown in an in 
silico model, the hydrophobic side chain of Ala221 causes 
it to be closely associated with the substrate binding site. 
However, the conversion of alanine to the polar hydro-
philic amino acid glycine destroys the local hydrophobic 
environment and attenuates the affinity of 11β-HSD2 for 
cortisol [25]. Similarly, the Tyr226Asn mutation alters the 
hydrophobic side chain to a hydrophilic one, which atten-
uates hydrophobic interactions and disrupts the substrate 
interaction [28]. Recently, Wang et al. showed that the 
substrate–protein interaction site might be located in a 
shallow pocket within residues 357–367 [54]. They also 
detected a novel missense mutation, Leu363Pro, with 
decreased affinity for cortisol that appears due to lack of 
local hydrophobicity [54].

Blunted affinity to the cofactor
Specific mutations associated with the coenzyme bind-
ing pocket in 11β-HSD2 enzyme weaken its affinity for 
NAD+. In 2001, Odermatt identified a consecutive dele-
tion mutation (Leu114_Glu115del) in HSD11B2, which is 
the first site shown to decrease the affinity of the protein 
for the coenzyme. They found that the negative charge 
of glutamic acid at position 115 reduced the binding 
preference for NAD+. Moreover, the loss of amino acids 
Leu114 and Glu115 led to an abnormal conformation of 
the coenzyme binding region and disturbed the transfor-
mant efficiency of the electron [55]. More recently, Yau 
et al. observed that the hydroxyl side chain of threonine 
at site 267 interacts with the amide nitrogen of the coen-
zyme to form a hydrogen bond, which helps the NAD+ 
localize with coenzyme binding domain. The Thr267Ala 
missense mutation impairs the hydrogen bond structure, 

thus affecting the alignment of NAD+ in the coenzyme 
binding pocket [56]. By constructing a model of the 
Asp223Asn mutant protein structure, Carvajal et al. 
found that alterations in the electrostatic potential of the 
enzyme surface contribute to weakening its affinity for 
NAD+ [40].

Disruption of the dimer interface
11β-HSD2 functions as a monomer, or a homodimer 
under inactive conditions [57, 58]. The dimer interface 
consists of a portion of helix, including vital residues 
such as Arg186, Ala237, Asp244, and Leu251 and so on 
[28, 51]. By disrupting inter-subunit ion pair interactions, 
hydrogen bond interactions, or salt bridge interactions at 
the interface, mutations can enhance the formulation of 
homodimers, thus abolishing the activity of 11β-HSD2 
[28].

Other potential mechanisms associated with non-classic 
AME
Excessive dietary salt intake is a known risk factor and the 
appetite for salt is susceptible to the activity of 11β-HSD2 
in the brain. In the adult brain, the only site where MRs 
and 11β-HSD2 are co-expressed is inside the nucleus of 
the solitary tract, while the subcommissural organ and 
the ventromedial hypothalamic nucleus merely express 
11β-HSD2 [59]. Notably, all of these regions are involved 
in modulating the appetite for salt [59–61]. Previously, 
Ingram et al. reported a case of AME with an increased 
salt appetite [62]. Moreover, animal model observed that 
basal blood pressure of brain-specific HSD11B2 knock-
out mice was similar to that of healthy control mice, 
but they gradually went on to develop hypertension for 
a three- fold increased salt consumption that could be 
inhibited by spironolactone [63]. It has been speculated 
that defective 11β-HSD2 in both central and renal sys-
tems simultaneously affects sodium homeostasis and 
contributes to the phenotype of hypertension [63].

As well as genetic deficiencies, epigenetic modifications 
also play a crucial role in regulating HSD11B2 expression 
in the onset of hypertension with underlying defects in 
11β-HSD2 [64]. By analyzing HSD11B2 expression in 
vitro and in vivo in rats, Alikhani-Koopaei et al. found 
that high methylation of CpG islands in the HSD11B2 
promoter reduced gene expression, which was poten-
tially associated with hypertension, and that the inhibi-
tion could be reversed by inducing demethylation [65]. A 
close relationship exists between the extent of HSD11B2 
promoter DNA methylation and adverse birth outcomes, 
such as low birth weight and insufficient gestational age 
at delivery, emphasizing the inhibiting effect of placen-
tal DNA methylation in fetal intrauterine growth [66, 
67]. In addition, it is reported that the download expres-
sion of miRNA (miR‑192‑5p and miR‑204‑5p) in urinary 
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exosomes also plays a potential role regulating the phe-
notype [68]. Santis et al. identified that the expression 
level of exosomal urinary HSD11B2 mRNA was closely 
associated with the hypertension phenotype [69].

In terms of genetic polymorphism, Alikhani-Koupaei et 
al. found that frequent G209A polymorphism was asso-
ciated with salt sensitivity that reduced the transcription 
and expression of HSD11B2 by hindering the binding of 
nuclear factor 1 and glucocorticoid receptor to its pro-
moter [70]. Collectively, genetic or epigenetic modifi-
cations as well as environmental factors (age, sodium 
intake) may compose multiple hits, responsible for the 
molecular genetics of AME phenotypic differences 
[71–73].

Genetic testing for AME
If not diagnosed and treated in time, chronic hyperten-
sion and hypokalemia alkalosis may cause extensive, 
severe consequences, including diseases of the renal, cen-
tral nervous, cardiovascular, and retinal systems, or even 
sudden fatality [8]. We suggest that patients with clinical 
symptoms resembling AME should undergo 24-h urinary 
steroid quantification to determine the profile of cortisol 
and cortisol metabolites. Traditional laboratory evalua-
tion findings have been shown to be ambiguous in terms 
of ruling out other monogenic disorders with similar 
clinical and hormonal patterns, such as Liddle syndrome, 
Batter syndrome and primary glucocorticoid resistance 
[10, 74, 75].

Identifying specific causative mutations utilizing 
genetic testing is a confirmatory tool in the diagnosis of 
AME. Because 11β-HSD2 can be deficient in low-renin 
hypertensives, genetic testing of HSD11B2 is required to 
screen for AME, especially in patients with a clinical his-
tory or increased cortisol to cortisone ratios [32]. More-
over, with an increasing number of asymptomatic cases 
detected among individuals with a positive family history, 
it is necessary to conduct genetic counseling in affected 
families to clarify genetic involvement [56]. Patients with 
high-risk pathogenic mutations require close monitoring 
to ensure that the disease is well controlled [8, 38]. Ini-
tially, Wilson et al. designed the intron and exon derived 
primer sequences of the targeted gene for repeat PCR 
amplification of exons and discovered an identical mis-
sense mutation site in two affected siblings [4]. Since 
then, more causative mutations have been discovered. 
Promisingly, as next-generation sequencing technol-
ogy becomes more common, whole exome sequencing 
has emerged as a cost-effective tool to detect pathogenic 
mutations, and to be particularly suitable in patients with 
atypical and overlapping clinical features or for whom 
biochemical profiles are unavailable [74, 76, 77].

Conclusion
In summary, AME is an autosomal recessive form of 
infant or juvenile low-renin hypertension caused by del-
eterious mutations in HSD11B2. Such mutations disrupt 
the stability of the protein or dimer interface, and cause a 
loss of affinity for substrate and/or cofactor, thus attenu-
ating or abolishing 11β-HSD2 activity. Because of the 
heterogeneity of AME clinical manifestations, it is chal-
lenging to accurately diagnose the disease early in clinical 
practice. Genetic testing is pivotal in the precise identifi-
cation of AME and guides subsequent treatment to pre-
vent end organ damage and sudden death. Considering 
the potential mechanisms of non-classic AME, genetic 
polymorphism, environmental factors as well as epigen-
etic modifications associated with HSD11B2 should be 
highlighted.
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