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Decoding the colorectal cancer ecosystem 
emphasizes the cooperative role of cancer cells, 
TAMs and CAFsin tumor progression
Rongfang Shen1, Ping Li2, Botao Zhang3, Lin Feng1*    and Shujun Cheng1* 

Abstract 

Background:  Single-cell transcription data provided unprecedented molecular information, enabling us to directly 
encode the ecosystem of colorectal cancer (CRC). Characterization of the diversity of epithelial cells and how they 
cooperate with tumor microenvironment cells (TME) to endow CRC with aggressive characteristics at single-cell reso-
lution is critical for the understanding of tumor progression mechanism.

Methods:  In this study, we comprehensively analyzed the single-cell transcription data, bulk-RNA sequencing data 
and pathological tissue data. In detail, cellular heterogeneity of TME and epithelial cells were analyzed by unsuper-
vised classification and consensus nonnegative matrix factorization analysis, respectively. Functional status of epi-
thelial clusters was annotated by CancerSEA and its crosstalk with TME cells was investigated using CellPhoneDB and 
correlation analysis. Findings from single-cell transcription data were further validated in bulk-RNA sequencing data 
and pathological tissue data.

Results:  A distinct cellular composition was observed between tumor and normal tissues, and tumors exhibited 
immunosuppressive phenotypes. Regarding epithelial cells, we identified one highly invasiveQuery cluster, C4, that 
correlated closely with tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs). Further analy-
sis emphasized the TAMs subclass TAM1 and CAFs subclass S5 are closely related with C4.

Conclusions:  In summary, our study elaborates on the cellular heterogeneity of CRC, revealing that TAMs and CAFs 
were critical for crosstalk network epithelial cells and TME cells. This in-depth understanding of cancer cell-TME net-
work provided theoretical basis for the development of new drugs targeting this sophisticated network in CRC.

Keywords:  Colorectal cancer, scRNA-seq, Tumor heterogeneity, Epithelium-microenvironment communication, 
Tumor-associated macrophages, Cancer-associated fibroblasts
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Novelty and impact
Colorectal cancer cells communicate closely with the 
surrounding environment. However, which cell plays the 
key role in this communication network remains unclear. 
By comprehensively analyzing single-cell transcription 
data, the authors found 7 functional heterogenous can-
cer clusters and discovered one highly invasive cluster: 
C4. C4 was tightly connected with TAMs and CAFs, 
and the relationship between C4 and TAMs was vali-
dated. This study provides comprehensive insights into 
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the heterogeneity of cancer cells and reveals that TAMs 
play a crucial role in the cancer cell-tumor environment 
network.

Background
CRC is one of the most prevalent tumors, with a high 
mortality rate [1]. Routine therapies include surgery, 
chemotherapy and radiotherapy. However, satisfactory 
clinical outcomes have not been achieved due to tre-
mendous intratumoral heterogeneity [2].Molecular clas-
sifications of CRC have revealed immunosuppressive 
tumor environments, which are closely linked to adverse 
survival, in patients with high stromal infiltration [3–5].
Recently, breakthrough immunotherapies emphasiz-
ing cytotoxic T cell enhancement have made great pro-
gress in prolonging the survival of patients with lung 
cancer, [6] melanoma [7] and bladder cancer [8].Patients 
with microsatellite instability or a high Immunoscore, 
as defined by T-cell infiltration and distribution pat-
terns, [9, 10] are more likely to obtain survival benefit 
from immune checkpoint blockade treatment. Neverthe-
less, these patients constitute only a minor proportion of 
those with CRC, suggesting the need to investigate new 
therapeutic strategies targeting other cells, such as mye-
loid cells [11] or stromal-lineage cells, [12] or the entire 
cell‒cell communication network. Overall, a comprehen-
sive understanding of the CRC ecosystem is a prerequi-
site for discovering effective therapeutic strategies.

The heterogeneity of tumor cells and tumor microen-
vironment (TME) cells plays a vital role in shaping cel-
lular biological behaviors [13].Supporting cells in the 
TME have critical roles in maintaining tissue homeo-
stasis in health [14] or promoting cancer progression 
in the presence of tumors [15].The complex interplay 
between the epithelium and microenvironment is of 
pivotal importance for oncogenesis and tumor progres-
sion [16, 17].The advent of single-cell RNA sequencing 
(scRNA-seq) technology has provided unprecedented 
molecular information and enabled us to systemati-
cally decipher the complexity of tumor biology [18–20].
Zemin Zhang and colleagues [21] described the T-cell 
atlas of CRC and further explored new treatment strat-
egies targeting myeloid cells. [11] Woong-Yang Park 
et al. [22] clarified the influence of cancer cell programs 
on the immune landscape of CRC. These studies have 
deepened our understanding of the cellular and tran-
scriptional features of CRC, especially its surrounding 
tumor environment. However, the cellular heterogene-
ity of the colorectal epithelium, its complex interplay 
with environmental cells and how they orchestrate the 
initiation of tumorigenesis and the promotion of tumor 
progression are still poorly understood.

In this study, we aimed to dissect the cellular and tran-
scriptional diversity of the epithelium compartment 
(EC) and the microenvironment compartment (MC) in 
CRC and tumor-adjacent tissue samples by integrating 
scRNA-seq data. Herein, we first describe the cellular 
heterogeneity of the EC and MC in two scRNA-seq data-
sets, the Samsung Medical Center (SMC) and Katholieke 
Universiteit Leuven (KUL3) cohorts, and compare their 
cellular compositions between tumor and adjacent tissue 
samples. Further analysis underscores the critical role of 
TAMs and CAFs in influencing patient survival and con-
trolling the communication network between the EC and 
MC. For EC analysis, we identified one cancer cell clus-
ter, C4, which features an aggressive phenotype. Tumor 
samples with the C4 phenotype tend to have more infil-
trating immunosuppressive immune and stromal cells, 
such as TAMs and CAFs. Further analysis of these TAMs 
and CAFs revealed one TAM subclass (TAM1) and one 
CAF subclass (S5) that are closely linked with the aggres-
sive epithelial phenotype. The adverse role of TAM1 and 
the correlation between TAM1 and C4 were validated 
in vitro via multiplex immunohistochemistry (IHC) anal-
ysis of 220 CRC patients.

Materials and methods
Public data access and processing
We systematically search colorectal cancer scRNA-seq 
data publicly available. Datasets with immune cell sort-
ing (magnetic-activated cell sorting or fluorescence-
activated cell sorting) [11, 21]were excluded due to the 
lack of epithelial cells and distorted cell proportions. 
Here, we included 2 cohorts generated by 10 × Genom-
ics single-cell 3’ sequencing platform: SMC and KUL3 
cohort [22]. Patients from both cohorts did not receive 
any prior treatment before surgery, covering stage I-IV 
with diverse tumor locations. SMC cohort contained 10 
normal tissues and 23 tumor samples, and paired tumor 
core, border and normal tissue from 6 colorectal can-
cer patients were included in KUL3 cohort. Patients’ 
basic clinical features were summarized in Additional 
file  1: Table  S1 and detailed information can be found 
in the source study [22] (https://​static-​conte​nt.​sprin​ger.​
com/​esm/​art%​3A10.​1038%​2Fs41​588-​020-​0636-z/​Media​
Objec​ts/​41588_​2020_​636_​MOESM3_​ESM.​xlsx). To 
validate the findings derived from scRNA-seq data in a 
larger population, we included the TCGA-COADREAD 
cohort, for which primary tumors without survival 
information were excluded. Filtered unique molecu-
lar identifier (UMI) count matrices of the SMC cohort 
and KUL3 cohort deposited in the Gene Expression 
Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/, 
RRID:SCR_005012) database under accession numbers 
GSE132465 and GSE144735 were downloaded. CRC 
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transcriptome profiling data from TCGA were retrieved 
using the R package “TCGAbiolinks” [23] in the HTSeq-
FPKM workflow. Fragments per kilobase million (FPKM) 
values were transformed to transcripts per million (TPM) 
values, and the log2(TPM + 1) method was used to nor-
malize expression levels in subsequent analysis. Survival 
data for TCGA-COADREAD were downloaded from the 
UCSC Xena browser (https://​xenab​rowser.​net).

Clinical samples for multiplex IHC and IHC
To further validated in  vitro, we purchased colorectal 
cancer tissue microarray chips from Shanghai Outdo 
Biotech Company (Shanghai, China). Rectal tumors (tis-
sue array 1, n = 90, array ID: HRec-Ade180Sur-05) and 
colon tumors (tissue array 2, n = 100, array ID: HCol-
A180-Su10) with overall survival information were 
selected for further validation. Colon tumors (tissue array 
3, n = 30, array ID: HCol-A030PG-06) without survival 
information were also included to evaluate the relation-
ship between TAM1 and C4. Clinical features includ-
ing tumor types, gender, age, tumor location, tumor 
size, TNM stage and tumor grade are summarized in 
Table 1. Samples without sufficient tissue remaining were 
excluded. Two pathologists further confirmed the diag-
nosis of CRC.

Unsupervised classification and cell type annotation
Filtered UMI count matrices provided by the Woong-
Yang Park group were downloaded and transformed into 
Seurat objects. Cells retained in the matrices all satisfied 
the following criteria: more than 1000 UMIs, expressed 
between 200 and 6000 genes, and fewer than 20% mito-
chondrion-derived UMIs. The R package “Seurat” (v3.1.5) 
was used for normalization, dimension reduction and 
unsupervised graph-based clustering. Principal compo-
nent analysis (PCA) was performed using 5000 variable 
features, and the number of components used for cluster-
ing was determined based on the variance explained per-
centage derived from the “ElbowPlot” function. A shared 
nearest neighbor (SNN) graph was constructed based on 
the neighborhood overlap of each cell and its 20 nearest 
neighbors. The Louvain algorithm was implemented to 
find cell clusters within 0.4–0.6 resolution. Uniform man-
ifold approximation and projection (UMAP) analysis was 
applied to visualize low-dimensional space scaling data. 
No cellularity bias or batch effect was found among sub-
groups. Thus, no further data integration was adopted in 
this study.

To assign specific cells to each cluster, we first identi-
fied cluster biomarkers through the “FindAllMarkers” 
function and compared these biomarkers with canonical 
cell markers. Specifically, T cells were annotated based 
on their high expression of CD3D and CD3E and lack of 

expression of EPCAM (expression of which suggests epi-
thelial origin), B cells based on their expression of CD79A 
and MS4A1, plasma cells based on their expression of 
SDC1 and MZB1, myeloid cells based on their expres-
sion of CD68, endothelial cells based on their expres-
sion of ENG and VWF, and stromal cells based on their 
expression of DCN. Seven major cell types, including 
epithelial cells, T cells, B cells, plasma cells, myeloid cells, 
endothelial cells and stromal cells, and three minor cell 
types, including enteric glial cells, mast cells and plas-
macytoid dendritic cells (pDCs), were identified. Major 
cell types were reclustered into subsets using the same 
workflow from the first-round clustering, with the excep-
tion of 2000 highly variable features. Small cell clusters 
with coexpression of markers of different lineages, such 
as CD3D and EPCAM, were considered doublet cells, as 
such markers are unlikely to colocalize. We noticed that 
one cluster in the SMC cohort with a small cell num-
ber showed coexpression of goblet cell markers such 
as SPINK4, AGR2, and REG4 and was distributed in all 
major cells. These cells were considered sample contami-
nation because the origin of all cells was patient “SMC-
20”, who had mucinous adenocarcinoma. In addition, 
cells with high expression of heat shock proteins were 
excluded from downstream analysis.

Differential expression analysis and biological function 
enrichment analysis of epithelial cells
Pseudobulk expression profiles of epithelial cells in the 
SMC and KUL3 cohorts were constructed by summing 
the UMI counts of all tumor and normal epithelial cells 
in each patient, as previously described [24].Genes with 
a detected percentage lower than 0.25 in epithelial cells 
were excluded from differential expression analysis. The 
R package “edgeR”, [25] a differential expression analy-
sis tool previously used for bulk RNA-seq analysis, was 
implemented to identify DEGs. Genes with adjusted 
p values less than 0.05 and absolute log2-fold changes 
larger than 1 were considered DEGs. The R package “clus-
terProfiler” [26] was used to perform biological function 
enrichment analysis.

Estimating cell composition by deconvolution
Relative cell proportions in the cohort TCGA-COAD-
READ were estimated using CIBERSORTx, a widely 
acknowledged tool for performing digital cytometry 
[27].To counteract the high drop-out rate effect and 
distinct sequencing depth bias, we constructed a sin-
gle-cell reference matrix by summing the UMI counts 
of 10 randomly chosen cells within each cell type [28].
This modification largely reduced the computational 
memory cost and improved the robustness of reference 
construction. The module “create signature matrix” at 

https://xenabrowser.net
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the CIBERSORTx website was used to construct a CRC 
signature reference matrix (CRC-SRM) with the follow-
ing parameters: disable quantile normalization = true, 
kappa = 99, q-value = 0.01, No. barcode genes = 300 to 
500, min. expression = 1, replicates = 0, sampling = 0, 
and filter nonhematopoietic genes from signature matrix 
during construction = false. Counts per million-normal-
ized transcriptome data from TCGA-COADREAD were 
prepared to determine cell proportions using the gener-
ated CRC-SRM file according to the instructions of the 

CIBERSORTx website. S-mode batch correction was 
performed considering that the mixture matrix and sig-
nature reference matrix were generated by different plat-
forms. The remaining parameters were set as follows: 
disable quantile normalization = true, run mode (relative 
or absolute) = relative, and permutations = 100.

Epithelial cell clustering
Consensus nonnegative matrix factorization (cNMF) 
[29] was applied to discover gene expression programs in 

Table 1  Clinical characteristics of patients enrolled in the validation cohort

Tissue Array 1
(n = 90)

Tissue Array 2
(n = 100)

Tissue Array 3
(n = 30)

Cancer Type (%) COAD 0 (0.0) 100 (100.0) 30 (100.0)

READ 90 (100.0) 0 (0.0) 0 (0.0)

Sex (%) Female 42 (46.7) 41 (41.4) 13 (43.3)

Male 48 (53.3) 58 (58.6) 17 (56.7)

Age (Mean (SD)) 65.86 (11.64) 67.51 (10.74) 56.28 (17.50)

Location (%) Left 90 (100.0) 42 (42.0) 10 (33.3)

Right 0 (0.0) 50 (50.0) 16 (53.3)

Unknown 0 (0.0) 8 (8.0) 4 (13.3)

Survival (%) OS 90 (100.0) 100 (100.0) 0 (0.0)

Unknown 0 (0.0) 0 (0.0) 30 (100.0)

Tumor Size (%)  >  = 5 45 (50.0) 63 (63.6) 21 (70.0)

 < 5 45 (50.0) 36 (36.4) 8 (26.7)

Unknown 0 (0.0) 0 (0.0) 1 (3.3)

T Stage (%) T1 2 (2.2) 0 (0.0) 0 (0.0)

T2 10 (11.2) 4 (4.0) 0 (0.0)

T3 76 (85.4) 64 (64.0) 0 (0.0)

T4 1 (1.1) 32 (32.0) 0 (0.0)

Unknown 0 (0.0) 0 (0.0) 30 (100.0)

N Stage (%) N0 54 (60.0) 52 (52.0) 28 (93.3)

N1 24 (26.7) 36 (36.0) 0 (0.0)

N2 12 (13.3) 12 (12.0) 0 (0.0)

Unknown 0 (0.0) 0 (0.0) 2 (6.7)

M Stage (%) M0 89 (98.9) 95 (95.0) 30 (100.0)

M1 1 (1.1) 5 (5.0) 0 (0.0)

AJCC7 Stage (%) Stage I 12 (13.3) 4 (4.0) 0 (0.0)

Stage II 41 (45.6) 47 (47.0) 0 (0.0)

Stage III 36 (40.0) 44 (44.0) 0 (0.0)

Stage IV 1 (1.1) 5 (5.0) 0 (0.0)

Unknow 0 (0.0) 0 (0.0) 30 (100.0)

Tumor Grade (%) I 3 (3.3) 0 (0.0) 2 (6.7)

I-II 13 (14.4) 14 (14.0) 4 (13.3)

I-III 0 (0.0) 3 (3.0) 0 (0.0)

II 62 (68.9) 56 (56.0) 11 (36.7)

II-III 6 (6.7) 18 (18.0) 4 (13.3)

III 6 (6.7) 9 (9.0) 9 (30.0)

In vitro
Validation

IHC Yes No Yes

Multiplex IHC M Panel M & F Panels M & F Panels
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tumor samples with an epithelial cell number larger than 
100 in the SMC cohort. In total, 22 tumor samples were 
included. For each sample, the optimal k value (number 
of components) was selected considering the balance 
between clustering stability and error. The top 100 genes 
with the highest contribution to each gene program 
were extracted, and their relative enrichment level was 
inferred with the R package “AUcell” [30].Pearson cor-
relation and hierarchical cluster analyses were employed 
to identify functional metaprograms. The relative enrich-
ment score of the identified gene programs was calcu-
lated with “AUcell”. Then, we implemented hierarchical 
clustering to identify epithelial cell clusters. Correspond-
ing clusters in the KUL3 cohort were identified by imple-
menting SingleR [31].

Epithelial cell differentiation status determination
The differentiation status of individual cells was inferred 
based on single-cell entropy (scEntropy). [32] Cells with 
high scEntropy have high plasticity, stem-like cell char-
acteristics, and the potential to differentiate into multiple 
lineages.

Cell‒cell communication analysis
Crosstalk between identified cell clusters was quali-
fied using CellPhoneDB (RRID:SCR_017054), [33, 34] a 
ligand and receptor repository and statistical framework 
for predicting potential interactions between cell types. 
The cell transcriptomes of the identified cell clusters 
derived from the tumor samples in log-TPM normalized 
form were subjected to CellPhoneDB under the follow-
ing parameters: subsampling-log = false, subsampling-
num-cells = 10,000, counts-data = hgnc_symbol, and 
iterations = 100. Interactions whose p value was less than 
0.05 were considered potential interaction pairs. We used 
Cytoscape (RRID:SCR_003032) to construct and visual-
ize the interaction networks. A dot plot was generated to 
demonstrate the detailed interaction patterns. The same 
procedures and parameters were implemented for adja-
cent normal samples.

Gene regulatory network analysis
Regulons (transcription factors and their target 
gene regulatory networks) were inferred by pySCE-
NIC (RRID:SCR_017247) [30], a lightweight Python 
(RRID:SCR_001658) implementation of the Single-Cell 
rEgulatory Network Inference and Clustering (SCE-
NIC) pipeline. Regulon activity was qualified through 
determination of the area under the curve (AUC) value 
by the “AUcell” package. The Regulon specificity score 
(RSS) calculated with entropy-based metrics was used to 
define regulon occupancy. [28] The top 5 regulons with 

the highest RSS of each cell subtype were considered hub 
regulons.

Pseudotime trajectory analysis
To explore cellular development, differentiation and cel-
lular  fate conversions, single-cell trajectories were con-
structed by Monocle2 (RRID:SCR_016339), [35] which 
implements reversed graph embedding to identify tran-
sition branches. Differentially expressed biomarkers of 
individual clusters were pooled and chosen to represent 
dynamic changes in the differentiation process among 
predefined clusters. Reduced dimension graphs and 
pseudotime heatmaps were generated by the “plot_cell_
trajectory” and “plot_pseudotime_heatmap” functions in 
Monocle2.

IHC
Tissue arrays 1 and 3 were employed for IHC. FFPE slides 
were baked in an oven at 65 °C for 4–6 h, dewaxed using 
xylene, rehydrated using ethanol solutions and incubated 
with 3% hydrogen peroxide for 10 min. Antigen retrieval 
was performed by microwave treatment (MWT) with 
citrate buffer (pH 6.0). After blocking with a nonspecific 
antibody, an anti-LAMB3 antibody (Santa Cruz Biotech-
nology Cat# sc-133178) or anti-ERO1A antibody (Abcam 
Cat# ab177156) was added to the samples and incubated 
overnight at 4  °C. DAB was applied for staining. IHC 
scores ranged from 0 to 12 and were calculated by multi-
plying the staining intensity score (ranging from 0 to 3: 0, 
negative staining; 1, weak staining; 2, moderate staining; 
and 3, strong staining) with the score for the proportion 
of positive cells (ranging from 0 to 4: 0, negative; 1, < 10% 
positive cells in the staining area; 2, 10%-50% positive 
cells in the staining area; 3, 50–75% positive cells in the 
staining area; and 4, > 75% positive cells in the staining 
area).

Multiplex IHC staining
Multicolor immunofluorescence staining was performed 
using a PANO IHC kit (Panovue, Beijing, China). The 
deparaffinization and rehydration processes were simi-
lar to those used for IHC. Antigen retrieval was per-
formed by MWT with antigen retrieval buffer (pH 6.0 
or pH 9.0). Primary antibody incubation was followed 
by addition of secondary antibody-HRP solution and 
fluorophore working solution to generate a fluorescence 
signal. As the fluorescence signal is generated by cova-
lent binding and not affected by MWT, MWT was then 
applied to remove the detected antibody, with the fluo-
rescence signal being conserved. The procedures includ-
ing MWT, primary antibody incubation, secondary-HRP 
solution incubation and signal generation were repeated 
for the remaining antibodies. Nuclei was stained with 
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4′-6′-diamidino-2-phenylindole (DAPI, SIGMA-
ALDRICH), and the slides were then mounted with 
mounting medium and coverslipped. The primary anti-
bodies used for multiplexed IHC staining targeted the 
following molecules: CD68 (Cell Signaling Technology 
Cat# 76,437, RRID: AB_2799882), CD163 (Cell Signaling 
Technology Cat# 93,498, RRID: AB_2800204), S100A8 
(Proteintech Cat# 66,853–1-Ig, RRID: AB_2882193), 
IDO1 (Abcam Cat# ab211017), VIM (Cell Signaling 
Technology Cat# 5741, RRID: AB_10695459), WT1 (Cell 
Marque Cat# 348  M-96, RRID: AB_1161125) and FAP 
(Abcam Cat# ab207178, RRID: AB_2864720).

Image analysis
Images were captured at 20 × magnification (Vectra 
Polaris, Perkin Elmer, USA) and analyzed with inForm 
2.4 software, including spectral unmixing, tissue seg-
ment, cell segment, phenotype and IHC scoring. Tis-
sues were segmented into the EC and MC, and cells 
were segmented into nucleus, cytoplasm, and membrane 
compartments. The phenotyping algorithm was trained 
by assigning 30–50 cells to each phenotype. For exam-
ple, cells were classified as CD68+, CD163+, IDO1+, 
S100A8+ and others for the macrophage biomarker panel 
(M panel) and as VIM+, FAP+, WT1+ and others for the 
fibroblast biomarker panel (F panel). For each molecular 
component, the threshold was set by summarizing the 
mean IHC score of tissue arrays 1–3 for each phenotype 
of cells at 10%. Cells were reclassified as marker-positive 
cells if their IHC score was higher than threshold.

Statistical analysis
All statistical analyses were performed using R package 
“stats” with R version 3.6.3 (R Project for Statistical Com-
puting, RRID:SCR_001905). Cell proportion differences 
were evaluated by the Wilcoxon rank-sum test (for com-
parisons of two groups) or Kruskal–Wallis test (for com-
parisons of more than two groups). The Kaplan‒Meier 
method was applied to estimate survival probabilities. 
Optimal cutoff values for survival analysis were deter-
mined by maximally selected rank statistics wrapped in 
the R package “survminer”. For multiple comparisons, 
the Benjamini and Hochberg (BH) method was used to 
adjust the p value; p < 0.05 was considered to indicate sta-
tistical significance.

Results
Decoding the cellular ecosystem at single‑cell resolution
In total, 57,557 and 26,268 cells from the SMC cohort 
and KUL3 cohort, respectively, that passed quality 
control were included for further analysis (Additional 
file  2: Table  S2). Global cell clusters, for example, epi-
thelial cells, T cells, B cells, plasma cells, myeloid cells 

and stromal cells, were identified. The cellular distribu-
tion patterns between primary tumor and adjacent nor-
mal tissue samples were remarkably distinct, which may 
hint at the colorectal tumorigenesis mechanism (Fig. 1A, 
Additional file  8: Fig. S1A). Marginal differences in 
immune and stromal cells were observed between the 
tumor core and tumor border tissues (Additional file  8: 
Fig. S1A, B). Further classification of T cells revealed 9 
subclasses based on canonical marker genes [36–38]: 
naïve T (TN), tissue-resident T (TRM), T helper (TH), T 
follicular helper (TFH), regulatory T (TREG), cytotoxic T 
(TCYTO), exhausted T (TEX) cells, intraepithelial lympho-
cytes (IELs, mainly γδ T cells) and innate lymphoid cells 
(ILCs, mainly natural killer (NK) cells). The TN, TH, TFH 
and TREG cells were mainly CD4+ T cells; the TCYTO and 
TEX cells and IELs were almost all CD8+ T cells. The line-
age of TRM cells was annotated as CD4TRM or CD8TRM. 
A small cluster termed germinal center (GC) B cells was 
isolated from the B-cell cluster owing to its high expres-
sion of RGS13 [39]. Plasma cells were further divided into 
IgA+ plasma and IgG+ plasma cells based on their dif-
ferent expression levels of IGHA1, IGHA2, IGHG1 and 
IGHG3 [40].Dendritic cells (DCs), pDCs, macrophages 
(Macro), neutrophils and TAMs were classified from 
myeloid cell lineages [39]. Stromal lineages were roughly 
categorized into endothelial cells, fibroblasts, CAFs and 
contractile stromal cells (CSCs) [39, 41]. Canonical cell 
markers of each subclass are shown in Fig. 1B and Addi-
tional file 8: Fig. S1C (Additional file 3: Table S3). TAMs 
and CAFs were classified according to their tumor ori-
gin and high expression of SPP1, C1QB, IL1B, S100A8, 
S100A9 and type I collagens (COL1A1 and COL1A2). We 
also identified enteric glial cells and mast cells. Enteric 
glial cells, mast cells, GC B cells and neutrophils were 
excluded from the CIBERSORTx and cell‒cell com-
munication network analyses because of their small cell 
numbers.

Few epithelial cells were detected in adjacent normal 
tissues, possibly due to their vulnerability to damage dur-
ing tissue dissociation (Fig. 1C top, Additional file 8: Fig. 
S1B top). The cellular composition of adjacent normal 
tissues mainly included TRM cells, B cells, IgA+ plasma 
cells and fibroblasts. Conversely, the tumor sample cellu-
lar composition was much more heterogeneous (Fig. 1C 
bottom, Additional file  8: Fig. S1B bottom). Tumor tis-
sues were enriched for TN, TH, TFH, TREG, and TCYTO 
cells and ILCs and had fewer TRM cells and IELs than 
adjacent normal tissues. Regarding non-T cells, higher 
percentages of IgG+ plasma cells and TAMs and lower 
percentages of IgA+ plasma cells, fibroblasts and mac-
rophages were observed in tumor tissues than in adjacent 
normal tissues in the SMC cohort (Fig.  1D). The differ-
ences in the distributions of TREG cells, IgG+ plasma cells, 
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TAMs and fibroblasts were validated in the KUL3 cohort. 
Regarding T cells, we did not observe similar distribution 
patterns of TN, TH, TFH, and TCYTO cells, IELs and ILCs in 
the KUL3 cohort (Additional file 8: Fig. S1D).

Revealing the cellular landscape of CRC in a large 
population using deconvolution analysis
To decipher the cellular composition of CRC in a larger 
population, we employed the newly developed decon-
volution tool CIBERSORTx [27].Signature templates 
derived from the SMC cohort were created with simpli-
fied T-cell subgroups: CD4+ T cells, Treg cells, CD8 + T 
cells, TEX cells and ILCs (Fig.  2A, Additional file  4: 
Table  S4). The epithelial cell proportions of the SMC 
cohort skewed toward a low detection rate compared 
with tumor purity [22]. However, the epithelial cell pro-
portions estimated with CIBERSORTx using our CRC-
SRM exhibited a high correlation with the ABSOLUTE 
estimated purity in the cohort TCGA-COADREAD, 
indicating the reliability of our CRC-SRM (Fig.  2B). In 
addition, CIBERSORTx inferred cellular patterns among 
different consensus molecular subtypes (CMS: CMS1-4) 

[4] and our TME-driven subtypes (active immune (A.I.), 
active stroma (A.S.), and mixed types)), [5] revealing 
increased immune cells in the CMS1 and A.I. subtypes 
and higher stromal infiltration in the CMS4 and A.S. sub-
types, consistent with previous reports (Fig. 2C bottom). 
However, these immune/stromal cell infiltration pat-
terns of CMS1 and CMS4 were not observed in the SMC 
cohort (Fig.  2C top). T cells, B cells, TAMs, endothelial 
cells and CAFs constituted the TME ecosystem of CRCs 
(Fig. 2D). Increased abundances of epithelial cells, B cells, 
and stromal cells and fewer T cells and myeloid cells 
were observed using the cellular deconvolution method 
(Fig. 2D). Bias exists when inferring cellular compositions 
using scRNA-seq data. The discrepancy between the 
immune/stromal cell proportions was largely due to dif-
ferences in cellular dissociation efficiencies, with stromal 
cells being more difficult to dissociate due to the extracel-
lular matrix [42].

To assess the contributions of cellular lineages in shap-
ing tumor biology, we assessed correlations of cellular 
proportions with patient survival data. TAMs, endothe-
lial cells and CAFs were closely linked with unfavorable 

Fig. 1  Cellular landscape of CRC in the SMC cohort. A UMAP plot of 57,557 cells in the SMC cohort colored by cell cluster, CMS and tissue type 
(tumor or normal). Each dot represents a cell and cellular cluster is annotated with text. B. Heatmap of representative markers of cell clusters. A total 
of 100 random cells in each cluster were chosen for visualization. Marker genes could also be found in Additional file 2: Table S2. The color legend 
is as in C. C. Proportions of the identified cell clusters across tumor and adjacent normal tissues with relative cell type proportions and total cell 
numbers. Upper: all cell clusters; bottom: immune and stromal cell clusters. D. Frequencies of selected cell types for tumor and adjacent normal 
samples. The Wilcoxon rank-sum test p value is shown
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survival, whereas B cells and IgA+ plasma cells were asso-
ciated with improved survival. T cells correlated weekly 
with survival (Fig. 2E). Overall, this analysis revealed the 
cellular landscape of CRCs and highlighted the pivotal 
role of myeloid lineages and stromal lineages in patient 
survival. To further understand the complex cellular het-
erogeneity of the EC and how epithelial cells orchestrate 
the MC to shape tumor phenotypes, we subsequently 
focused on deciphering tumor cell biodiversity and inter-
cellular communication between the EC and MC.

Assessment of transcriptional heterogeneity in colorectal 
tumor cells
Differential expression analysis between the tumor epi-
thelium and adjacent normal epithelium identified 428 
differentially expressed genes (DEGs) in the SMC cohort 
(Fig.  3A, Additional file  5: Table  S5). The UMAP fea-
ture plot of the top 10 genes with the highest expression 
in the tumor epithelium confirmed these genes to be 
mainly expressed in the epithelium and not the micro-
environment (Additional file  9: Fig. S2A). Gene Ontol-
ogy (GO) terms regarding ion homeostasis and cellular 

lipid catabolic processes were enriched in normal epi-
thelium; enrichment of the cellular response to hypoxia 
and neutrophil activation-related processes was detected 
in tumor epithelium. This observation was in line with 
our previous report [5].Similar alterations in cancer cells 
were observed in the KUL3 cohort (Additional file  10: 
Fig. S3A, Additional file 5: Table S5).

Consistent with previous reports, epithelial cells clus-
tered according to patient origin, indicating the high 
intertumoral heterogeneity of CRC, which cannot be 
clearly explained by levels of copy number alteration 
(Fig.  3B, Additional file  10: Fig. S3B). To decipher the 
underlying transcriptomic features involved, cNMF 
analysis [29] was applied for each sample to identify its 
expression programs. In total, 123 expression programs 
were identified. Unsupervised clustering of these expres-
sion programs identified 10 metaprogrammes, including 
biological processes related to the cell cycle, translational 
initiation, inflammation, epidermal development, and 
neutrophil-related and protein biosynthetic processes 
(Additional file  9: Fig. S2B, Additional file  6: Table  S6). 
Metaprogram 4 was excluded due to its irrelevance with 

Fig. 2  Cellular composition of CRC in a large population. A. Heatmap of the signature matrix used for CIBERSORTx. B. Correlation between the 
ABSOLUTE estimated purity and epithelial cell proportions inferred from CIBERSORTx for TCGA-COADREAD. The slope line, pearson correlation 
coefficient and p value are shown. Each point represents one sample colored by CMS. C. Proportions of identified cell clusters across CMSs in SMC 
(top), CMSs in TCGA-COADREAD (middle) and TME subtypes in TCGA-COADREAD (bottom) with the relative cell type proportions (left panel) and 
total cell numbers (right panel). D. Relative proportions of cell clusters inferred by CIBERSORTx in TCGA-COADREAD and from scRNA-seq data for 
SMC. The color legend is as in C. E. Forest plot of the hazard ratios (HRs) and p values for the association of cell infiltration levels with overall survival 
(top) and relapse-free survival (bottom). HR and p value were estimated using Cox proportional hazards regression model
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other identified programs. Hierarchical clustering based 
on the remaining 115 expression programs divided 
the epithelial cells into 7 subtypes, namely, C1, C2, C3, 
C4, C5, C6 and C7 (Fig. 3C). C1-2 cells lacked reported 
cancer cell functional alterations (Additional file  9: Fig. 
S2C), suggesting that they are enriched in normal epi-
thelial cells (Fig.  3D), and C1 cells expressed markers 
of mature colonocytes (GUCA2B, SLC26A3 and CA1) 
(Additional file  9: Fig. S2D). All the evidence indicated 
that C1 and C2 cells are more similar to normal epithelial 
cells. In addition, the cell differentiation potential metric 
scEntropy [32] was much lower in C1-2 cells (Fig.  3E), 

indicating that C1-2 cells are terminally differentiated. 
C3 and C4 cells featured high proliferation and hypoxia 
markers, respectively (Fig. 3F, Additional file 9: Fig. S2B-
C). Goblet cell markers such as TFF3, SPDEF, SPINK4, 
REG4 and AGR2 and biological functions related to 
O-glycan processing and glycoprotein biosynthetic pro-
cesses were highly enriched in C5 cells, indicating that 
this cluster comprises goblet cell-like cells (Additional 
file  9: Fig. S2D). Consistently, C5 cells were mainly 
observed in mucinous adenocarcinoma tumor samples 
(Fig.  3D). C6 cells represented antigen-presenting cells 
owing to their high expression of MHC class II family 

Fig. 3  Functional heterogeneity among CRC epithelial cells in the SMC cohort. A. Volcano plot of differentially expressed genes between colorectal 
cancer cells and adjacent normal epithelial cells. Genes with FDR values less than 0.05 and absolute log2FC values greater than 1 are colored 
blue (upregulated in adjacent normal epithelial cells) or red (upregulated in cancer cells). GO enrichment plot is shown on each side, with the bar 
color indicating the enrichment significance, and bar length showing the number of common genes between the dysregulated genes and GO 
terms. B. UMAP plot of 18,561 epithelial cells from 23 patients colored by sample origin and CNV level. C. UMAP plot of epithelial cells using 115 
cNMF-identified programs. Epithelial cell subclasses are annotated. D. Relative proportions of epithelial cell clusters in adjacent normal tissues and 
tumor samples of different pathological subtypes. Adenocarcinomas were graded as well, moderately and poorly differentiated. MAC: mucinous 
adenocarcinoma. E. Boxplot of scEntropy values across epithelial cell clusters. F. Hierarchical heatmap of the 115 expression programs in the SMC 
cohort. A total of 100 random cells in each cluster were chosen for visualization
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genes (HLA-DPA1, HLA-DPB1, HLA-DRA, and HLA-
DRB1) and CD74 (Additional file 9: Fig. S2D). No specific 
gene signature was observed for C7 cells. C1-C7 cells 
were distributed across patients and tissue types, indicat-
ing that we identified common alternation states among 
patients. We validated the existing subclusters in the 
KUL3 cohort with similar tissue distributions (Additional 
file  10: Fig. S3C, D). Together, our identified epithelial 
clusters confirmed the heterogeneity of CRC tumor cells, 
and the clusters mainly varied in proliferation, hypoxia, 
antigen presentation, iron homeostasis maintenance and 
mucin production markers.

C4 cells contribute to CRC progression
In general, invasion and metastasis of cancer cells are 
related to patient survival. To better understand the 
mechanism of CRC progression, we first explored the 
epithelial-mesenchymal transition (EMT) process. 
Canonical EMT markers, such as ZEB1/2, TWIST1/2, 
and SNAIL1/SNAIL2, were not detected in the EC (data 
not shown). [18] Some EMT markers, such as LAMB3, 
LAMC2, LAMA3 and P4HA2 [43] were detected in a few 
cells and mainly upregulated in C4 cells (Fig. 4A). More-
over, the relative abundance of C4 cells increased along 
with the cancer cell dedifferentiation level (Fig.  3D), 
indicating that C4 cells have high invasive potential. To 
validate the tumor-promoting role of C4 cells, we chose 
the EMT marker LAMB3 and the C4 highly expressed 
gene ERO1A as surrogate markers. LAMB3 has been 
reported to play a protumorigenic role in CRC through 
the AKT-FOXO3/4 axis [44].ERO1A has been reported 
to be an unfavorable factor in multiple cancers, includ-
ing pancreatic cancer [45] and breast cancer, [46] with a 
cancer-promoting effect in HCT116 CRC cells by regu-
lating integrin-β1. [47] However, the prognostic value of 
ERO1A in CRC has not been evaluated. The expression 
levels of LAMB3 and ERO1A were assessed by IHC in 
tissue array 1, which includes 90 rectal cancer samples, 
and tissue array 3, which includes 30 colon cancer sam-
ples. Figure  4B shows the representative image of each 
staining score. The clinical characteristics are summa-
rized in Table 1. Higher expression of LAMB3 or ERO1A 
alone was not associated with patient prognosis (Fig. 4C). 
However, when LAMB3 and ERO1A were considered 

together as surrogate markers, their increased expression 
was significantly related to adverse prognosis (Fig. 4D). In 
addition, C4 cells (LAMB3+ERO1A+) were found to be 
a risk factor independent of TNM stage (Fig. 4E). Thus, 
C4 cells exhibited hypoxia and partial EMT markers and 
were closely related to poor differentiation, invasion and 
short survival.

To assess the underlying regulatory networks contrib-
uting to the invasive phenotypes of C4 cells, we employed 
SCENIC to identify the transcription factors (TFs) 
responsible [30].The top 5 TFs with the highest regulon 
specificity score (RSS), which was calculated based on 
an entropy-based strategy [28], were considered master 
regulators of the clusters. We found PPARD, which had 
the highest RSS and has been reported to accelerate CRC 
progression, [48] to be activated in C4 cells (Fig. 4F), sug-
gesting that it might drive the invasive properties of can-
cer cells.

The parenchymal cell pattern is closely linked 
with environmental cell composition
To unveil interactions between the epithelium and its 
surrounding microenvironment, we first explored cel-
lular composition similarities between the EC and MC. 
Unsupervised hierarchical clustering of epithelial cells 
revealed one group, Group C4, containing a consider-
able C4 cell proportion (Fig.  5A, highlighted in the red 
rectangle). The epithelial cell cluster composition pat-
terns of the SMC19-T, SMC05-T and SMC23-T samples 
were similar to those of adjacent normal tissues (Fig. 5A, 
upper panel), indicating the biological properties of these 
SMC samples to be less malignant. Similar differences in 
cellular compositions were observed between the tumor 
core and tumor border, indicating less intratumor hetero-
geneity than intertumoral heterogeneity in CRC (Addi-
tional file 11: Fig. S4A). The cellular composition of the 
surrounding microenvironment was tremendously differ-
ent between Group C4 and the other groups. TAM, pDC 
and stromal lineages (endothelial cells, CAFs and CSCs), 
which were associated with poor survival (Fig. 2E), were 
more abundant in Group C4 (Fig.  5B). Thus, aggressive 
cancer cells can orchestrate unfavorable and immu-
nosuppressive microenvironments to promote cancer 
progression.

Fig. 4  Validation of the invasive role of C4. A. Ridge plot of expression levels of partial EMT markers across epithelial subclasses. B. Representative 
IHC images of LAMB3 (upper panel) and ERO1A (bottom panel) staining with the corresponding intensity score (0–3). All the images are at 
magnification 20 × . C. Overall survival curves for rectal cancer patients with LAMB3+ and LAMB3− staining (left) and ERO1A+ and ERO1A− staining 
(right) with sample size of each group placed on the bottom. HR, 95%CI and p value are annotated in text. D. Overall survival curves for rectal 
cancer patients with a LAMB3 + ERO1A+ or LAMB3 + ERO1A− phenotype with sample size of each group placed on the bottom. HR, 95%CI and 
p value are annotated in text. E. Forest plot of univariate Cox (left) and multivariate Cox (right) analyses of the association of the LAMB3 + ERO1A+ 
or LAMB3 + ERO1A− phenotype with overall survival. F. Ranks of regulons based on RSS (left) for the C4 group. The C4 group is highlighted in red 
(middle) and the activated regulon PPARD in dark green (right) in the UMAP plots

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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To better understand the relationship between the 
epithelium and microenvironment, we employed Cell-
PhoneDB [33, 34] to construct a cell‒cell communication 
network. More extensive communication was identified 
in tumors than in adjacent normal tissues (Fig. 5C), dem-
onstrating that cells in tumors interact closely to promote 
tumorigenesis and progression. The cell‒cell interaction 
network was composed of epithelial cells, myeloid cells 
(DCs, pDCs, macrophages and TAMs) and stromal cells 
(myofibroblasts, CAFs, fibroblasts and endothelial cells) 
(Fig.  5C), and the EC-MC network was dominated by 
myeloid cells and stromal cells in both tumor and adja-
cent normal tissues (Fig.  5C, D, Additional file  11: Fig. 

S4B-E). The dominant role of myeloid and stromal cells 
was consistent with what is seen in other cancers. [49] 
To systematically decipher the crosstalk between the epi-
thelium and microenvironment, specific ligand‒recep-
tor pairs were further investigated. Potential interactions 
involving canonical oncogenic signaling pathways, 
including the b-catenin/Wnt, transforming growth fac-
tor-beta (TGFB), tumor necrosis factor (TNF) and Notch 
signaling pathways, were assessed (Fig.  5E, Additional 
file 11: Fig. S4F). Stromal cells were found to secrete vari-
ous members of the Wnt gene family (WNT4, WNT5A, 
and WTN2) and the TGF-beta superfamily; myeloid 
cells were found to secrete TNF ligand family members 

Fig. 5  Dynamic interactions between the EC and MC in the SMC cohort. A. Relative proportions of epithelial cell clusters and TME cell clusters. 
Samples were clustered according to the distribution pattern of epithelial cells with the corresponding TME cell cluster distribution in the right 
panel. B. Frequencies of selected cell types for Group C4 and the other groups. The Wilcoxon rank-sum test p value is shown. C. Cell‒cell interactions 
in tumors (upper panel) and adjacent normal tissues (bottom panel) identified by CellPhoneDB (left). Interactions between cancer cells and 
nonmalignant cells are highlighted (right). A thicker edge represents more interactions. D. Bar plot of the incoming and outcoming events for 
epithelial-microenvironment communications in tumors. E. Bubble plots of ligand‒receptor pairs between cancer cells and nonmalignant cells in 
tumors. The corresponding category is annotated. Dot size and color represent the enrichment score and relative mean expression level of ligand‒
receptor pairs, respectively
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(TNFSF9, TNFSF10, TNFSF11, and TNFSF12). The Wnt, 
TGF-beta and TNF signaling pathways are critical for 
maintaining cell stemness, promoting cell invasion and 
causing cell inflammation. Their corresponding receptors 
were detected on the tumor epithelium. In addition, vari-
ous growth factors were secreted by the two cell lineages 
to support tumor growth. Conversely, no specific func-
tional patterns were found in terms of immune check-
points, costimulatory molecules and chemokines.

Diverse TAM subtypes are present in CRC​
We then further analyzed myeloid and stromal line-
ages. According to macrophage classification in lung 
cancer, [50] 5,246 TAMs in the SMC cohort were cat-
egorized into three subtypes: TAM1, TAM2, and TAM3 
(Fig.  6A). For the KUL3 cohort, we also identified one 
cluster, herein termed TAM4, that showed high enrich-
ment of the MMP family (MMP1, MMP9 and MMP12) 
(Additional file  12: Fig. S5A). Significant marker genes 
were identified (Fig. 6B, Additional file 12: Fig. S5B, Addi-
tional file  3: Table  S3). Notably, the TAM1 subtype was 
characterized by high expression of genes related to an 
immunosuppressive phenotype (APOE, C1QC, GPNMB, 
CD163 and TREM2) (Fig.  6C). The TAM2 and TAM3 

subtypes showed enrichment of proinflammatory sign-
aling molecules (FCN1, S100A8, S100A9, VCAN and 
IL1B) (Fig.  6B, Additional file  12: Fig. S5B). The TAM2 
subtype was considered separately due to its high expres-
sion of chemokine-related genes (CXCL10 and CXCL11), 
which have been reported to promote T-cell infiltration 
[51].Interferon-stimulated genes (ISG15 and ISG20) and 
the guanylate-binding family protein GBP1, which are 
induced in IFN-g-activated macrophages, were enriched 
(Fig.  6B, Additional file  12: Fig. S5B), indicating their 
potential antitumor activity. However, the TAM2 subtype 
also inhibits T-cell activation by upregulating immune 
checkpoint inhibitors (CD274 and PVR) and IDO1, which 
have been widely reported to exert immunosuppressive 
effects by activating Treg cells [52].Thus, the TAM2 sub-
type appears to bridge the innate and adaptive immune 
responses and is functionally heterogeneous (Fig.  6C). 
The TF gene expression pattern identified by SCENIC 
clearly clustered TAMs into two subgroups: TAM1 with 
TAM4 (Additional file  12: Fig. S5C) and TAM2 with 
TAM3 (Fig. 6D, Additional file 12: Fig. S5C). This result 
indicates that TAMs in CRC have two branches, immu-
nosuppressive and proinflammatory. Moreover, cell type 
frequencies of the TAM1 and TAM3 subtypes correlated 

Fig. 6  Characterization of myeloid cells by scRNA-seq in the SMC cohort. A. UMAP plot of TAMs colored by cell cluster and patient origin. 
B. Heatmap of marker genes identified through Seurat. For each cell cluster, cells were downsampled to 100. C. Heatmap of well-known 
macrophage-related immunosuppressive, immune checkpoint and chemokine gene expression across TAMs. D. Heatmap of the top 5 ranked 
regulons in TAM1-3. E. Dot plot of the correlation between the proportions of C4 cells in epithelial cells and TAM1 (top) or TAM3 (bottom) in the 
TME. Each dot represents a patient, and a larger size indicates a higher C4 cell proportion. Correlation test is determined using Pearson test
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positively with the C4 cell proportion in the epithelium 
in the SMC cohort (Fig.  6E). In contrast, macrophages, 
which mainly infiltrated adjacent normal tissues, corre-
lated inversely with the C4 cell proportion in the KUL3 
cohort (Additional file  12: Fig. S5D). The relationship 
between C4 cells and the TAM1 subtype was consist-
ent in the SMC and KUL3 cohorts. However, we did not 
observe significant correlations between the TAM3 sub-
type and C4 cells in the KUL3 cohort. These data support 
that TAMs might foster tumor cell invasion by producing 
an immunosuppressive environment.

Diverse stromal subtypes are present in CRC​
We next focused on stromal lineages, with no fur-
ther subclassification performed for endothelial cells. 
Fibroblasts, CAFs and CSCs were subclassified into 
10 classes, with only one class (S10) discovered in the 
KUL3 cohort (Additional file  13: Fig. S6A, Additional 
file  14: Fig. S7A). Subclasses were annotated accord-
ing to the classification system provided by Lambrechts 
et  al. [19] S1-4 and S10 were all exclusive to adjacent 
normal tissue (Additional file  13: Fig. S6A, Additional 
file 14: Fig. S7A). The marker genes in each cluster are 
shown in Additional file  13: Fig. S6B and Additional 
file  14: Fig. S7B (Additional file  3: Table  S3). Spe-
cifically, S1 and S2 featured adipocyte markers (CFD 
and APOD), resembling the phenotype of lipofibro-
blasts in lung tissue [53]. S3 contained mesenchymal 
cells located in the colon lamina propria (APOE and 
ADAMDEC1 markers), and S10 was characterized by 
coexpression of KCNN3 and P2RY1, which have been 
reported to regulate multiple neuromuscular trans-
mission processes in the colon [19].S4 expressed Wnt 
signaling genes (FRZB), SOX6 and PDGFRA, which 
function in maintaining the epithelial stem cell niche. 
Previous studies have described PDGFRA+ fibroblasts 
as progenitors that give rise to lipofibroblasts and 
myofibroblasts [54].The differentiation trajectory of 
fibroblast lineages in our study also indicated that S4 
include highly plastic cells with the potential to give 
rise to other subtypes (Additional file  13: Fig. S6C, 
Additional file  14: Fig. S7C). For CAFs, a minor sub-
class (S6) characterized by SERPINE1, IGF1, WT1 and 
KRT19 expression was isolated. IGF1 has been reported 
to be associated with survival in bladder urothelial 
carcinoma, [41] and higher expression of SERPINE1 
has also been reported to be an adverse factor in lung 
cancer[50] .In addition, S6 expressed KRT19 and WT1, 
indicating that S6 resembles the mesothelial phenotype 
[55].The remaining CAF subgroup (S5) was character-
ized by enrichment of collagens (COL12A1, COL1A1 
and COL3A1), INHBA and MMPs (MMP1 and MMP11) 
(Additional file  13: Fig. S6B, Additional file  14: Fig. 

S7B). SCENIC analysis also identified unique TFs for 
S6, indicating that the underlying molecular network of 
S5 is completely different from that of S6 (Additional 
file 13: Fig. S6D, Additional file 14: Fig. S7D).

CAFs have been reported to generate a modified 
extracellular matrix (ECM) environment to promote 
cancer cell survival. Consistently, patients with high 
infiltration levels of S5 and S6 subtype cells showed 
worse survival (Additional file  13: Fig. S6E). The cor-
relation of the C4 cell proportion with the frequency 
of CAFs indicated that the S5 subtype contributes to 
an aggressive phenotype of the epithelium (Additional 
file  13: Fig. S6F, Additional file  14: Fig. S7E). With 
regard to the contractile genes (ACTA2 and TAGLN) 
expressed by CSCs, we identified three classes (S7-
9). S7 corresponded to pericytes because of its high 
expression of the characteristic genes RGS5, colla-
gens (COL4A1, COL4A2 and COL18A1) and NOTCH3 
(which is related to vessel maturation). S8 was deemed 
myofibroblasts and was characterized by smooth 
muscle-related contractile genes (MYH11 and PLN), 
while S9, which represented smooth muscle cells, 
coexpressed contractile genes and cytoskeletal genes 
(MYH11, SYNPO2, CNN1 and DES) (Additional file 13: 
Fig. S6B. Fig. S7B). Overall, our analysis of colorectal 
stromal cells suggests that S5 subtype cells play a role in 
promoting cancer progression.

The infiltration level of TAM1 is related to C4 
and is associated with worse survival
Considering the important role of TAMs and CAFs in 
the progression of CRC, we next evaluated the rela-
tive abundances of TAM1-3 and S5-6 cells to investi-
gate their clinical value in our IHC validation cohort. 
Detailed clinical characteristics are summarized in 
Table 1. M panel and F panel were designed for multiplex 
IHC according to the genes highly expressed in TAMs 
and CAFs (Fig.  7A). CD68+CD163+IDO1−S100A8−, 
CD68+CD163−IDO1+S100A8−and CD68+ 
CD163−IDO1−S100A8+ TAMs were considered TAM1, 
TAM2 and TAM3, respectively (Fig.  7B). For CAFs, 
VIM+FAP+ WT1− and VIM+FAP+WT1+ were deemed 
S5 and S6 cells, respectively (Fig. 7C). Consistent with the 
analysis of the SMC and KUL3 cohorts, the infiltration 
level of TAM1 correlated positively with the C4 surrogate 
marker. No relationship was observed between TAM2 or 
TAM3 and C4 cells (Fig. 7D). Moreover, the TAM1 infil-
tration level in the TME correlated with adverse overall 
survival (p = 0.032). Patients with high TAM2 or TAM3 
infiltration tended to have a favorable prognosis, though 
the correlations were not significant (Fig. 7E). We did not 
observe any prognostic value for S5 and S6 cells.
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Discussion
Currently, the immune landscape and TME heteroge-
neity in CRC had been well characterized in single-cell 
transcriptome studies [11, 21, 22]. Indeed, widespread 
cellular heterogeneity not only exists in the composi-
tion of the CRC microenvironment but can also be 
observed in the cancer cell compartment. Tumor cells 
in glioblastoma exhibited diverse functional activ-
ity in oncogenic signaling, proliferation, complement/
immune response, and hypoxia [56]. And stemness pro-
gram expression level had been reported to be related 
to the heterogeneity of ovarian cancer cells [57]. So 
far, 14 cancer-related functional states had been sum-
marized from 41, 900 cells in 25 human cancers [58]. It 
is worth knowing that tumor cells’ intrinsic biological 

features determine cancer growth, invasion and metas-
tasis. Shanzhao Jin et  al. discovered one malignant 
cluster with epithelial–immune dual feature that was 
related to poor survival [49]. In this study, we inte-
grated single-cell transcriptomes, bulk RNA-seq data, 
and IHC in vitro validation to comprehensively decode 
the cancer cellular heterogeneity and its crosstalk with 
TME, hoping to gain deep insight into the CRC’s eco-
system, a flow chart shows the design of our study 
(Additional file 15: Fig. S8).

Cell proliferation, hypoxia and inflammatory reac-
tions related pathways were highly activated in CRC 
cancer cells. Notably, we discovered one cancer cell 
subgroup, C4, exhibited hypoxia and partial EMT 
markers, closely associated with TAM, CAF and 

Fig. 7  Validation of the orchestrated roles of TAM1 and C4 cells. A. Multiplex IHC designed for the macrophage biomarker panel and fibroblast 
panel. B. Representative multicolor IHC staining for CD68+CD163+ IDO1− S100A8− TAM1, CD68+CD163− IDO1+ S100A8−TAM2 and CD68+CD163− 
IDO1− S100A8+ TAM3. C. Representative multicolor IHC staining of VIM+ FAP+ WT1−S5 and VIM+FAP+WT1+S6 cells. D. Dot plot of the correlation 
between the infiltration level of TAM1-3 with the surrogate score of C4 cells in tissue arrays 1 and 3. Each dot represents a CRC patient sample. 
Correlation test is determined using Pearson test. E. Overall survival curves for TAM1-3 in tissue arrays 1 and 2 with sample size of each group placed 
on the bottom. HR, 95%CI and p value are annotated in text



Page 16 of 19Shen et al. Journal of Translational Medicine          (2022) 20:462 

adverse prognosis. The roles of TAMs and CAFs in 
inducing immunotherapy resistance, [59, 60] promot-
ing chemotherapy resistance [61] and supporting tumor 
growth [41] have been elucidated in various cancer 
types. It had been reported that CD163 + Tim4 + mac-
rophages resided in omentum form a protective niche 
to promote ovarian tumor spread [62]. In addition, 
myeloid cells had been reported to initiate tumor for-
mation by releasing reactive oxygen species to drive 
genomic damage. [63] The outstanding pro-oncogenic 
effect of TAM attract much attention recently, and 
immunotherapy targeting myeloid cells had been con-
ducted in CRC [11].Our finding underscored that 
TAM contributes to the aggressive phenotype of can-
cer cells, which is C4 in CRC, by collaborating with 
CAF. It is worth noting that cancer cells and CAF had 
been reported to take charge of releasing chemokine to 
recruit monocyte into TME [64, 65]. Our findings sup-
port a central role of C4 cells, TAMs and CAFs in the 
whole EC-TME communication networks. Therefore, 
we speculated that drugs simultaneously targeting both 
cancer and microenvironment cells or disrupting this 
central communication network are very promising in 
the further. C4 cells, TAMs or more precisely, TAM1 
and CAFs warrant further investigation.

This study depicts cancer cell heterogeneity at the 
single-cell level and comprehensively describes the con-
nection between epithelial composition and microenvi-
ronment cell infiltration patterns in CRC. In summary, 
our work helps to deepen our understanding of the 
CRC ecosystem, elaborates on the complicated coopera-
tion between cancer cells and the TME and provides a 
solid foundation for developing drugs targeting C4 cells, 
TAMs and CAFs. Nevertheless, there are several limi-
tations in our study that we must acknowledge. First, a 
previous study emphasized the role of neoantigens, in 
cooperation with immune cells, in driving lung cancer 
evolution [66].Due to the technical limitations of scRNA-
seq, genomic alteration data were not included in our 
analysis to decipher the heterogeneity of epithelial cells. 
Second, the cell‒cell communication networks between 
microenvironment cells and the interactions of micro-
environment cells that form an immunosuppressive 
environment are of importance to CRC oncogenesis and 
progression. As this was not the focus of our study, we 
did not explore their role in shaping the CRC landscape. 
Third, although the epithelium-microenvironment com-
munication network inferred by CellPhoneDB provided 
solid evidence for a dominant role of TAMs and CAFs, 
the infiltration levels of which were closely linked with 
an aggressive phenotype of epithelial cells, expression 
levels of the majority of identified ligands and receptors 
were not distinct between C3-C7 cells (data not shown). 

Fourth, the tumor-promoting role of C4 cells and TAM1 
was only validated by evaluating expression levels, and 
further functional biological validation in experiments 
such as transwell-invasion assay to evaluate C4’s invasive-
ness and coculture of C4 cells and TAM1 are necessary to 
evaluate tumor reactivity.

Abbreviations
CAF: Cancer-associated fibroblast; cNMF: Consensus nonnegative matrix 
factorization; CPM: Counts per million; CRC​: Colorectal cancer; DC: Dendritic 
cell; DEG: Differentially expressed gene; EC: Epithelium compartment; FPKM: 
Fragments per kilobase million; GC: Germinal center; GO: Gene ontology; IEL: 
Intraepithelial lymphocyte; ILC: Innate lymphoid cell; MC: Microenvironment 
compartment; NK: Natural killer cell; PCA: Principal component analysis; RSS: 
Regulon specificity score; sc-RNAseq: Single-cell RNA sequencing; SNN: Shared 
nearest neighbor; TAM: Tumor-associated macrophage; TCYTO: Cytotoxic T cell; 
TEX: Exhausted T cell; TF: Transcription factor; TFH: T follicular helper cell; TH: T 
helper cell; TME: Tumor microenvironment; TN: Naïve T cell; TPM: Transcripts 
per million; TREG: Regulatory T cell; TRM: Tissue-resident T cell; UMAP: Uniform 
manifold approximation and projection.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​022-​03661-8.

Additional file 1: Table S1. Basic clinical information and QC metric of 
SMC and KUL3 cohort.

Additional file 2: Table S2. Cellular annotation and clinical characteristic 
of SMC and KUL3 cohort. Relate to Figure 1 and Figure S1.

Additional file 3: Table S3. Representative marker genes used for cell 
type annotation.

Additional file 4: Table S4. Signature matrix for CIBERSORTx and infered 
cellular fractions of TCGA-COADREAD. Related to Figure 2.

Additional file 5: Table S5. Biological functional difference between 
colorectal cancer cells and adjacent normal epithelia in SMC and KUL3 
cohort. Related to Figure 3A and S3A.

Additional file 6: Table S6. Identified meta-programs and its biological 
process annotation. Related to Figure 3F, Figure S2B.

Additional file 7: Table S7. Key resource table.

Additional file 8: Figure S1. Cellular landscape of CRC in the KUL3 
cohort. A. UMAP plot of 26,268 cells colored by cell cluster, CMS and sam-
ple origin. Each dot represents a cell and cellular cluster is annotated with 
text. B. Proportions of the identified cell clusters distributed across tumor, 
border and adjacent normal tissues with the relative cell type proportions 
and total cell numbers. Upper: all cell clusters; lower: immune and stromal 
cell clusters. C. Heatmap of representative markers for the cell clusters. A 
total of 100 random cells in each cluster were chosen for visualization. The 
color legend is as in B. D. Frequencies of the selected cell types for tumor, 
border and adjacent normal samples. The Kruskal-Wallis test p value is 
shown.

Additional file 9: Figure S2. Functional heterogeneity of CRC epithelial 
cells in the SMC cohort. A. UMAP feature plot of the top 10 upregulated 
genes in the SMC cohort. B. Correlation heat map of 123 programs identi-
fied by cNMF. The Pearson correlation coefficient is indicated by the color. 
C. Heatmap of the relative mean signature score of cancer cell functional 
signatures across C1-C7. The signature score was calculated using the 
“AUCell” package. D. Heatmap of functional genes across C1-C7. A total of 
100 random cells in each cluster were used for visualization

Additional file 10: Figure S3. Epithelial heterogeneity validation in KUL3 
cohort. A. Volcano plot of the differentially expressed genes between 
colorectal cancer cells at the core (up) or border (down) and adjacent 
normal epithelial cells. Genes with FDR values less than 0.05 and absolute 

https://doi.org/10.1186/s12967-022-03661-8
https://doi.org/10.1186/s12967-022-03661-8


Page 17 of 19Shen et al. Journal of Translational Medicine          (2022) 20:462 	
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GO enrichment plot is shown on each side with the bar color indicat-
ing enrichment significance, and bar length showing the number of 
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Dot size and color represent the enrichment scores and the relative mean 
expression level of ligand-receptor pairs, respectively.

Additional file 12: Figure S5. Characterization of myeloid cells in the 
KUL3 cohort. A. UMAP plot of myeloid cells colored by cell cluster and 
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For each cell cluster, cells were down-sampled to 100. C. Heatmap plot of 
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Additional file 13: Figure S6. Characterization of stromal cells in the SMC 
cohort. A. UMAP plot of stromal cells colored by cell cluster and sample 
origin. B. Heat map of marker genes identified through Seurat. For each 
cell cluster, cells were down-sampled to 100. C. Differentiation trajecto-
ries inferred by Monocle2. Dots represent stromal cells and are colored 
by identified cell cluster. D. Heat map of the top 5 ranked regulons in 
S5 and S6. E. Relapse-free survival curves for S5 (top) and S6 (bottom) 
in the TCGA-COADREAD cohort. F. Dot plot of the correlation between 
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Additional file 14: Figure S7. Characterization of stromal cells in the 
KUL3 cohort. A. UMAP plot of stromal cells colored by cell cluster and 
sample origin. B. Heat map of marker genes identified through Seurat. 
For each cell cluster, cells were down-sampled to 100. C. Differentiation 
trajectory inferred by Monocle2. Dots represent stromal cells colored by 
identified cell cluster. D. Heat map plot of the top ranked regulons. E. Dot 
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cells and S5 cells in the TME. Each dot represents a patient, and a larger 
size means a higher C4 cell proportion. Correlation test is estimated by 
Pearson correlation test.

Additional file 15: Figure S8. Workflow of this study. Single-cell tran-
scriptomes and bulk RNA-seq data were integrated to fully analyze the 
complicated relationship between colorectal epithelium and surround-
ing environment. C4 cells were featured with high invasive potential and 
related with TAMs and CAFs, and further validated in vitro using IHC and 
mIHC.
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