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Abstract 

Background: Metabolic disturbance has been reported in patients with epilepsy. Still, the evidence about the causal 
role of metabolites in facilitating or preventing epilepsy is lacking. Systematically investigating the causality between 
blood metabolites and epilepsy would help provide novel targets for epilepsy screening and prevention.

Methods: We conducted two‑sample Mendelian randomization (MR) analysis. Data for 486 human blood metabo‑
lites came from a genome‑wide association study (GWAS) comprising 7824 participants. GWAS data for epilepsy were 
obtained from the International League Against Epilepsy (ILAE) consortium for primary analysis and the FinnGen 
consortium for replication and meta‑analysis. Sensitivity analyses were conducted to evaluate heterogeneity and 
pleiotropy.

Results: 482 out of 486 metabolites were included for MR analysis following rigorous genetic variants selection. After 
IVW and sensitivity analysis filtration, six metabolites with causal effects on epilepsy were identified from the ILAE 
consortium. Only four metabolites remained significant associations with epilepsy when combined with the FinnGen 
consortium [uridine: odds ratio (OR) = 2.34, 95% confidence interval (CI) = 1.48–3.71, P = 0.0003; 2‑hydroxystearate: 
OR = 1.61, 95% CI = 1.19–2.18, P = 0.002; decanoylcarnitine: OR = 0.82, 95% CI = 0.72–0.94, P = 0.004; myo‑inositol: 
OR = 0.77, 95% CI = 0.62–0.96, P = 0.02].

Conclusion: The evidence that the four metabolites mentioned above are associated with epilepsy in a causal way 
provides a novel insight into the underlying mechanisms of epilepsy by integrating genomics with metabolism, and 
has an implication for epilepsy screening and prevention.
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Introduction
Epilepsy is one of the complex and ever-present chronic 
diseases of neurology, pathologically characterized by 
sudden, abnormal electrical discharges that can lead to 
transient cerebral dysfunction [1]. A body of epidemio-
logical investigations suggested that the incidence rate 
was 61.44 per 100,000 person-years on a global scale [2]. 
As estimated, epilepsy accounts for more than 0.5% of the 
global burden of disease, which has a substantial financial 
impact in terms of healthcare needs, premature death, 
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and lost work productivity [3]. In this context, early iden-
tification and prevention of epilepsy is a high priority.

Given the possibility to take snapshots of the intri-
cate and multivariate biochemical processes involved 
in illness development, investigating the relationships 
between metabolic abnormalities and human diseases 
has sparked a great deal of interest [4]. Likewise, there 
is a lot of research into the potential link between 
metabolites and epilepsy, implying that certain metabo-
lites are involved in the development of epilepsy. Myo-
inositol, for instance, has been shown in experimental 
experiments to have a seizure-suppressing impact, indi-
cating a potential protective role for myo-inositol in 
epilepsy [5, 6, 7]. In addition, the term "metabolic epi-
lepsy" has been proposed by the International League 
Against Epilepsy (ILAE) organization, which has identi-
fied numerous metabolic issues in relation to epilepsy 
[8]. Lin Lin Lee et al. [9] also summarized 14 metabolic 
disorders involved in epilepsy, like urea cycle disorders 
[10], glutaric aciduria [11], and so on. However, to our 
knowledge, there is still a paucity of comprehensive and 
systematic research appraising the causal effect of blood 
metabolites on epilepsy. Hence, owing to the inherent 
defects of the conventional observational studies, it is 
unable to conclusively delineate a metabolite spectrum 
contributing to the development of epilepsy based on 
the existing evidence.

Mendelian randomization (MR), a recently developed 
analytic method, has been widely applied to infer causal 
impacts from exposures to outcomes [12]. In the case 
of the absence of randomized controlled trials (RCTs) 
or embarking on new RCTs, the MR approach is a criti-
cal alternative strategy providing reliable evidence on 
the causality between exposures and disease risks [13]. 
Specifically, MR design leverages single nucleotide pol-
ymorphisms (SNPs) as the unconfounded instrumen-
tal variables (IVs) to proxy the phenotypes of interest. 
Considering the random allocation of genetic variants 
during fertilization, in which the process mimics an 
RCT, confounding (like sex and age) is less likely to 
bias the causal inference [14]. Besides, genotype forma-
tion happens before disease onset and is typically not 
affected by disease progression, thus making reverse 
causality less likely.

Given that the causal impacts of blood metabolites 
on epilepsy were poorly understood, this study uti-
lized genome-wide association study (GWAS) statistics 
to systematically evaluate the potential causalities in a 
two-sample MR framework. To be more exploratory in 
identifying the prospective candidate metabolites impli-
cated in the etiology of epilepsy, an exposure-wide design 
incorporating more than 400 blood metabolites was used 
in the present study. Findings from this work would not 

only help to realize the pathophysiology underlying epi-
lepsy, but also provide reliable evidence for establishing 
feasible strategies for epilepsy screening and prevention 
in clinical practice.

Methods and materials
Study design
We systematically assessed the causal association 
between 486 human blood metabolites and the risk of 
epilepsy using a two-sample MR design. A convincing 
MR design should be in compliance with three funda-
mental assumptions: (1) genetic instruments are robustly 
associated with exposures; (2) genetic instruments are 
not associated with confounders; (3) genetic instruments 
influence the outcome only through exposures of inter-
est [15]. Among them, the second and third assumptions 
are collectively known as the independence of horizontal 
pleiotropy, which could be tested using an array of statis-
tical methods [16]. Genetic information for epilepsy was 
obtained from two independent GWAS consortia for pri-
mary analysis and replication analysis, and then a meta-
analysis was performed.

A brief introduction to the MR approach was pre-
sented in the Supplementary materials. The study over-
view was presented in Fig. 1. All statistical analyses were 
performed using the "TwoSampleMR" package (Version 
0.5.4) in the R program (Version 4.0.0), the Reviewer 
Manager software (Version 5.4.1), and the LD Score 
Regression (LDSC) software (version 1.0.1).

GWAS data for human blood metabolites
Genetic information for each blood metabolite was 
obtained from the Metabolomics GWAS server (http:// 
metab olomi cs. helmh oltz- muenc hen. de/ gwas/). Specifi-
cally, the genetic variants were derived from genome-
wide association scans with high-throughput metabolic 
profiling conducted by Shin et  al. [17]. A total of 7824 
European descents were included and approximately 2.1 
million SNPs for 486 metabolites were tested. Among 
the 486 metabolites, 177 metabolites were unknown 
because their chemical identity has not been conclusively 
determined. Another 309 metabolites were chemically 
identified and assigned to eight broad metabolic groups, 
including amino acid, carbohydrate, cofactors and vita-
min, energy, lipid, nucleotide, peptide, and xenobiotic 
metabolism, as defined in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database [18].

GWAS data for epilepsy
The GWAS statistics for epilepsy in primary analysis 
were obtained from the International League Against 
Epilepsy (ILAE) consortium, comprising 15,212 epilepsy 
cases and 29,677 control subjects (nearly 86% Europeans) 

http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
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[19]. Approximately half of the participants were female. 
More details about the diagnosis criteria, demography, 
and quality control were described in the original GWAS 
study. Genetic information for epileptic subtypes (gen-
eralized epilepsy: 3,769 cases and 29,677 controls; focal 
epilepsy: 9,671 cases and 29,677 controls) were utilized 
for subgroup analysis.

To validate our results by conducting replication analy-
sis and meta-analysis, we used the epilepsy data from 
Freeze 5 of the FinnGen consortium (6,260 epilepsy cases 
and 176,107 healthy controls), which is publicly available 
at the website: https:// gwas. mrcieu. ac. uk.

Instruments selection
A series of steps for selecting eligible genetic variants 
associated with metabolites were performed. First, con-
sidering the limited number of SNPs reaching genome-
wide significance, we relaxed the association threshold 
using P < 1 ×  10–5 [pairwise linkage disequilibrium (LD) 
 r2 < 0.1 within a 500 kb distance] to obtain top independ-
ent SNPs, which was in accordance with the study of 
Yang et  al. [20]. This method was widely used in previ-
ous MR studies [, 21, 22]. Meanwhile, to avoid bias owing 
to the employment of weak instruments, F statistics 
were calculated for each SNP to measure the statistical 
strength as previously described [21]. SNPs with F < 10 
were recognized as weak instruments and were discarded 
to ensure all the SNPs conferred sufficient variance for 
corresponding metabolites [14]. We then extracted the 
exposure SNPs from the outcome data and excluded 
those associated with the outcome (P < 1 ×  10–5). For 
SNPs absent in the outcome, proxies were identified in 

high LD  (r2 > 0.8) based on the European reference panel 
of the 1000 Genomes Project. For those absent and no 
appropriate proxies identified, we discarded them. Har-
monization was then conducted to align the alleles of 
exposure- and outcome-SNPs, and discard palindro-
mic SNPs with intermediate effect allele frequencies 
(EAF > 0.42) or SNPs with incompatible alleles (e.g. A/G 
vs. A/C). Finally, metabolites with more than two SNPs 
were kept for MR analysis [23].

Primary analysis
The random-effect inverse variance weighted (IVW) 
method was conducted as the primary analysis to iden-
tify significant causal associations between metabolites 
and epilepsy with P < 0.05. IVW is the major method 
commonly used in MR studies, which combines all the 
Wald ratios for each SNP to elicit a pooled estimate [24]. 
Specifically, IVW assumes that all the genetic variants 
are valid, and hence is the most powerful method for MR 
estimation but also prone to pleiotropic bias. Therefore, 
IVW was conducted as the primary method in this study 
to scan preliminary associations of metabolites with 
epilepsy.

Sensitivity analysis
For the identified significant estimates (IVW P < 0.05), 
sensitivity analyses were then conducted to evaluate any 
bias of the MR assumptions. Several other MR mod-
els, including robust adjusted profile scores (RAPS), 
weighted median (WM), and MR-Egger (slope term), 
were used as complementary methods. As the exten-
sion of IVW, RAPS allows the employment of relatively 

Fig. 1 Overview of the current Mendelian randomization (MR) study. Assumption 1, genetic variants are robustly associated with exposure; 
Assumption 2, genetic variants are not associated with confounders; Assumption 3, genetic variants affect the outcomes only through the exposure 
of interest. SNPs, single nucleotide polymorphisms; LD, linkage disequilibrium; RAPS, robust adjusted profile scores; WM, weighted median; LOO, 
leave‑one‑out; ILAE, the International League Against Epilepsy.

https://gwas.mrcieu.ac.uk
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weak instruments for MR estimation [25]. WM assumes 
that at least half of the instruments are valid [26], while 
MR-Egger regression provides consistent estimates 
accounting for pleiotropy when all the instruments are 
invalid [27]. To detect the existence of heterogeneity, 
the Cochran Q test was carried out. Cochran-Q derived 
P < 0.05 and I2 > 25% was recognized as existing hetero-
geneity [28]. Horizontal pleiotropy was evaluated based 
on Egger intercepts [27]. Leave-one-out (LOO) analysis 
was conducted to detect high influence points driving the 
pooled IVW estimates.

As such, the potential eligible candidate metabolites 
involved in epilepsy development were determined in 
compliance with the following items: 1) consistent direc-
tions and magnitude among the four MR methods; 2) 
no heterogeneity or pleiotropy was detected; 3) no high-
influence points were identified in LOO analysis.

Replication and meta‑analysis
To validate the robustness of candidate metabolites, we 
replicated IVW analysis using another independent epi-
lepsy GWAS data from the FinnGen consortium men-
tioned above, and then conducted a meta-analysis to 
determine the final candidates.

Genetic correlation and direction validation
Studies have confirmed that MR frequently generates 
false positives in the presence of genetic correlation 
between traits [, 29, 30]. Though the SNPs associated 
with the outcome (epilepsy) were removed throughout 
the instrument selection procedure, a combination of the 
SNPs without significant association with epilepsy could 
also contribute to the genetic risk of epilepsy. Thereby, to 
investigate whether the discovered causalities were influ-
enced by shared genetic architecture, the genetic associa-
tion between the identified metabolites and epilepsy was 
assessed using LDSC.

In addition, we validated whether the observed causali-
ties were biased owing to reversed causation using the 
Steiger test [31]. Using the Steiger test, we determined 
whether the included SNPs explained more about epi-
lepsy variability than the detected metabolites. When 
a combination of SNPs was found to contribute more 
to the genetic risk of epilepsy than metabolites (Steiger 
P > 0.05), it indicated that the direction of causal infer-
ence might be biased.

Confounding analysis
Although an array of statistical methods were conducted 
in sensitivity analysis to evaluate any violation of the MR 
assumptions, we scanned with the Phenoscanner V2 
website (http:// www. pheno scann er. medsc hl. cam. ac. uk/) 

to explore whether the metabolites-associated SNPs were 
meanwhile associated with several common risk factors 
that might bias the MR estimates, including smoking 
[32], obesity [33], diabetes [34], and educational attain-
ment [35]. Once the SNPs were associated with these 
potential confounders at the threshold of P < 1 ×  10–5, 
IVW was replicated after dropping these SNPs to validate 
the robustness of the results.

Metabolic pathway analysis
Leveraging the set of identified metabolites, metabolic 
pathway analysis based on the KEGG database was finally 
carried out using MetaboAnalyst 5.0 (https:// www. metab 
oanal yst. ca/), a user-friendly online tool for streamlined 
metabolomics data analysis.

Results
Following the instrument selection steps, 482 metabo-
lites were kept in MR estimation (four metabolites with 
less than three SNPs were excluded) (Additional file  2: 
Table  S1). The number of SNPs for each metabolite 
ranges from 3 to 202. F statistics for SNPs were all over 
10, suggesting no weak instruments were employed 
(Additional file  2: Table  S2). The harmonized data was 
presented in Table S2.

Primary analysis
IVW preliminarily identified 28 metabolites significantly 
associated with epilepsy (Figs.  2, 3). Among them, 11 
metabolites remained chemically unknown. Another 
17 metabolites were chemically assigned to amino 
acid, carbohydrate, energy, lipid, nucleotide, peptide, 
and xenobiotic metabolism. By conducting sensitiv-
ity analysis, only six of them met the criteria of eligible 
candidate metabolites involved in the development of 
epilepsy, including uridine (OR = 2.60, 95% CI = 1.56–
4.31, P = 0.0002), 2-hydroxystearate (OR = 1.79, 95% 
CI = 1.27–2.53, P = 0.001), decanoylcarnitine (OR = 0.86, 
95% CI = 0.70–0.93, P = 0.0036), threonate (OR = 1.42, 
95% CI = 1.08–1.89, P = 0.013), myo-inositol (OR = 0.74, 
95% CI = 0.59–0.94, P = 0.014), and 2-palmitoylglyc-
erophosphocholine (OR = 1.30, 95% CI = 1.03–1.63, 
P = 0.023). Briefly, MR estimates derived from RAPS, 
WM, and MR-Egger regression presented consistent 
direction and magnitude, supporting the robustness of 
the causality (Table 1). Cochran Q-derived P values and 
I2 indicated that no heterogeneity was detected. Besides, 
intercept terms from MR-Egger suggested a low risk 
of horizontal pleiotropy (Table  1). Furthermore, LOO 
analysis did not identify any high-influence SNPs bias-
ing the pooled effect estimates (Additional file 1: Figure 
S1). These six metabolites were consequently determined 

http://www.phenoscanner.medschl.cam.ac.uk/
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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Fig. 2 Forest plot for the causal effect of metabolites on the risk of epilepsy derived from inverse variance weighted (IVW). OR, odds ratio; CI, 
confidence interval.
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as the potential candidate metabolites engaged in the 
pathogenesis of epilepsy for further analysis.

Replication and meta‑analysis
To further verify our results, replication analysis was 
conducted using epilepsy GWAS data from the FinnGen 
consortium. As expected, similar trends were observed 
using FinnGen epilepsy GWAS data in certain metabo-
lites (Fig.  4). Combined analysis of ILAE and FinnGen 
datasets further identified that genetic liability for 
higher levels of uridine (OR = 2.34, 95% CI = 1.48 – 
3.71, P = 0.0003) and 2-hydroxystearate (OR = 1.61, 
95% CI = 1.19 – 2.18, P = 0.002) predicted a higher risk 
of epilepsy, while genetic predisposition to higher levels 
of decanoylcarnitine (OR = 0.82, 95% CI = 0.72 – 0.94, 
P = 0.004) and myo-inositol (OR = 0.77, 95% CI = 0.62 
– 0.96, P = 0.02) predicted a lower risk of epilepsy. 
Null estimates of the meta-analysis were observed in 

threonate and 2-palmitoylglycerophosphocholine, which 
yielded discordant directions using the FinnGen epilepsy 
database.

Genetic correlation and direction validation
Using LDSC, we found little evidence of genetic correla-
tion between epilepsy and 2-hydroxystearate  (rg = -0.001, 
se = 0.0334, P = 0.97), decanoylcarnitine  (rg = -0.25, 
se = 0.21, P = 0.24), and myo-inositol  (rg = -0.09, se = 0.13, 
P = 0.51), suggesting that the MR estimates were not con-
founded by the shared genetic component. For uridine, 
LDSC failed to detect its genetic correlation with epi-
lepsy due to statistical characteristics of the full GWAS 
data (mean Chi-square = 0.97, which is inadequate for 
genetic correlation calculation). We further conducted a 
Steiger test to validate the effect direction from metabo-
lites to epilepsy. The Steiger P values suggested that the 
identified causalities were not biased by reverse causation 
(Table 2).

Fig. 3 Scatterplot for the significant Mendelian randomization (MR) association (P < 0.05) between metabolites and epilepsy. SNP, single nucleotide 
polymorphism.
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Confounding analysis
Although sensitivity analysis found no evidence of bias 
invalidating the MR estimates, we further manually 
investigated the second traits (smoking, obesity, diabetes, 
and educational attainment) of the metabolite-associated 
SNPs. Looking over the Phenoscanner, we found that 
SNPs associated with uridine and myo-inositol were not 
associated with any of the confounders. For 2-hydroxy-
stearate, two SNPs (rs3822742 and rs6564154) were 
associated with obesity-related phenotypes. After remov-
ing these two SNPs, the causality remained significant 
(IVW OR = 1.75, 95% CI = 1.25 – 2.44, P = 0.001). Simi-
lar for decanoylcarnitine, we also identified two SNPs 
(rs10036208 and rs11722868) were associated with obe-
sity-related traits, and the estimates remained after dis-
carding these two SNPs (IVW OR = 0.84, 95% CI = 0.72 
– 0.98, P = 0.03).

Metabolic pathway analysis
We identified five potential metabolic pathways involved 
in the pathogenesis of epilepsy incidence (Table  3). 
Myo-inositol was involved in the metabolic pathways of 
ascorbate and aldarate metabolism, galactose metabo-
lism, phosphatidylinositol signaling system, and inosi-
tol phosphate metabolism (all P < 0.05). There was also 
another plausible pathway consisting of uridine, namely 

the pyrimidine metabolism pathway, participating in the 
development of epilepsy (P = 0.0497).

Subgroup analysis
As that GWAS data for epileptic subtypes (focal epilepsy 
and generalized epilepsy) were available in the ILAE 
consortium, we conducted subgroup analysis, expecting 
to preliminarily catch the first glimpses of the potential 
metabolites involved in the specific subtypes of epilepsy. 
Combined primary analysis with sensitivity analysis, we 
identified several candidate metabolites involved in the 
development of focal and generalized epilepsy, detailed in 
Additional file 2: Tables S3 and Additional file 2: Tables 
S4.

Discussion
The current study suggested that genetic liability for 
higher levels of blood uridine and 2-hydroxystearate were 
causally associated with an increased risk of epilepsy, 
whereas genetic predisposition towards higher levels of 
decanoylcarnitine and myo-inositol played a protective 
role in epilepsy development. To the best of our knowl-
edge, this is the first MR study to systematically appraise 
the causal role of human blood metabolites in the issue of 
epilepsy.

Fig. 4 Meta‑analysis of the causal associations between metabolites and epilepsy. ILAE, the International League Against Epilepsy; OR, odds ratio; 
CI, confidence interval.
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The high prevalence and recurrence of epilepsy have 
contributed to a heavy burden on human society, thus 
making disease screening and prevention extremely 
critical. Though some risk factors for epilepsy have been 
proposed, like brain infection or injury [36], the etiology 
of epilepsy remains unclear in nearly half of the cases 
[37]. Previous studies have reported several circulating 
biomarkers in preclinical epilepsy models [, 38, 39]. For 
instance, Wang et  al. reported that blood matrix metal-
loproteinase-3 was reduced in patients with epilepsy 
compared with healthy controls [40]. Although that exist-
ing literature has strongly connoted the involvement of 
metabolic disturbance in epilepsy, current evidence is 
unable to conclusively determine a causal role of circulat-
ing metabolites in epilepsy development. Inspired by the 
metabolites GWAS analysis conducted by Shin et al. [17], 
we designed this exposure-wide MR study to system-
atically evaluate the causality between blood metabolites 
and epilepsy, expecting to decipher the metabolic coding 
underlying the epilepsy pathogenesis and provide more 
novel targets for epilepsy identification and prevention.

Our study suggested that genetic liability for an 
increased level of blood uridine and 2-hydroxystearate 
played a detrimental effect on epilepsy development. Few 
studies focused on the role of circulating uridine in the 
issue of epilepsy. Some observational studies reported 
that uridine might play a protective role in epilepsy [41], 
whereas some studies found no effects of uridine on epi-
lepsy incidence [42]. These equivocal results were limited 
by methodological defects, like residual confounding. 
By leveraging MR, which is free from reverse causality 
and residual confounding, we found that higher levels 
of blood uridine predicted an increased risk of epilepsy. 
Previously, Slézia et  al. reported an increased level of 

extracellular uridine in a rat model of aminopyridine-
induced epilepsy, suggesting that uridine might partici-
pate in epilepsy-related neuronal activity changes [42]. 
However, due to the gaps in the knowledge on the bio-
function of uridine, future studies are warranted to inves-
tigate the underlying mechanisms. For 2-hydroxystearate, 
very limited investigations have reported its association 
with epilepsy. A previous study reported that 2-hydroxy-
stearate was overexpressed in diabetes patients and was 
positively associated with glucose levels [43]. Given that 
diabetes might induce epilepsy, there might be the pos-
sibility that 2-hydroxystearate causes epilepsy through 
diabetes, which warrants further exploration in specific 
experimental conditions.

Two metabolites, decanoylcarnitine, and myo-inositol, 
were suggested to have protective effects on epilepsy. 
Similarly, the literature about the role of decanoylcarni-
tine in epilepsy is extremely limited. Previously analy-
sis reported the gluconeogenesis-inhibition effect of 
decanoylcarnitine, suggesting decanoylcarnitine might 
prevent epilepsy by regulating glucose metabolism [44]. 
However, more details for the underlying mechanisms 
should be explored in further study. The protective 
impact of myo-inositol on epilepsy identified by this MR 
study was supported by a great deal of literature. Using 
electrophysiological method, Gamkrelidze et  al. found 
that myo-inositol has a significant local seizure-suppres-
sant effect [5]. In a recent study, several favorable effects 
of myo-inositol were observed in rat models, including 
decreasing the frequency and duration of electrographic 
spontaneous recurrent seizures in the hippocampus, 
ameliorating epileptogenesis-related spatial learning and 
memory deficit, and alleviating cell loss in the hippocam-
pus [7]. Phosphoinositide signaling pathway and myo-
inositol action on gamma amino butyric acid-A receptors 
were the possible mechanisms of this protective effect [, 
45, 46].

Taken together, the findings of our study are partially in 
line with those of previous studies. Based on the existing 
literature, the preventive role of myo-inositol in epilepsy 
observed in experimental studies has been well-docu-
mented. By leveraging GWAS data, our MR analysis also 
supported that myo-inositol exerted a protective effect 
on epilepsy incidence. For uridine, previous analyses 
yielded discrepant results, which could be attributable to 
the methodological flaws of the traditional observational 

Table 2 Steiger direction test from blood metabolites to epilepsy

Exposure Uridine 2‑hydroxystearate Decanoylcarnitine Myo‑inositol

Direction TRUE TRUE TRUE TRUE

Steiger P 1.66 ×  10–66 6.53 ×  10–101 1.64 ×  10–119 3.82 ×  10–137

Table 3 Significant metabolic pathways involved in the 
pathogenesis of epilepsy

Pathway name Involved metabolites P

Ascorbate and aldarate metabolism Myo‑inositol 0.010

Galactose metabolism Myo‑inositol 0.035

Phosphatidylinositol signaling system Myo‑inositol 0.036

Inositol phosphate metabolism Myo‑inositol 0.038

Pyrimidine metabolism Uridine 0.0497
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design. Our study showed that uridine had a negative 
impact on epilepsy risk using the MR design, which is 
largely free from reverse causality and residual confound-
ing. Furthermore, in our investigation, 2-hydroxystearate 
and decanoylcarnitine were discovered to be possible 
metabolites involved in the etiology of epilepsy. Previ-
ously, research about the role of these two metabolites in 
the risk of epilepsy was extremely limited. Future func-
tional analyses were warranted to further confirm their 
biological effects on the development of epilepsy.

In the present study, two blood metabolites, including 
threonate and 2-palmitoylglycerophosphocholine, were 
identified as the risk factors for epilepsy using GWAS 
data from the ILAE consortium. However, replication 
analysis using epilepsy GWAS data from the FinnGen 
consortium yielded discrepant estimates, which might be 
attributed to the small proportion of epilepsy cases in the 
FinnGen study (~ 3.32%). Owing to the discordant results 
derived from two independent datasets, conclusive inter-
pretation for the role of threonate and 2-palmitoylglycer-
ophosphocholine in the genesis of epilepsy could not be 
established.

The current study has several strengths. First, the major 
strength worth noting in this MR study is the wide range 
of blood metabolites we covered. Briefly, totally 482 
metabolites were included for MR analysis, which is the 
most comprehensive and systematic study to investigate 
the metabolic profiles contributing to epilepsy to date. 
Second, using MR design, our study is largely free from 
reverse causation and residual confounding. Specifically, 
an array of methods was implemented to verify any viola-
tion of the MR assumptions to ensure the reliability of the 
MR estimates. Concordant directions and similar magni-
tude across various MR models confirmed the robustness 
of the MR estimates. No evidence of horizontal pleiot-
ropy was detected using complementary statistical meth-
ods. Third, replication and meta-analyses were applied 
to further support the causal effects of certain metabo-
lites on epilepsy. Even though estimates derived from the 
FinnGen consortium in replication analysis were not sta-
tistically significant, the consistent directions of the effect 
estimates were reassuring as they appeared not to occur 
by chance alone. Further meta-analysis revealed several 
metabolites remained a significant impact on epilepsy.

Several limitations should be noted in our study. 
First, owing to the limited number of SNPs reaching 
genome-wide significance, we relaxed the P threshold, 
which is a common method widely used. The F statistic 
for each of the SNPs was over 10, suggesting no weak 
instruments were included. Besides, the Steiger test 
indicated a valid causal direction from the exposure to 
the outcome. As known, the rationale for the Steiger 
test is to compare the proportion of variance explained 

by the exposure-SNPs with that of the outcome-SNPs. 
Hence, the true direction derived from the Steiger test 
also supported the validity of the SNPs with relaxed P 
values. Second, the majority of the participants of this 
study are European. While this could largely avoid pop-
ulation heterogeneity, the MR results should be further 
validated in other populations to verify the generality 
in future studies when more GWAS data from other 
populations were publicly available. Third, despite the 
investigation of more than 400 blood metabolites, MR 
estimations were not adjusted for multiple testing in 
the present study. Instead, we conducted a replication 
analysis to verify the robustness of the MR estimates 
using two independent datasets (ILAE and FinnGen), 
greatly enhancing the credibility of our results. We 
argue that a conservative threshold of multiple testing 
might obscure the associations that were potentially 
noteworthy when studied alone. As such, potential can-
didate metabolites associated with epilepsy at P < 0.05 
were included for further replication and meta-analy-
ses in the present study. Finally, although that the MR 
approach performs excellently in causal inference, we 
caution that findings from this MR study should be fur-
ther validated in well-powered randomized controlled 
trials to demonstrate the existence of causality.

In conclusion, this MR study suggests that blood 
metabolites might influence the risk of epilepsy in a 
causal way, initially providing evidence about the impact 
of circulating metabolic disturbance on epilepsy risk. 
Specifically, blood uridine, 2-hydroxystearate, decanoyl-
carnitine, and myo-inositol might be useful circulating 
metabolic biomarkers for epilepsy screening and pre-
vention in clinical practice. These four metabolites can 
also serve as candidate molecules for future mechanism 
exploration.
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