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Abstract 

Background:  Detecting trans-ethnic common associated genetic loci can offer important insights into shared 
genetic components underlying complex diseases/traits across diverse continental populations. However, effective 
statistical methods for such a goal are currently lacking.

Methods:  By leveraging summary statistics available from global-scale genome-wide association studies, we herein 
proposed a novel genetic overlap detection method called CONTO (COmposite Null hypothesis test for Trans-ethnic 
genetic Overlap) from the perspective of high-dimensional composite null hypothesis testing. Unlike previous stud-
ies which generally analyzed individual genetic variants, CONTO is a gene-centric method which focuses on a set of 
genetic variants located within a gene simultaneously and assesses their joint significance with the trait of interest. By 
borrowing the similar principle of joint significance test (JST), CONTO takes the maximum P value of multiple associa-
tions as the significance measurement.

Results:  Compared to JST which is often overly conservative, CONTO is improved in two aspects, including the 
construction of three-component mixture null distribution and the adjustment of trans-ethnic genetic correlation. 
Consequently, CONTO corrects the conservativeness of JST with well-calibrated P values and is much more powerful 
validated by extensive simulation studies. We applied CONTO to discover common associated genes for 31 complex 
diseases/traits between the East Asian and European populations, and identified many shared trait-associated genes 
that had otherwise been missed by JST. We further revealed that population-common genes were generally more 
evolutionarily conserved than population-specific or null ones.

Conclusion:  Overall, CONTO represents a powerful method for detecting common associated genes across diverse 
ancestral groups; our results provide important implications on the transferability of GWAS discoveries in one popula-
tion to others.

Keywords:  Trans-ethnic genetic overlap, Composite null hypothesis testing, Summary statistics, Gene-centric 
association analysis, CONTO, Joint significance test, Genome-wide association study
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Background
The past decade has witnessed great success of global-
scale genome-wide association studies (GWASs) in 
discovering a large number of single nucleotide polymor-
phisms (SNPs) associated with many diseases and traits 
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in diverse ancestries (e.g., blood lipids [1], prostate cancer 
[2], blood pressure [3, 4], type II diabetes [5, 6], glycemic 
traits [7], and schizophrenia [8]). These discoveries dra-
matically revolutionize our biological knowledge regard-
ing genetic basis underlying complex phenotypes [9–11], 
and pave the way toward novel molecular therapeutic 
strategies for complex diseases and disorders [12–16]. 
One of the important findings of trans-ethnic GWASs is 
that a few of association signals identified in one popula-
tion are found to be replicated in others in the sense that 
trait-associated genes exhibit consistently statistical asso-
ciation and effect direction in multiple populations [12, 
14, 17–21], indicating that the same trait shares similar 
genetic components across diverse continental popula-
tions [22–28].

Indeed, current GWASs have sought to identify trait-
associated genetic loci in the hope that discoveries in 
one population are likely transferred to others. However, 
given the population genetic differentiation among vari-
ous ancestral groups worldwide [14, 29–31], the extent 
to which discovered associations can be generalized 
across populations is not completely known. We herein 
aim to formally investigate a central problem in popula-
tion genetics using widespread summary statistics data 
publicly available from large-scale GWASs in different 
populations: are significant genes associated with a com-
plex trait in one population also statistically related to the 
same trait in another population?

Understanding of shared genetic foundation for traits 
across diverse populations has profound implications 
from both statistical and practical perspectives. First, it 
helps improve power for trans-ethnic analysis by inte-
grating multiple studies from various ethnicities [11, 
32–35], increase accuracy of trans-ethnic genetic risk 
prediction in racial and ethnic minorities [28, 36], and 
enhance resolution in fine-mapping causal genes in 
various populations [37, 38]. Second, it offers additional 
insight into biological mechanism underlying complex 
diseases and helps measure the extent of interaction 
between genetic and environmental influences on disease 
risk [14]. Third, it holds the key to examine the transfer-
ability of associations discovered from current medical 
genomics researches which focus primarily on European 
(EUR) descent to other populations; that is, it is greatly 
of interest to examine whether the identified associa-
tions also hold in other populations and even discover 
more trait-related loci with higher power by leveraging 
genetic similarity across populations [39–41]. Fourth, 
biologically, replicating trait-associated genes across vari-
ous ancestral groups is crucial for identifying truly causal 
genes as genetic loci that are simultaneously related to 
the trait in various populations much more likely contain 
important causal variants.

To assess the common genetic component underly-
ing traits across distinct populations, novel trans-ethnic 
genetic correlation has been proposed using only sum-
mary statistics data [26, 28, 42]. Conceptually, trans-
ethnic genetic correlation quantifies the extent to which 
a set of SNPs exert the same or similar effects on phe-
notypic variation in various ancestral groups. Although 
such correlation provides an overall insight into genetic 
foundation of the trait shared between populations, 
it cannot characterize detailed association pattern for 
individual genetic loci or genes. Moreover, a near-zero 
estimate of trans-ethnic genetic correlation does not nec-
essarily indicate the absence of genetic overlap because 
mixed trans-ethnic genetic correlations in both positive 
and negative directions might dilute the overall estimate. 
The standard GWAS conventionally considers only sig-
nificant genetic loci to examine whether they could be 
consistently discovered across ethnicities [19], which 
however ignores many significantly insignificant ones but 
with weak effects and thus might lead to biased conclu-
sions. In addition, trans-ethnic meta-analysis is widely 
used [11, 32–35], whereas the determined associations 
might be present only in a single population. To our 
knowledge, only few statistical methods have been cur-
rently developed to identify trans-ethnic trait-associated 
genes shared across the entire genome.

To fill this knowledge gap, in the present study we 
propose a novel gene-centric genetic overlap detec-
tion method called CONTO. Unlike previous studies 
which analyzed individual SNPs [19, 28, 43], we instead 
focus on a set of SNPs located within a gene simultane-
ously and assess their joint significance with the trait of 
interest. From a statistical perspective, we observe that 
the identification of population-common genes across 
the whole genome can be effectively handled under the 
high-dimensional framework of composite null hypoth-
esis testing by borrowing the idea of joint significance 
test (JST). Methodologically, JST employs the maximum 
P value of multiple associations as the significance meas-
urement [44] and can be equivalently expressed as a com-
bination of three disjoint component null hypotheses 
[45]. However, JST is often overly conservative because it 
depends on the 0–1 uniform distribution as its null dis-
tribution, which fails to consider the nature of composite 
null hypothesis test [46].

We make two key improvements of CONTO rela-
tive to JST. First, it constructs three-component mixture 
null distribution by taking the nature of composite null 
hypothesis test into account [47]. Second, it generates 
decorrelated test statistics to explain the trans-ethnic 
genetic correlation, which ultimately leads to well-cali-
brated P value for significance evaluation. Consequently, 
CONTO corrects the conservativeness of JST and is 
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expected to more powerful than JST, which is validated 
through a wide range of simulation scenarios. We finally 
applied CONTO to detect population-common genes for 
31 complex traits between the East Asian (EAS) and EUR 
populations. We identified many shared trait-associated 
genes that had otherwise been missed by JST. We also 
revealed that population-common genes were generally 
more evolutionarily conserved than population-specific 
ones.

Methods
Gene‑set association method
Let the marginal Z score and P value of a gene for the 
analyzed trait in the EAS and EUR populations to be 

Z1 and Z2, and P1 and P2, respectively. These gene-level 
summary statistics can be easily to obtain with SNP-level 
association results publicly released by GWASs [48–51]. 
Therefore, we first aggregate multiple association sig-
nals at the SNP level into a single association signal at 
the gene level [52]. To this aim, we employ a powerful 
gene-set based association method called MAGMA [53], 
which is efficiently conducted via user-friendly software. 
Afterwards, the P value for each gene is obtained in both 
populations, which is immediately converted into Z 
score. The direction of Z score is determined by the sign 
of the summation of the product of effect sizes and MAFs 
across all SNPs of that gene [54, 55]. These gene-level 
summary statistics would be taken as inputs to measure 
the evidence of gene association with the trait in the two 
populations.

Trans‑ethnic genetic overlap test under the composite null 
hypothesis framework
Our primary objective is to examine whether a particular 
trait-associated gene identified in one population is also 

significant in another population throughout the entire 
genome. The trans-ethnic genetic overlap can be defined 
in terms of distinct types of summary statistics. For 
example, the alternative hypothesis implies that both |Z1| 
and |Z2| are larger than a pre-assigned threshold value or 
that both P1 and P2 are less than a given significance level 
[say α; in our analysis we sought to control false discov-
ery rate (FDR)]. This alternative hypothesis corresponds 
to three null hypotheses: (i) H00: the gene is not associ-
ated with the trait in either population; (ii) H10: the gene 
is associated with the trait in the first population but 
not the second; (iii) H01: the gene is associated with the 
trait in the second population but not the first. Formally, 
if defining the hypothesis test according to P values, we 
have

Under this framework we intend to identify shared 
trait-associated genes in both populations from the 
viewpoint of composite null hypothesis testing.

CONTO: composite null hypothesis test for trans‑ethnic 
genetic overlap
Like JST, we take Pmax = max (P1, P2) as our test statistic 
for the detection of trans-ethnic genetic overlap. How-
ever, in contrast to JST which uses the 0–1 uniform dis-
tribution as its null distribution, we directly build the 
null distribution of Pmax to correct the conservativeness 
of JST by borrowing the idea given in [47], which was 
proposed under the context of high-dimensional epige-
netic mediation analysis [45]. Specifically, we estimate 
the proportions of the three sub-null hypotheses and fit 
a mixture null distribution for Pmax

where p01 is the power of rejecting P2 ≤ α under H01 and 
p10 is the power of rejecting P1 ≤ α under H10, both of 
which are estimated via the Grenander method [56]; λ01, 

H0 =







H01 : P1 > α and P2 ≤ α

H10 : P1 ≤ α and P2 > α

H00 : P1 > α and P2 > α

vs. H1 = H11 : P1 ≤ α and P2 ≤ α

(1)

Pr(Pmax ≤ α|H0) = Pr(P1 ≤ α|H01)Pr(P2 ≤ α|H01)Pr(H01)

+ Pr(P1 ≤ α|H10)Pr(P2 ≤ α|H10)Pr(H10)

+ Pr(P1 ≤ α|H00)Pr(P2 ≤ α|H00)Pr(H00)

= �01p01α + �10p10α + �00α
2

p01 = Pr(P2 ≤ α|H01)

p10 = Pr(P1 ≤ α|H10)
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λ10, and λ00 are the proportions for the three sub-null null 
hypotheses, all of which are calculated with well-estab-
lished methods for estimating FDR [57, 58]; see more 
details in Additional file 1.

It needs to highlight that the proposed method above 
implicitly assumes that the two P values are uncor-
related with each other. Although this condition is 
guaranteed by the sequential negligibility assumption 
in the mediation analysis [45, 59, 60], such independ-
ence does not necessarily hold in trans-ethnic genetic 
overlap test because of pervasive cross-population 
genetic correlation [26, 28, 42], which could cause 
inflated false discoveries than expected if not properly 
handled. Therefore, when implementing our method, 
we first decorrelate test statistics for each gene across 
populations by multiplying Z scores by the inverse of 
a correlation matrix. The cross-population correlation 
coefficient is calculated with Z scores of null genes (e.g., 
those with P1 > 0.05 and P2 > 0.05) [61, 62]. The uncor-
related Z scores can be in turn transformed into two-
sided P values based on the normal approximation. 
Theoretically, this decorrelation strategy maximizes the 
transformed test statistics and the original ones [63]; 
therefore, it has the minimal influence on identifying 
shared associations. We refer to the above method as 
CONTO. The code for implementing CONTO is freely 
available at https://​github.​com/​biost​atpze​ng/​CONTO.

Simulation studies and real data applications
Simulation settings
We here implemented simulation studies to evaluate the 
performance of CONTO. Because it is conducted with 
only summary-level data, we thus directly sampled two 
sets of Z scores from a given multivariate normal (MVN) 
distribution under various scenarios. Specifically, for 
a gene in the first population, we generated its Z scores 
randomly from MVN((0, 0), Λ) under H00 with a prob-
ability λ00, or from MVN((τ10, 0), Λ) under H10 with a 
probability λ10, or from MVN((τ01, 0), Λ) under H01 with 
a probability λ01, or from MVN((τ11, 0), Λ) under H11 with 
a probability λ11. For the same gene in the second popula-
tion, we drew its Z scores at random from MVN((0, 0), Λ) 
under H00 with a probability π00, or from MVN((0, 0), Λ) 
under H10 with a probability π10, or from MVN((0, τ01), 
Λ) under H01 with a probability λ01, or from MVN((0, 
τ11), Λ) under H11 with a probability λ11. The magnitude 
of τ10 (or τ01 and τ11) measures the strength of associa-
tion, with larger value indicating stronger association sig-
nal. For simplicity, we set τ10 = τ01 = τ11 = 2, 3 or 4, and 
the total number of genes to 10000, 15000, or 20000.

After obtaining Z scores, we transformed them into 
P values based on the normal approximation. In our 
simulation, we set Λ to be a two-dimensional identify 

matrix. We considered three various probability set-
tings with λ11 ≠ 0 to evaluate FDR control and power: 
(i) λ00 = 0.40, λ10 = 0.20, λ01 = 0.20, and λ11 = 0.20, con-
structing a highly polygenic but less overlapped genetic 
architecture, in which 40% genes were related to the trait 
in each population. and approximately 33.3% of associ-
ated genes were shared across populations; (ii) λ00 = 0.80, 
λ10 = 0.05, λ01 = 0.05, and λ11 = 0.10, building a less poly-
genic and moderately overlapped genetic architecture, in 
which 15% genes were related to the trait in each popu-
lation and approximately 50% of associated genes were 
shared across populations; (iii) λ00 = 0.90, λ10 = 0.01, 
λ01 = 0.01, and λ11 = 0.08, generating a sparse but highly 
overlapped genetic architecture, in which 9% genes were 
related to the trait in each population, but approximately 
80% of associated genes were shared by the trait across 
populations. Note that, to a great extent, these simula-
tion parameters were selected based on our results of real 
data applications (see below).

Besides CONTO, for comparison we also carried out 
three other composite null methods (Additional file  1), 
including JST [44], joint significance composite-null test 
(JT-comp) [64], and divide-aggregate composite-null test 
(DACT) [65]. We repeated 103 times for each simulation 
setting and displayed the average across these replicates 
for these methods.

Summary statistics of 31 complex diseases from the EAS 
and EUR populations
We applied these methods to 31 complex traits of EAS-
only or EUR-only individuals available from distinct 
GWAS consortia (Table 1 and Additional file 1: Table S1). 
These traits were analyzed in our previous work and 
more detailed descriptions regarding them can be found 
therein and in respective original paper [28, 62]. We 
downloaded summary statistics of these traits and per-
formed stringent quality control in both populations 
for each trait: (i) removed SNPs without rs label; (ii) 
filtered out non-biallelic SNPs and those with strand-
ambiguous alleles; (iii) deleted SNPs whose alleles did not 
match with those in the 1000 Genomes Project [66]; (iv) 
excluded duplicated SNPs and those with inconsistent 
alleles between EAS and EUR populations; (v) kept only 
common SNPs (MAF  > 1%) which were shared in the two 
populations; (vi) removed SNPs located within the major 
histocompatibility complex region because of its compli-
cated LD structure.

After quality control, we implemented MAGMA with 
genotypes of 504 EAS or 503 EUR individuals from the 
1000 Genomes Project as the reference panel. We defined 
the set of cis-SNPs for a specific gene in terms of the 
annotation file provided by VIGAS [67]. The P value and 
Z score for each gene of traits were thus available. To 

https://github.com/biostatpzeng/CONTO
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handle possible residual influence of population stratifi-
cation, family structures and cryptic relatedness [68–71], 
we further conducted genomic control for the gene-
based association results of MAGMA if an inflation in 
these gene-level test statistics was observed (indicated by 
the inflation factor  > 1.05). We took the resulting P values 
or Z scores as input to implement JST, JT-comp, DACT 
and CONTO for detecting trait-associated genes shared 
across the EAS and EUR populations.

Afterwards, for each trait we could classify these genes 
into three groups: (i) null genes which were not associ-
ated with the trait in either population; (ii) population-
specific genes that were related to the trait in the EAS 
or EUR population; (iii) population-common genes that 
were shared across the two populations. To understand 
the characteristics of these genes in distinct groups, we 
used several conservation scores to examine the extent 
to which a particular gene varied across populations, 

Table 1  Number of associated SNPs discovered by JST and CONTO for traits in the EAS and EUR populations

f10 and f01 are the number of identified genes that were only associated with the trait in the EAS or EUR population, respectively, and f11 is the number of shared 
associated genes in both populations

SCZ schizophrenia, RA rheumatoid arthritis, T2D type 2 diabetes, COA childhood-onset asthma, AOA adult-onset asthma, PCA prostate cancer, BMI body mass index, 
DBP diastolic blood pressure, SBP systolic blood pressure, PP pulse pressure, HDL high density lipoprotein cholesterol, LDL low density lipoprotein cholesterol, TC total 
cholesterol, TG triglyceride, HbA1c hemoglobin A1c, eGFR estimated glomerular filtration rate, ANM age at natural (non-surgical) menopause, PLT platelet count, RBC 
red blood cell count, MVC mean corpuscular volume, HCT hematocrit, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, BASO 
basophil count, LYMPH lymphocyte count, WBC white blood cell count

trait JST (f11) CONTO trait JST (f11) CONTO

f10 f01 f11 f10 f01 f11

SCZ 21 0 186 57 eGFR 71 22 205 312

RA 27 5 48 87 ANM 28 7 100 127

T2D 293 115 310 824 PLT 261 29 429 625

COA 19 14 112 111 RBC 195 8 568 438

AOA 22 19 57 53 MCV 351 30 388 782

PCA 27 1 44 85 HCT 40 3 315 281

BMI 95 1 1027 291 MCH 251 20 316 726

Height 698 228 455 1544 MCHC 136 23 125 224

DBP 33 0 802 130 HGB 34 7 303 182

SBP 84 4 643 252 MONO 40 4 250 151

PP 57 2 315 122 NEUT 44 0 158 135

HDL 113 52 0 305 EO 40 2 259 173

LDL 74 22 18 166 BASO 32 5 29 101

TC 101 64 22 204 LYMPH 29 1 163 78

TG 42 41 14 109 WBC 69 12 149 259

HbA1c 56 47 34 96

Fig. 1  Estimated false discovery rate under the simulation settings: A λ00 = 0.40, λ10 = 0.20, λ01 = 0.20, and λ11 = 0.2; B λ00 = 0.80, λ10 = 0.05, 
λ01 = 0.05, and λ11 = 0.10, and C λ00 = 0.90, λ10 = 0.01, λ01 = 0.01, and λ11 = 0.08. Here, the number of genes was set to 15000, and the false discovery 
rate was calculated as the proportion of non-overlapped associated genes among all identified ones
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which included phyloP score [72], phastCons score 
[73], and dN/dS ratio [74]. Specifically, higher phyloP or 
phastCons score indicates more conservativeness, while 
smaller dN/dS ratio represents higher conservative-
ness. We obtained these scores from [75], and compared 
the average scores across all genes of these traits in the 
three groups described above using the Friedman F test 
method.

Results
Estimated false discovery rate and statistical power
We first assessed whether these methods could correctly 
control FDR at a given level. Here, we primarily focused 
on the results obtained under the setting that the num-
ber of genes was set to 15000 (Fig. 1). First, it is shown 
that JS-com could lead to inflated control of FDR under 
the polygenic and less overlapped case regardless of the 
magnitude of association signals (Fig. 1A). JS-com could 
maintain an efficient FDR control if the genetic archi-
tecture was less polygenic or sparse, but moderately or 
highly overlapped, especially when the association evi-
dence was weak (e.g., τ10 = τ01 = τ11 = 2) (Fig.  1B–C). 
However, as the increase of association evidence the 
estimated FDR of JS-com became inflated, which was 
particularly evident when the trait had a less polygenic 
but highly overlapped genetic architecture (Fig.  1B–C). 
This finding was consistent with that observed in previ-
ous mediation analysis literature because the assumption 
of weak association signal was violated in JS-com as the 
increase in τ10, τ01 and τ11 [64, 65].

Second, DACT always resulted in overestimated 
FDR in our simulation scenarios; however, the inflation 
seemed to be less obvious as the genetic impact became 
strong if the genetic architecture of the trait was less 
polygenic or sparse but highly overlapped (Fig.  1B–C). 
Third, in contrast to DACT and JS-com, JST was overly 
conservative under all our simulation settings, which 
was in line with prior observations [44]. Fourth, CONTO 

effectively controlled FDR at the nominal level across our 
simulation cases; however, it was slightly conservative 
when the association evidence was relatively weak (e.g., 
τ10 = τ01 = τ11 = 2) under the genetic architecture which 
was highly polygenic but less overlapped (Fig. 1A), or less 
polygenic but moderately overlapped (Fig. 1B).

As shown above, because only JST and CONTO could 
maintain FDR at or below the given nominal level, we 
thus mainly considered these two methods in our fol-
lowing analyses. When assessing power, it was obviously 
observed that CONTO was consistently more power-
ful compared to JST across our simulation scenarios 
(Fig. 2). For instance, under the polygenic but less over-
lapped case, CONTO had a 26.6% higher power com-
pared to JST when the association evidence was strong 
(τ10 = τ01 = τ11 = 4) and the number of tested genes 
was 15000 (Fig. 2A). The advantage of CONTO over JST 
became more remarkable under other two simulation 
scenarios (Fig. 2B–C). Finally, it was found that the simi-
lar patterns of FDR control and power behaviors were 
consistently observed when the number of tested genes 
was 10000 or 20000 (Additional file 1: Figure S1–S4).

Associated genes discovered by MAGMA and CONTO
Based on the association results of MAGMA, we iden-
tified a set of trait-associated genes (FDR  < 0.01) shared 
across the EAS and EUR populations using JST and 
CONTO (Table  1). Consistent with the results shown 
in the simulation studies above, we found that CONTO 
had higher power and thus discovered approximately 
two-fold more associated genes compared to JST across 
all the traits, with the average number of shared associ-
ated genes increased from 109 detected by JST to 291 
discovered by CONTO. Moreover, for every trait all 
genes identified by JST were also simultaneously detected 
by CONTO. With regards to CONTO, the number of 
detected genes related to the trait in both populations 
ranged from 53 for AOA to 1,544 for Height.

Fig. 2  Estimated statistical power under the simulation settings: A λ00 = 0.40, λ10 = 0.20, λ01 = 0.20, and λ11 = 0.2; B λ00 = 0.80, λ10 = 0.05, λ01 = 0.05, 
and λ11 = 0.10, and C λ00 = 0.90, λ10 = 0.01, λ01 = 0.01, and λ11 = 0.08. Here, the number of genes was set to 15000, and the power was calculated as 
the proportion of truly overlapped associated genes among all identified ones
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As expected, the number of common traits-associated 
genes was highly correlated with the trans-ethnic genetic 
overlap (Spearman correlation = 0.593, P = 8.75 × 10−4) 
(Fig.  3A). Conceptually, greater trans-ethnic genetic 
correlation implies higher degree of common genetic 
foundation underlying the trait between two diverse 
populations [26, 28, 42]. For example, the trans-ethnic 
genetic correlation was 0.93 (se = 0.04) (calculated with 
the popcorn method [26]) and the number of population-
common associated genes was 824 for T2D; while the 
trans-ethnic genetic correlation was 0.53 (se = 0.11) and 
the number of population-common associated genes was 
53 for adult-onset asthma.

Besides population-common genes, we could also 
identify many population-specific genes (FDR  < 0.01) 
(Table  1). It is evident that more population-specific 
genes were detected for traits in the EUR population 
because of higher power resulting from larger sample size 
(Fig.  3B–C). Consequently, the majority (an average of 

92.4% across all traits) of trait-associated genes identified 
in the EAS population were also discovered in the EUR 
population, while only 56.1% of trait-associated genes 
identified in the EUR population were detected in the 
EAS population.

Conservation of associated genes
In terms of conservation score analysis, we observed that 
these population-common genes were often more evolu-
tionarily conserved compared to unique associated genes 
identified in a single population, which were also more 
evolutionarily conserved than null genes. The increased 
conservation pattern in population-common genes was 
reflected by each of the three conservation scores includ-
ing dN/dS ratio (Fig.  4A), phyloP score (Fig.  4B), and 
phastCons score (Fig. 4C). More specifically, the average 
phyloP scores were 0.209, 0.188, and 0.153 for common 
trait-associated genes, population-specific trait-associ-
ated genes, and null genes (P = 1.14 × 10−11), respectively; 

Fig. 3  A Relationship between the number of population-common genes identified by CONTO and the trans-ethnic genetic correlation calculated 
with the popcorn method; B Relationship between the number of associated genes identified by MAGMA and the sample size of each trait in the 
EAS population; and C Relationship between the number of associated genes identified by MAGMA and the sample size of each trait in the EUR 
population

Fig. 4  Average dN/dS ratio score A, phyloP score B, and phastCons score C across genes for all traits in distinct gene groups
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the corresponding average phastCons scores were 0.132, 
0.127, and 0.116 (P = 9.36 × 10−14), and the correspond-
ing average dN/dS ratio were 0.091, 0.096, and 0.097 
(P = 6.86 × 10−10).

Discussion
As large-scale medical genomics studies have become 
increasingly diverse, understanding similarity and diver-
sity of associated genes for complex diseases/traits and 
consequently the transferability of genetic discoveries 
across various populations is essential [76]. In the pre-
sent study, we proposed a novel gene-centric method 
called CONTO to identify common associated genes 
shared across distinct populations by leveraging GWAS 
summary statistics. As a result, we detected many popu-
lation-common association signals for complex diseases 
and traits. From a biological perspective, the existence of 
population-common genes is to some extent widespread 
because shared genetic loci are often believed to be of 
ancient origin and thus shared among diverse ancestral 
groups [77].

We also discovered a great deal of population-specific 
associated genes, indicating that genetic association dis-
coveries identified in one population were not always 
generalized to other ancestral groups although there 
indeed shows substantial trans-ethnic genetic over-
lap underlying diseases/traits between distinct popula-
tions. These population-specific discoveries also imply 
the urgent requirement of including sufficient individu-
als from underrepresented populations in trans-ethnic 
GWASs so that more ethnic groups can benefit from 
current medical genomics researches [18, 40, 78]. The 
genetic diversity can be explained by the difference in 
clinical definitions and phenotype measurements, gene-
gene and gene-environment interaction [79, 80]. As 
another interpretation, the genetic inconsistency across 
various populations might result from various sample 
sizes and therefore different statistical power of stud-
ies. Furthermore, we revealed that population-common 
genes were in general more evolutionarily conserved 
compared to these population-specific or null ones.

Our work distinguishes itself from previous studies 
in three aspects. First, unlike prior studies which often 
focused only on a single trait [22, 81, 82], we considered 
a lot of diseases/traits, which could offer more unbiased 
insights into the extent of trans-ethnic genetic founda-
tion shared across different populations. Second, in con-
trast to prior studies which performed single-marker 
association analysis, we here implemented a gene-centric 
trans-ethnic genetic overlap identification which jointly 
analyzed the association of a set of SNPs with the trait. 

Gene-set analysis is a popular complementary strategy in 
association studies and often much powerful as it aggre-
gates multiple weak, sparse association signals at the SNP 
level into a strong association signal at the gene level 
and effectively reduces the burden of multiple tests [53]. 
In addition, correlation among SNPs in a gene was also 
considered in our gene-set association analysis; conse-
quently, the trans-ethnic difference of LD structures was 
naturally explained by CONTO. Third, methodologically, 
we considered the trans-ethnic genetic overlap identifi-
cation from a perspective of composite null hypothesis 
testing, which effectively takes the nature of trans-ethnic 
genetic overlap test into account and is thus much pow-
erful compared to competitive methods.

There are two directions that need to further explore 
for CONTO in the future. First, when implement-
ing CONTO, it requires us to first generate gene-level 
P values using gene-set association analysis methods. 
Certainly, the used gene-set based method would play 
a critical role in CONTO. Intuitively, the performance 
of a gene-set association analysis method is determined 
by how well its modeling assumption matches the true 
genetic architecture of a group of SNPs [83, 84], which 
however is generally unknown a priori and varies from 
one gene to another. Consequently, it is difficult to 
choose a consistently optimal gene-set based method 
for all genes across the whole genome [52, 85, 86]. In 
the present study, we applied MAGMA to simultane-
ously examine the association evidence of multiple SNPs, 
which was in nature a variance-component based score 
test for multilocus genetic association studies built based 
on random-effects models [53, 87]. Although MAGMA 
might be not the optimal method for every gene, it exhib-
ited excellent performance in statistical power compared 
to many existing gene-set based methods and was widely 
used in gene-centric integrative analysis in post-GWAS 
era [52–55].

Nevertheless, the use of robust and powerful gene-
set based methods in CONTO is of importance. Prior 
studies have demonstrated that aggregating association 
evidence available from diverse sources is an effective 
strategy for boosting power; such as integrating mul-
tiple gene expression prediction models in transcrip-
tome-wide association studies using the harmonic mean 
P-value combining method [88], and combining a group 
of methods into a single powerful omnibus test using the 
minimum P-value method [86] or the aggregated Cauchy 
combination method [89, 90]. Therefore, leveraging these 
similar aggregation strategies to CONTO is an interest-
ing direction that warrants further explorations.

Second, to a great degree, CONTO should be viewed 
as a qualitative trans-ethnic genetic overlap identification 
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method because it can only offer the determination 
whether a particular gene is associated with the trait in 
both populations, but is difficult to give accurate evi-
dence regarding the consistence of trans-ethnic genetic 
effects across populations. Understanding the effect dif-
ference could provide more in-depth insight into the 
diversity and similarity of genetic architecture underlying 
the same trait across distinct ancestral groups. To exam-
ine the genetic influence of a gene on complex traits in 
GWAS, prior studies attempted to employ the polygenic 
risk score calculated based on SNP effect sizes and gen-
otypes of individuals available from external reference 
panels [2, 30, 54, 55]. Thus, such score may be also useful 
for the evaluation of trans-ethnic genetic effect of a gene 
in CONTO.

Conclusion
In summary, CONTO stands for a powerful method for 
detecting trans-ethnic genetic overlap across diverse 
ancestral groups; our results provide important implica-
tions on the transferability of GWAS discoveries in one 
population to others.
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