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Abstract 

Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases 
in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular 
diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death world-
wide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered 
a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in 
lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of 
A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and 
controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN manage-
ment/regulation, which could be beneficial in identifying the drug target for the management of HTN.
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Introduction
Akkermansia spp., belong to the Verrucomicrobia fam-
ily, with only two species identified so far, namely Akker-
mansia muciniphila (A. muciniphila) and Akkermansia 
glycaniphila [1, 2]. Both species are considered intestinal 
mucin-degrading bacterium; the former was initially iso-
lated from the fecal samples of healthy Caucasian females 
in 2004, whereas the latter was isolated from fecal sam-
ples of reticulated python, Malayopython reticulatus in 
2016 [1, 2]. A. muciniphila is an oval-shaped, non-motile, 
and gram-negative anaerobic bacteria, that grows well 
with an optimum temperature of 37  °C and pH of 6.5 

[1], and it is present in wild animals, mice, hamsters, 
and humans [3]. Caputo et al. successfully sequenced A. 
muciniphila, directly from human stool samples using 
the whole-genome assembly method [4], and the abun-
dance level of A. muciniphila in the human feces sample 
is approximately 3–4%. In rare conditions, the abun-
dance level can increase up to 5% [5]. A. muciniphila is 
considered a potential probiotic due to its nature that 
can effectively use the gastrointestinal tract (GI) mucin 
[6] and possesses a unique survival mechanism, that is, 
the degradation of gastrointestinal mucin from the host 
causing the release of carbon and nitrogen sources for 
its survival [1, 7]. Also, its abundance level is modulated 
by dietary patterns and other changes in the mucin level 
[8]. In addition, it promotes the growth of other bacte-
ria through a cross-feeding mechanism, mainly releasing 
amino acids and sugars during the GI mucin degradation 
process [8]. Its role has been studied in major diseases, 
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such as diabetes mellitus, obesity, cardiovascular dis-
eases, immune disorders, pregnancy complications, can-
cer, tumor, brain disorders, liver diseases, and kidney 
diseases. Its abundance level is very critical for normal 
physiological functions and any abnormality in its level 
is closely associated with the pathophysiology of these 
diseases [9–13]. Moreover, the drugs that we use to treat 
these diseases also impact A. muciniphila’s abundance 
level, mainly metformin [14], gemcitabine [15], paclitaxel 
[16], anti-PDI therapy [17], and some phytochemicals, 
such as andrographolide [18], puerarin [19], Bofutsu-
shosan or Kampo [20] and resveratrol [21]. Additionally, 
A. muciniphila augments the drugs’ beneficial effects, 
mainly cisplatin—an anticancer drug- in lung cancer 
mice [21] and anti-PDI therapy through the production 
of CD4+T cells [17], metformin for glucose tolerance and 
glucose metabolism via secretion of glucose-regulating 
peptides and short-chain fatty acids (SCFAs) production 
in mice and humans [14, 22–24]. Thus, its interaction 
with the drugs is bidirectional. Interestingly, few recent 
studies from preclinical and clinical settings have shown 
that gut microbial dysbiosis can cause hypertension 
(HTN) [25, 26]. A Coronary Artery Risk Development 
in Young Adults (CARDIA) study conducted by Sun 
et  al. found that both systolic and diastolic blood pres-
sure (BP) is negatively correlated with the abundance of 
A. muciniphila [27]. Though it has been widely believed 
that A. muciniphila could play an unprecedented role in 
controlling the HTN, its role in the control of BP remains 
sparse. The current literature review suggests that there 
is no mechanistic evidence that unearths the direct role 
of A. muciniphila on the regulation of BP. Still, there is 
available indirect evidence that makes A. muciniphila a 
strong potential probiotic candidate for the control of 
BP. However, there are few contrary reports which high-
light the negative role of A. muciniphila in controlling 
BP, especially in conditions where a higher inflamma-
tory response is observed. Therefore, in this review, we 
aim to address and discuss the current knowledge on the 
potential roles of A. muciniphila in controlling/managing 
HTN.

Mechanisms of gut microbiota‑mediated HTN
So far, scientists worldwide have collected enormous 
data and made substantial progress in understanding 
the pathophysiology of HTN. Homeostasis of BP is regu-
lated by numerous factors, such as the sympathetic nerv-
ous system through the release of vasoactive peptides, 
mainly dopamine, serotonin, and norepinephrine [25, 
28, 29], renin–angiotensin–aldosterone (RAA) system 
[30], chronic kidney diseases (CKDs) [31], genetics [32], 
and various environmental and lifestyle factors [33, 34]. 
Recently the gut microbiota has been included in this 

long list, and it changed the paradigm of understanding 
the etiology of HTN [35, 36]. Scientists are now consid-
ering the microbiome as a central regulator of human 
health [37]. Gut microbiota dysbiosis is defined as the 
imbalance in the gut microbial composition that is linked 
to the disease state [38] can lead to HTN through the 
modulation of several factors, including short-chain fatty 
acids (SCFA)-mediated role in the RAAS system and 
immune system, sympathetic nervous system, trimeth-
ylamine-N-oxide (TMAO) pathway, nitric oxide path-
way, energy homeostasis pathway, chronic inflammation 
pathway, microbiota-derived hydrogen-sulfide pathway, 
bile-acids, and uremic toxin pathway [39, 40]. Thus, gut 
microbiota plays a crucial role through a variety of check-
points for the regulation of HTN. Humans contain tril-
lions of microbiota, and each microbe in a group or alone 
plays a specific role in human physiology, especially pro-
biotics such as genera Lactobacillus and Bifidobacterium 
[41]. Based on recent results from various animal and 
human studies, a new microbe—A. muciniphila has been 
included in the list of probiotics [6, 41, 42], which con-
trols many metabolites, especially SCFA, lipopolysaccha-
ride, TMAO, and hydrogen sulfide [43].

Role of A. muciniphila in SCFAs regulated HTN
The SCFAs are produced from the diet mainly via sac-
charolytic fermentation of undigested carbohydrates, 
by anaerobic gut bacteria [43], and highly glycosylated 
mucin-degrading microbes, including A. muciniphila 
[5]. Humans produce approximately 500–600  mmol 
of SCFAs every day. Still, it strictly depends upon the 
amount of diet, especially the macronutrient content, 
such as carbohydrates, fibers, protein, and fat, that we 
consume [44]. The primary role of A. muciniphila is to 
degrade the mucin in the intestinal epithelial cells and 
supply energy sources (carbon and nitrogen) to goblet 
cells to the secretion of mucin again. This cycle should be 
in homeostasis [43]. In the secreted mucin, SCFAs such 
as acetate, propionate, butyrate, formate, isobutyrate, 
valerate, and isovalerate are produced in different con-
centrations, with acetate, propionate, and butyrate being 
the most abundant [45]. A. muciniphila mainly secretes 
acetate and propionate, which strengthen the gut barrier 
integrity through the regulation of tight junction pro-
teins, such as occludin, claudins, and zona occludens [46]. 
Furthermore, the various clinical and preclinical studies 
using the 16s rRNA sequencing data have suggested that 
a decrease in the abundance of A. muciniphila could lead 
to the development of HTN [25, 28, 47]. Thus, all these 
results are based on association or correlation analysis. 
Still, to date, no direct studies (in-vivo, in-vitro, and clini-
cal) use A. muciniphila to control BP. One of the major 
mechanisms of A. muciniphila in controlling BP could 
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be the release of SCFAs from mucin [1, 7]. In the early 
days, SCFAs were thought to regulate BP through G-pro-
tein coupled receptors (GPR41 or FFAR3 and GPR43 
or FFAR2) in humans, and Olfr78 in mice. In addition 
to this, presently, SCFAs regulate BP through GPR109a 
(also called HCA2 or NIACR1 or PUMA-G or HM47a) 
and OR51E2 in humans. In humans and mice, all three 
dominant SCFAs—propionate, acetate, butyrate, and 
subdominant SCFA—lactate regulate BP through these 
receptors, with propionate being the strongest ligand 
[48–53] to influence BP in humans via OR51E2.

Additionally, β-ionone—a volatile compound present 
in fruits, vegetables, and plants and cleaved from beta-
carotene by an enzyme called carotenoid cleavage diox-
ygenase [54] influences BP in humans via OR51E2 [55, 
56], but not through Olfr78 in mice [57]. The SCFAs – 
acetate and propionate [58–60], bind with the GPR41/
GPR43 receptors, and promote the secretion of GLP-1/
GLP-2 in the enteroendocrine L-cells of ileum and large 
intestine [1, 61]. In different diabetic and non-diabetic 
animal models, activation of GLP-1R (both exogenous 
and endogenous) has been demonstrated to lower BP by 
reducing sympathetic activity in the carotid body [62, 63]. 
Also, propionate involves in the release of a fat hormone–
leptin, which alters the normotensive to hypertensive 
conditions. Zhao et al. have found that supplementation 
of A. muciniphila in chow diet-fed mice, reduced chronic 
low-grade inflammation by reducing plasma leptin and 
LPS [64], indicating that A. muciniphila might be playing 
more complex roles than what we knew so far. Besides, 
previous studies using GPR41−/− mice, have demon-
strated that the acetate and propionate-promoted release 
of leptin is mediated with the activation of the GPR43 
receptor only, not through the GPR41 receptor [65, 66]. 
These data suggest that A. muciniphila supplementation 
might have profound effects on BP regulation through 
the GPR41 receptor rather than the GPR43 receptor, but 
this hypothesis needs to be further studied.

Lipopolysaccharides synthesis
Gut barrier integrity plays an important role in pre-
venting the leaking of synthesized lipopolysaccharides 
(LPS) and inflammatory markers into circulation, 
thereby regulating BP [67]. LPS is a group of lipopol-
ysaccharide chemical complexes produced by the 
bacteria, especially from the outer membrane of the 
gram-negative bacteria, and it acts as a permeability 
barrier for the bacteria [68]. Also, LPS is a pathogen-
associated molecular pattern (PAMP) molecule known 
to stimulate the Toll-Like Receptors (TLRs)—a class of 
pattern recognition receptors that potentiate the innate 
immune response. In particular, the TLR4 induces 
myddosome, which consists of adaptor proteins, such 

as MyD88, TIRAP, and serine-threonine kinases from 
the IRAK family, which receive the signals from TLR4, 
leading to the activation of inflammatory gene expres-
sion through NF-kB and AP-1 activation [69–71]. Dis-
ruption in the gut barrier integrity is closely associated 
with HTN due to increased intestinal inflammation 
and permeability [67, 72]. Kim et al. have demonstrated 
that hypertensive subjects had increased plasma LPS, 
intestinal fatty acid-binding protein (I-FABP), proin-
flammatory Th17 cells, and zonulin levels [72]. Sup-
plementation of A. muciniphila improves the gut 
epithelial barrier integrity possibly through the reduc-
tion of circulatory LPS, inflammatory markers such as 
TNF-α, IL-6, CD36, SR-A1), IL-2, IFN-γ, IL-12p40, and 
MCP-1, and potentiating the expression of tight junc-
tion proteins (occludin, zonal occludens, and claudin-3, 
claudin-5) [73–76]. In addition, Chelakkot et  al. have 
shown that Akkermansia-derived extracellular vesi-
cles–Amuc_1100 reduce circulatory LPS levels [76] and 
activation of the TLR2 pathway [77], thereby promot-
ing an anti-inflammatory effect. On the contrary, few 
studies have reported a higher level of A. muciniphila 
during disease progression [78, 79]. In our previous two 
studies, we found that a higher abundance of A. mucin-
iphila was linked with the activation of LPS in CKD 
mice than in the control mice [80], and insufficient 
glycemic control in pediatric subjects with T1DM is 
linked to the higher level of A. muciniphila [81]. Thus, 
the level of A. muciniphila is critical for the patho-
physiology of certain diseases where there is activa-
tion of an inflammatory-mediated pathway. Increased 
abundance of A. muciniphila degrades more mucus 
in the gut which damages the mucosal barrier, lead-
ing to the leak of inflammatory markers, LPS, and the 
activation of an inflammatory response [82]. Ganesh 
et al. have reported that A. muciniphila could differen-
tially affect the gut ecosystem in relevance to the level 
of inflammation. In brief, they showed the presence of 
A. muciniphila in Salmonella enterica Typhimurium-
infected gnotobiotic mice exacerbates the gut inflam-
matory response by increasing the mRNA levels of 
IFN-γ, IP-10, TNF-α, IL-2, IL-17, and IL-6 in the cecal 
and colonic tissue compared to the gnotobiotic controls 
mice [83], which explains A. muciniphila’s ability to dis-
turb the host mucus homeostasis through the excessive 
mucin degradation process and eventually disturbs the 
gut ecosystem. Li et al. have demonstrated that the sup-
plementation of A. muciniphila prevents the severity of 
atherosclerotic lesions by reducing metabolic endotox-
emia [10]. To support this hypothesis, a recent study by 
Dan et al. on the Chinese population has demonstrated 
that the abundance of A. muciniphila is greatly elevated 
in hypertensive subjects [84]. Also, Cekanaviciute et al. 
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have reported that A. muciniphila promotes Th1 lym-
phocyte differentiation [85]. Further, a study on the 
Brazilian population conducted by Silveira-Nunes et al. 
found a higher abundance of Akkermansia along with 
the increased TNF-α/IFN-γ ratio in the hypertensive 
subjects [86], suggesting the differential role of Akker-
mansia in mediating HTN.

So, activation of the LPS pathway might be detrimen-
tal in inciting hypertension through various mecha-
nisms, such as endothelial dysfunction through the 
release of inducible nitric oxide, activating TLR4, and 
vasculature inflammation through the release of NADPH 
oxidase-dependent free radicals [87–89]. On the other 
hand, Akkermansia supplementation reduced low-grade 
inflammation by suppressing circulatory LPS in HFD-
diet mice [64].

Trimethylamine‑N‑oxide
Several studies demonstrated that trimethylamine-N-
oxide (TMAO) is a pathogenic metabolite formed by the 
gut microbiota and act as an independent risk factor for 
cardiovascular diseases, including HTN [90–93]. TMAO 
is formed by the oxidation of the intermediate metabolite 
TMA from the dietary L-carnitine, phosphatidylcholine, 
lecithin, and γ-butyrobetaine (γ-BB) via flavin monooxy-
genase 3 (FMO3) enzyme from gut microbes [94]. TMAO 
is involved in the development of hypertension through 
the elevation of vascular oxidative stress and endothelial 
dysfunction [95]. Xu et al. reported that the supplemen-
tation of A. muciniphila reverses the high expression of 
FMO3 in obesity conditions [76]. Also, recently Zhou 
et al. studied the relationship between circulating plasma 
TMAO levels and HTN. They found that TMAO levels 
are higher in patients with HTN than those without HTN 
[96]. Hsu et al. reported that a higher TMA level is asso-
ciated with high BP load and abnormal 24-h ambulatory 
BP monitoring profile, along with the reduced abundance 
of genus Akkermansia [92]. Plovier et  al. demonstrated 
that the supplementation of A. muciniphila significantly 
decreased plasma levels of TMAO and TMA and a two-
fold reduction of FMO3 expression in mice [97]. Luo 
et  al. demonstrated that cold exposure modulated the 
A. muciniphila abundance level in rats, thereby causing 
excessive secretion of TMAO which elevated the suscep-
tibility to atrial fibrillation (AF) condition mainly through 
the enhanced infiltration of M1 macrophages in atria and 
increased protein expression of Casp1-p20 and cleaved 
GSDMD. The oral supplementation of A. muciniphila 
in rats significantly ameliorated the pro-AF property 
induced by cold exposure [98]. These results indicate a 
positive correlation between a higher level of TMAO or 

TMA with the HTN and a negative association with the 
abundance of the genus Akkermansia.

Hydrogen sulfide
Another potential mechanism by which the A. mucin-
iphila regulates BP could be the release of endogenous 
hydrogen sulfide (H2S), as it is involved in the sulfate 
reduction process [99]. Rosario et al. have demonstrated 
that A. muciniphila produced H2S together with Escheri-
chia spp., which has been considered a potential regulator 
of vascular homeostasis, possibly through the regulation 
of vascular tone and inflammation, antioxidant mecha-
nism, vascular cell proliferation, and apoptosis [100, 101]. 
Several studies have pointed out that the H2S levels are 
inversely associated with hypertensive disease severity 
[102–104]. Supplementation of H2S reduces BP in experi-
mental animal models [105, 106]. On the contrary, H2S 
has been implied in activating proinflammatory response 
[107, 108], and its higher level could cause inflammation 
in the gut [99]. Interestingly, A. muciniphila has been 
proposed to use the H2S for the production of cysteine 
[43], and cysteine is well-known for its anti-hypertensive 
effect [109], thereby it could control BP regulation. In 
addition, when there is an activation of the inflammatory 
response, the relation between A. muciniphila and H2S 
might turn on pathologic response rather than the pro-
tective response, because both entities have been found 
to have a differential role. There is a possibility that a 
high level of A. muciniphila can produce a high amount 
of H2S, which might elevate the BP due to the activation 
of an inflammatory response [99]. This is a mere hypoth-
esis and must be proved experimentally, but the evidence 
strongly encourages this concept. Recently, pangenomic 
analysis of A. muciniphila revealed that the phylotype 
AmI contains genes required for the assimilatory sulfate 
reduction (ASR) process and thereby possibly increasing 
H2S level.

Role of A. muciniphila on risk factors that cause HTN
Chronic kidney disease (CKD)
CKD is closely associated with the pathogenesis of HTN, 
and the basic mechanisms behind the development of 
CKD-associated HTN are salt retention, endothelial dys-
function, sympathetic overactivity, volume overload, and 
abnormal hormonal level [110]. A classic manifestation 
of CKD is chronic inflammation, which causes a leaky 
gut, results in translocation of endotoxin, bacterial frag-
ments, and uremic toxins in the circulation, and eventu-
ally leads to the accumulation of gut microbiota-derived 
uremic toxins in the circulation [111]. Gut microbiota-
derived uremic toxins are mainly indoles (indole-3-acetic 
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acid, indoxyl glucuronide, indoxyl sulfate (IS), kynure-
nine, kynurenic acid, melatonin, and quinolinic acid), 
phenols (hydroquinone, p-cresyl glucuronide, p-cresyl 
sulfate (PCS), phenol, and phenylacetic acid) [112]. 
The general effects of these uremic toxins are vascu-
lar dysfunction, such as increased vasoconstriction and 
decreased vasorelaxation, decrease in NO production, 
induction of oxidative stress, promotion of vascular cell 
apoptosis, and vascular remodeling [113]. Also, IS and 
PCS have been reported to promote vascular calcification 
[114]. Collectively all these detrimental effects are signifi-
cantly associated with the pathogenesis of HTN. The role 
of A. muciniphila in gut-microbiota-derived toxins medi-
ated vascular dysfunction leading to the HTN is contro-
versial because of its differential role and abundance level 
in renal HTN. Li et al. have reported A. muciniphila level 
is reduced in association with elevated proinflammatory 
cytokines, such as IL-6, IL-8, and IFN-γ, and decreased 
anti-inflammatory cytokines, such as IL-4 and IL-10 in 
the CKD subjects in comparison with the HC subjects 
[79]. But, several studies have shown that significant 
elevation in the abundance of A. muciniphila level was 
observed in CKD animal models and human subjects [12, 
80, 115, 116] along with the increase of IS and PCS [80]. 
So, the precise role of A. muciniphila in the context of 
renal HTN caused by CKD is still unclear, but it seems 
that A. muciniphila might augment the development of 
renal HTN rather than prevent it because A. muciniphila 
promotes inflammation, and in renal HTN a higher level 
of the inflammatory response has been reported [117] 
which might potentiate the level of A. muciniphila.

Renin‑angiotensin system
The role and the activation of the renin-angiotensin 
(RAS) pathway in HTN has been extensively studied 
[118] and there is a possibility that a greater connec-
tion between A. muciniphila and the RAS pathway will 
be unveiled by the following studies: Buford et  al. have 
reported that oral administration of the probiotic Lac-
tobacillus paracasei increased the expression of the 
Angiotensin (1-7), an Angiotensin-I vasopeptide, and 
significantly enriched the abundance of A. muciniphila 
[119]. Roshanravan et  al. also have concluded that the 
protective effects of sodium butyrate and inulin sup-
plementation on type 2 diabetes mellitus can act via the 
enrichment of A. muciniphila on the angiotensin signal-
ing pathway [120]. Duan et al. pointed out that the level 
of A. muciniphila was less in the ACE2−/y mice than in 
the ACE−/y-Akita mice and it showed a reduced number 
of myeloid angiogenic cells (MACs) without a significant 
increase in inflammatory monocytes. Furthermore, the 
administration (exogenous) of MACs restored gut barrier 
integrity and altered the gut microbiota [121]. Recently, 

a study conducted by Suzuki et al. showed that the alti-
tude variation approximately ranging from 33 to 4000 m 
from the sea level, greatly affects the composition of gut 
microbiota in wild-type mice [122]. They found that the 
relative abundance of genus A. muciniphila was the most 
negatively correlated with the increasing altitude [122].

Furthermore, their predicted functional metagenome 
analysis indicated that the KEGG pathway—RAS was 
positively correlated with the increasing altitude, suggest-
ing a strong association between A. muciniphila and the 
RAS pathway [122]. In addition, Robles-Vera et al. dem-
onstrated that 5 weeks of treatment of renin-angiotensin-
II blocker—losartan on spontaneously hypertensive rats 
(SHR) significantly reduced the gut dysbiosis and sympa-
thetic drive in the gut, which possibly can contribute to 
the reduction of BP by modulating the immune system 
in the gut [123]. Also, they reported that losartan treat-
ment significantly restored the abundance level of genus 
Akkermansia along with the other genera, such as Pedo-
bacter and Lactobacillus in SHR [123]. Thus, these stud-
ies have pointed out the potential link between RAS and 
A. muciniphila, and establishing these two entities war-
rants further mechanistic studies.

Endothelial dysfunction/endothelial‑derived nitric oxide 
pathway
Endothelial dysfunction is a type of non-obstructive 
chronic artery disease (CAD) in which blood vessel con-
stricts instead to relax, leading to chronic chest pain 
[124]. The molecular mechanism for the occurrence 
of endothelial dysfunction is an imbalance between 
endothelial-derived relaxing factors (endothelin-1, angi-
otensin-II, thromboxane A2, and reactive oxygen spe-
cies), and endothelium-derived hyperpolarizing factors 
(NO and prostacyclin) [125, 126]. Among them, endothe-
lium-derived NO is considered as a potent vasodila-
tor, and its implication in the regulation of BP through 
various mechanisms, such as inhibition of vasoconstric-
tion, platelet aggregation, angiogenesis, oxidative stress, 
inflammation, and atherogenesis, and its reduced level 
would have opposite effects on vascular smooth muscle 
cells are well-established [127, 128]. Gut microbiota is 
closely linked to vascular dysfunction regulation [129]. 
Wang et  al. reported that berberine improves vascular 
dysfunction via the modulation of gut microbiota pos-
sibly through the inhibition of TMAO production in 
angiotensin II-induced hypertensive mice [130]. Oral 
supplementation of A. muciniphila in Apolipoprotein E 
knockout mice (ApoE−/−) model to study the endothe-
lial dysfunction along with atherogenesis, has shown 
the reduction in the metabolic endotoxemia-induced 
inflammatory chemokines, such as ICAM-1, MCP-1, 
and TNF-α on the endothelium [10]. Also, inulin-type 
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fructans supplementation improved the endothelial dys-
function in ApoE−/− through the eNOS-NO pathway, 
along with the increment in the abundance of A. mucin-
iphila [131]. Lee et  al. have found a significant correla-
tion between vascular dysfunction and the abundance 
of A. muciniphila levels, and dapagliflozin, an anti-
diabetic drug, improves the vascular dysfunction along 
with the increase of A. muciniphila level in the T2DM 
[132]. Haywood et  al. have demonstrated that endothe-
lial dysfunction is reversed with the overexpression of 
endothelial cell insulin-like growth factor 1 receptor 
(ECIGF-1R), along with the increase of A. muciniphila 
abundance in obesity conditions [133]. Thus, it is evident 
that A. muciniphila has a role in endothelial function 
through NO release and inhibition of proinflammatory 
chemokines, and the improvement in vascular/endothe-
lial dysfunction might restore elevated BP. Surprisingly, 
Neyrinck et  al. have reported that endothelial dysfunc-
tion was improved with the reduction of A. muciniphila 
abundance in ApoE−/− mice and suggested the reason 
for the negative role of A. muciniphila could be due to an 
individual’s health and microbiota pattern [134].

Epigenetic mechanisms
The epigenetic mechanisms are a set of post-translational 
modifications that can regulate the gene expression tran-
siently without affecting the DNA sequence and involve 
chemical modification of DNA. Still, the changes are 
reversible in influencing the phenotype [135]. It results 
from an interplay between DNA and environmental 
factors [136]. The most common epigenetic mediators 
are DNA methylation and histone modifications, and 
recently long-coding RNA has been identified as another 
epigenetic mediator [136]. Richard et al. have found that 
methylation at cg08035323 influenced BP, and BP influ-
enced methylation at different sites, such as cg00533891, 
cg00574958, and cg02711608 [137]. Also, DNA meth-
ylation and histone modifications (methylation and 
acetylation) with various drug treatments (valproic acid, 
decitabine, and 5-aza-2ʹ-deoxycytidine) have been asso-
ciated with BP reduction in animal models [138–141]. 
Cardinale et  al. have reported that histone deacetylase 
(HDAC) inhibition attenuates hypertension in Spontane-
ous Hypertensive Rats (SHR) [140], whereas A. mucin-
iphila was found to potentiate HDAC3 and HDAC5 in 
improving the host lipid metabolism condition [61]. Fur-
thermore, Jabs et  al. have identified that A. muciniphila 
greatly affects the N6-methyladenosine modifications in 
mRNA in mono-associated mice [142]. Thus, the clarity 
on epigenetic mechanisms by A. muciniphila requires 
further studies as we have minimal available data.

The DASH diet, Mediterranean diet, and weight‑loss 
intervention program on A. muciniphila to control BP
Diet is an essential modulator of gut microbiota [143–
145], and the specific dietary pattern called the dietary 
approach to stop hypertension (DASH) has been pro-
posed to control or lower BP [146]. The DASH diet pro-
motes a diet that is adjusted to be lower in sodium and 
rich in potassium, magnesium, and calcium nutrients 
[146], which causes a reduction in high BP [147]. Maifeld 
et al. demonstrated that fasting followed by the modified 
DASH diet reduced the BP in patients with metabolic 
syndrome (MetS) through an altered gut microbiome, 
especially increasing the abundance of A. muciniphila, 
which in turn, increases SCFAs either locally or systemi-
cally [148]. Also, beta-glucan supplementation for four 
weeks in patients with MetS had a higher outcome in 
patients with a higher baseline A. muciniphila abundance 
[149]. Another weight-loss intervention study in patients 
with MetS had improved BP by enhancing the abundance 
of A. muciniphila and F. parusnitzii [150]. American 
Heart Association (AHA) recommends the Mediterra-
nean diet (MD) as a healthy eating style; it improves both 
systolic and diastolic BP, and arterial stiffness [151–154]. 
Also, MD has been reported to increase the relative 
abundance of A. muciniphila in the stool samples from 
participants with different body weight compositions 
[155]. Thus, A. muciniphila could be a potential entity in 
lowering the BP in patients with MetS.

Interaction between anti‑hypertensive drugs and A. 
muciniphila
Most hypertensive drugs, such as ARB, ACE inhibi-
tors, beta-blockers (BBs), and calcium channel blockers 
(CCBs), are administered orally. After the administra-
tion by oral route, it is metabolized into pharmacologi-
cally active metabolites or toxic based on the molecule’s 
structure [156]. These active molecules can be further 
metabolized by the rich enzyme repositories of the gut 
microbiome [157, 158]. The interaction between the 
drug and gut microbiome is bidirectional. Thus, identify-
ing gut bacteria and their communities, which produce 
drug-metabolizing microbial proteins, can contribute to 
improving the drug’s effect and can be converted into 
new drugs and reduce the adverse effect. Understand-
ing the relationship between the gut microbiome and 
HTN drug bioavailability can help us better understand 
individual variation, which can be useful in precision 
and personalized medicine. Unfortunately, the litera-
ture review indicates the need to study these two enti-
ties (anti-hypertensive drugs vs A. muciniphila) as we 
have very little evidence. For example, Li et al. reported 
that amlodipine aspartate and amlodipine besylate, a 
CCBs, improved the NFALD condition in mice with 
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HTN through the enhancement of A. muciniphila, which 
potentiates the intestinal expression of antimicrobial 
peptide Reg3g [159]. As mentioned earlier, losartan treat-
ment significantly improved the hypertensive condition 
in SHR rats possibly through the restoration of gut dys-
biosis and modulation of immune response, along with 
the increased the abundance of A. muciniphila [123]. 
Furthermore, minocycline, an age-old antibiotic, is dem-
onstrated to lower BP, and administration of minocycline 
in an SHR animal model decreased BP with an increase 
of A. muciniphila abundance [28]. Also, A. muciniphila 
secreted proteins induces the uptake of Ca++ through 

Ryanodine Receptors (RYr), a family of Calcium channel, 
in an enteroendocrine cell line and increase the synthe-
sis of reactive oxygen species (ROS) [160]. Nonetheless, 
more research is needed to fully understand the possible 
bidirectional role of A. muciniphila and anti-hyperten-
sive drugs.

Can A. muciniphila be considered in the field 
of pharmacomicrobiomics?
Numerous studies have highlighted the presence of 
microbiota in the gut as they play various crucial roles 
in improving health, including lowering BP through 

Table 1  Current literature review about the role of A. muciniphila on small rodent HTN model

Study title Animal Comparison Akkermansia muciniphila 
abundance

References

High-salt (HS) diet-induced 
hypertension model

Sprague–Dawley rat Control vs HS groups No change Ding et al. [170]

Acute Intra-abdominal (aIAH) 
HTN model

Sprague–Dawley rat Control vs IAH groups No change Leng et al. [171, 172]

Spontaneous-hypertensive 
rat (SHR) models

SHR rat SHR vs WKY2 groups Decreased [173] and 
increased (not statistically 
significant), no change

Abboud et al. [173], Singh 
et al. [174], Li et al. [170], Wu 
et al. [175, 176]

High carbohydrate and fat 
diet-induced hypertension

Wistar rats diet-induced HTN vs control 
groups

Increased (not statistically 
significant)

Thomaz et al. [177]

High fat diet-induced cardio-
metabolic disorders

Wistar rats HFD diet vs control groups No change de Araujo Henriques Ferreira 
et al. [178]

High fat-diet underwent 
vertical sleeve gastrectomy 
(VSG) surgery

C57BL/6 J Sham vs VSG groups No change McGavigan et al. [179]

Altitude variation model Mus musculus domesticus Comparison at different 
altitude

Decreased in higher altitude Suzuki et al. [122]

Table 2  Current literature review about the role of A. muciniphila on human HTN

Study title Population Comparison Akkermansia muciniphila 
abundance

References

Predicted gut microbiomes from a 
multi-site blood pressure study

Australian Normotensive vs hypertensive 
groups

No change Nagai et al. [180]

Gut metagenomic signature in 
hypertension: a cross-sectional 
study

Española Normotensive vs hypertensive 
groups

No change Calderon-Perez et al. [181]

The human microbiome correlates 
with risk factors for cardiometa-
bolic disease across an epidemio-
logic transition

African-origin Normotensive vs hypertensive 
groups

Decreased in normotensive 
groups (but not statistically 
significant)

Fei et al. [182]

Fasting alters the gut microbiome 
with sustained blood pressure 
and body weight reduction in 
metabolic syndrome patients

Germans Fasting + DASH diet vs DASH diet Increased in Fasting + DASH 
groups

Maifeld et al. [148]

Hypertension microbial diversity Chinese Normotensive vs hypertensive 
groups

No change Human University of 
Chinese Medicine [183]

Washed microbiota transplanta-
tion lowers blood pressure in 
patients with hypertension

Chinese Normotensive vs hypertensive 
groups

No change Zhong et al. [184]
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complex mechanisms. Pharmacomicrobiomics describes 
the differential effect of the microbiome on the pharma-
cokinetic profile of the drugs [161] with a focus on the 
microbiota-drug interaction. Akkermansia could be one 
of the potential regulators in the field of pharmacomicro-
biomics as they potentiate drugs’ effects, such as PD-1/
PD-L1A blockers, metformin, rifaximin, resveratrol, 

vancomycin, and vitamin-D in variety of disease con-
ditions. A cross-sectional study using atorvastatin in 
hypercholesterolemic patients focused on understanding 
the impact of the gut microbiota revealed that untreated 
patients had an increase in inflammatory microbes, such 
as Collinsella, and Streptococcus, and treated patients had 
an increase in anti-inflammatory microbes such as A. 

Fig. 1  Schematic representation of the possible mechanism of action of A. muciniphila on the control of BP. The potential possible mechanisms 
of A. muciniphila to control the BP are (1) the degradation of mucin to secrete the SCFAs, especially acetate and propionate that reduces plasma 
leptin secretion and sympathetic activity through the secretion of GLP-1/GLP-2 in enteroendocrine L-cells via G-protein-coupled receptors; (2) 
maintenance of gut barrier integrity through the regulation of the tight junctions proteins (occludins, claudins, zona occludens), and activation 
of TLR2 pathway through the reduction of LPS synthesis and inflammatory markers; (3) utilization of H2S to produce cysteine which improves the 
BP; (4) direct action (possibly) on the renin-angiotensin-II pathway, and (5) reduction of oxidative stress induced by TMAO through the dietary 
L-carnitine metabolite
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muciniphila and F. parusnitzii [162]. A study among Bra-
zilian hypertensive participants revealed that Akkerman-
sia was highly abundant in addition to Lactobacillus and 
Eggerthella than in the normotensive group. Thus, we can 
speculate that A. muciniphila may play a role in HTN, 
by promoting the proinflammatory environment in the 
host. Considering all these available data, it suggests that 
A. muciniphila can be a potential candidate to be consid-
ered in the field of pharmacomicrobiomics.

Pangenome of A. muciniphila and its role 
in lowering BP
Pangenome is a set of entire genes in a collection of an 
organism’s genomes [71]. It consists of a core genome 
shared by about 99% of the strains and a dispensable 
genome. Cluster analysis of microbial species genomes 
can offer insight into multiple fields, including taxonomy, 
evolutionary dynamics, strain diversity, strain identifi-
cation, and reverse vaccinology [163, 164]. A compara-
tive study to explore the population structure, genomic 
and functional diversity of A. mucinphila by comparing 
39 genomes of its isolates showed that it contains 5644 
unique proteins, and 106 new A. muciniphila metagen-
ome-assembled genomes (MAGs) of human, pig, and 
mouse gut microbiomes. Focusing on the functional 
diversity analysis revealed that its pangenome consists 
of 198 CAZymes coding genes higher than other mem-
bers of gut microbiota [165]. Becken et  al. reported 
that human (obese) isolates of A. muciniphila have 
four distinct phylotypes (AmI to AmIV) and genotypic 
and phenotypic diversity [166]. These phylotypes of A. 
muciniphila have more affinity toward amino sugar and 
nucleotide sugar metabolism, fructose and mannose 
metabolism, and carbon metabolism pathways [166]. 
They reported that several phylogroup-specific pheno-
types impacted colonization of the GI tract and modu-
lated several host functions, such as oxygen tolerance, 
adherence to epithelial cells, and iron and sulfur metabo-
lism. They also found that phylotype AmI was the most 
prominent in these populations, and this phylotype AmI 
contains more genes required for ASR, interestingly it 
was absent in the phylotypes AmII and AmIV. Due to a 
higher number of ASR genes present in the phylotype 
AmI, more sulfate is converted into H2S in the canoni-
cal ASR pathway, which increases the synthesis of sul-
fur-containing anti-hypertensive amino acids, such as 
cysteine and methionine. Thus, it shows that the pange-
nome of A. muciniphila, especially the phylotype AmI 
could be a potential target in lowering BP.

Obstacles and future perspectives
Even though numerous studies have revealed the gut 
microbial composition and metabolic roles in various 
diseases, it is still unclear how this knowledge can be 
applied to clinical medicine. For a better understanding 
of the gut microbiota and its dynamic nature during the 
onset, progression, and response to the pharmacologi-
cal treatment, the application of longitudinal and inter-
ventional studies is essential to descriptive studies which 
only show dysbiosis. To improve drug efficacy, the 
microbiome can be considered a vital factor to use in 
non-responsive and variable-responsive patients. Subse-
quently, standardized strategies for reprogramming the 
gut microbiota should be implemented. Furthermore, 
other secondary metabolites produced by the gut micro-
biota from xenobiotics and dietary molecules should be 
taken into account, which will also interact with drugs 
[167]. Furthermore, currently available, a limited num-
ber of public data (16s rDNA sequencing) from studies 
that involved both humans and small rodents did not 
provide conclusive evidence as it shows a moderate but 
not a significant decrease in the abundance of A. mucin-
iphila in hypertensive conditions (Table 1 and 2), which 
highlight the need of more studies on A. muciniphila in 
hypertension. Also, the literature review indicates that 
there is enormous scope in elucidating the potential role 
of A. muciniphila on different pathways, such as the H2S 
pathway, RAS pathway, and epigenetic mechanisms. As 
currently, we have limited information on these potential 
regulatory pathways. Recently, Liu et al. reported that the 
isolation of miR-30d from feces of multiple sclerosis (MS) 
patients and its administration significantly improved 
the MS-like symptoms by expanding the abundance of 
A. muciniphila [168]. This fascinating finding opens up 
a new path in the field of microbiome research, and it 
has the potential to impact disease treatment in the near 
future enormously. Advanced multi-omics approaches, 
such as metabolomics, lipidomics, and genomics with 
microbiomics, as well as the integration of these data, can 
help to dissect the mechanisms through which the gut 
microbiota modulates the host-drug response [169].

Conclusions
According to current evidence from clinical and preclini-
cal studies, the gut microbiota plays an essential role in 
hypertension. A. muciniphila, in particular, is regarded 
as an important beneficial microbe because it regulates 
several molecular pathways, chemical entities, and die-
tary metabolites involved in BP regulation (Fig.  1). Our 
knowledge of these interactions and their effects on HTN 
is limited. Through well-controlled studies, research-
ers will better understand the molecular mechanisms by 
which the gut microbiota regulates HTN and the host 
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response to drugs, could result in improved clinical out-
comes and bring a step closer to precision medicine.
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