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Abstract 

Microparticles (MPs) are 100–1000 nm heterogeneous submicron membranous vesicles derived from various cell 
types that express surface proteins and antigenic profiles suggestive of their cellular origin. MPs contain a diverse 
array of bioactive chemicals and surface receptors, including lipids, nucleic acids, and proteins, which are essential for 
cell-to-cell communication. The tumour microenvironment (TME) is enriched with MPs that can directly affect tumour 
progression through their interactions with receptors. Liquid biopsy, a minimally invasive test, is a promising alterna-
tive to tissue biopsy for the early screening of lung cancer (LC). The diverse biomolecular information from MPs pro-
vides a number of potential biomarkers for LC risk assessment, early detection, diagnosis, prognosis, and surveillance. 
Remodelling the TME, which profoundly influences immunotherapy and clinical outcomes, is an emerging strategy to 
improve immunotherapy. Tumour-derived MPs can reverse drug resistance and are ideal candidates for the creation 
of innovative and effective cancer vaccines. This review described the biogenesis and components of MPs and further 
summarised their main isolation and quantification methods. More importantly, the review presented the clinical 
application of MPs as predictive biomarkers in cancer diagnosis and prognosis, their role as therapeutic drug carriers, 
particularly in anti-tumour drug resistance, and their utility as cancer vaccines. Finally, we discussed current challenges 
that could impede the clinical use of MPs and determined that further studies on the functional roles of MPs in LC are 
required.
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Background
Lung cancer (LC) has the highest morbidity and mor-
tality among all types of cancers and accounts for the 
majority of cancer-related deaths worldwide [1, 2]. The 
overall 5-year survival rate of LC patients is less than 15% 

[3]. Currently, carcinoembryonic antigen, fragments of 
cytokeratin 19, neuron-specific enolase, and pro-gastrin-
releasing peptides are the most common tumour markers 
used in the clinical diagnosis of LC. However, due to the 
limited sensitivity and specificity of these markers, most 
LC patients who are diagnosed at an advanced stage usu-
ally have a poor prognosis. In addition, despite signifi-
cant advances in LC research and anticancer therapies, 
including surgery, radiotherapy, chemotherapy, molecu-
lar targeted therapies, and immunosuppressive agents 
[4], the overall survival rate of LC remains low [3]. There-
fore, further studies on the molecular mechanisms, early 
detection, and targeted therapies of LC are vital.
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Extracellular vesicles (EVs) are composed of exosomes, 
microparticles (MPs), and apoptotic bodies (Table  1). 
These vesicles can be detected in the supernatants of cell 
cultures and in various biological fluids, such as blood, 
urine, sputum, breast milk, and synovial, bronchoalveo-
lar lavage, pleural effusion, and ascites fluids [5]. MPs, 
also called microvesicles, shedding vesicles, or ecto-
somes, are released into the extracellular space from the 
surface membranes of cells [6]. In the LC microenviron-
ment, MPs can be found in normal, tumour-infiltrating 
(e.g., activated platelets, monocytes, and lymphocytes), 
and cancer cells (Fig. 1). MPs are capable of transferring 
surface receptors from one cell to another and deliver-
ing proteins, mRNA, bioactive lipids, organelles (e.g., 
mitochondria), and even vaccines based on the delivery 
of tumour lysates into target cells [7–13]. MPs shed from 
various tumour cell lines or tumour cell-related lines 
have been thought to facilitate extracellular matrix inva-
sion and evasion of the immune response [14], whereas 
those secreted by normal endothelial cells might exhibit 
protective effects [15]. Endothelial-derived microparti-
cles (EMPs) enable cells to dispose of potentially harmful 
and redundant compounds, thereby promoting cellular 
survival [16–18]. Several recent studies have found that 
MPs may facilitate intercellular communication [19–22]. 
MPs have been proposed as indicators of progressive 
and aggressive LC. The basal values of circulating MPs 
can serve as an independent predictor of survival out-
comes in advanced non-small cell LC (NSCLC) patients. 
Due to their capacity to pack large amounts of biological 
information, tumour-derived MPs (TMPs) are ideal can-
didates for delivering therapeutic agents to tumour cells 
and may play a crucial role in the development of novel 

and effective tumour vaccines. Further, TMPs loaded 
with anti-tumour drugs could reverse drug resistance.

MPs induced by environmental cues (activation, injury, 
hypoxia, or apoptosis) are involved in cancer cell ini-
tiation, progression, and metastasis; extracellular matrix 
remodelling; multidrug resistance; and modulation of 
inflammation [23], thrombosis [24], endothelial dysfunc-
tion [25], tissue remodelling [26], angiogenesis [27], and 
immunological reactions [28]. The levels of circulating 
MPs are increasingly elevated in many types of cancers, 
including haematological malignancies [29, 30], breast 
cancer [31], ovarian cancer [32], and colorectal cancer 
[33]. Najjar et al. firstly found that increased circulating 
endothelial cells (CECs) and MPs during or after chemo-
therapy can act as predictive biomarkers of tumour pro-
gression in advanced NSCLC [34]. However, available 
data on the association between the levels of circulating 
MPs and LC are limited [35, 36]. In addition, most stud-
ies do not distinguish MPs from exosomes and exces-
sively focus on the role of exosomes rather than that of 
MPs. Thus, this review solely focused on the biogenesis, 
components, isolation, quantification, and potential clini-
cal implications of MPs in LC.

The biogenesis, components, isolation, 
and quantification of microparticles
Microparticles biogenesis
MPs were first described as “platelet-like activity” in 1955 
and later as “platelet dust” in 1967. Multiple studies have 
investigated the composition, origin, and roles of these 
particles, leading to the gradual replacing of the name 
"platelet dust" with "microparticles" [37–39]. Almost all 
cell types are capable of producing and shedding MPs 

Table 1  Identification of the subtypes of extracellular vesicles

EV subtypes Exosomes Microparticles

Alternative Extracellular vesicles Ectosomes or Microvesicles or Extracellular vesicles

Origin Endosomal membrane Plasma membrane

Form Inward budding Outward budding

Medium Multivesicular endosomes (MVE) None

Size 30–100 nm 100–1000 nm

Sedimentation 100,000×g 10,000×g

Detection Electron microscopy, NTA, TRPS, Bead-based flow cytometry, 
Fluorescence-triggered flow cytometry

Conventional scatter-triggered flow cytometry

Mechanisms of the biogenesis 1. ESCRT dependent mechanism [146, 147]
2. Synthesis of ceramide that induces vesicle curvature and bud-
ding [148]
3. Tetraspanin-mediated organization of specific proteins such as 
the amyloidogenic protein and the premelanosome protein [149, 
150]

1. Characterized by an increase in cytosolic calcium 
concentration [44]
2. Apoptosis-dependent microparticle formation 
mechanism [45]

Annexin V binding capacity No/Low Annexin V binding capacity High Annexin V binding capacity

Release Constitutive and/or cellular activation Cellular activation and early apoptosis
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[40]. MPs are formed by the outward blebbing of the 
plasma membrane and subsequently released by the 
proteolytic cleavage of the cytoskeleton and expression 
of antigens specific to their parental cells [41]. Moreo-
ver, MPs contain many proteins and lipids similar to 
those found in the membranes of their parental cells 
and may also contain mRNA. Multiple mechanisms of 
MP biogenesis have been described; however, the two 
best-known mechanisms are cell activation and apop-
tosis [42]. Cell activation causes MP shedding, which 
starts within minutes of adding the right agonist and is 
characterised by higher calcium levels in the cytosol [43, 
44]. Signs of damage (like injury, hypoxia, or apoptosis) 
cause the endoplasmic reticulum to release calcium into 
the cytosol. This causes the cytoskeleton to change shape 
and the phospholipid asymmetry to flip. When phos-
phatidylserine moves out of the cell, it causes the cell 
membrane to bulge outward, which results in a fissure. 
Consequently, MPs express both phosphatidylserine and 
surface proteins related to their parental cells on their 

outer membranes. In apoptosis-dependent MP forma-
tion, dynamic membrane blebbing occurs after cell con-
traction and DNA fragmentation, and it usually lasts for 
hours [45]. During membrane blebbing, the molecular 
regulators of MPs release cytosolic calcium, Rho kinases, 
GTPase, RhoA, mitogen-activated protein kinases, and 
nuclear factor-κB [46]. The mechanisms by which MPs 
develop and bud from cell plasma membranes are still 
largely unknown. Therefore, we must continue to gain 
more understanding on the underlying mechanisms that 
allow MPs to carry certain proteins, RNAs, and DNAs.

Molecular components of microparticles
The Vesiclepedia database (www.​micro​vesic​les.​org) 
[47] catalogues proteins, lipids, and acids identified in 
MPs from various sources. MPs contain a broad spec-
trum of bioactive substances and receptors on their sur-
face, including lipids, nucleic acids, and proteins, that 
reflect not only their cellular origin but also the stimulus 
that triggered their biogenesis and secretion. MPs may 

Fig. 1  The promotion of lung cancer proliferation, invasion, and metastasis by microparticles

http://www.microvesicles.org
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shuttle these molecules between neighbouring cells via 
systemic transport or distant anatomic sites where they 
may induce signalling pathways or directly alter the phe-
notype of specific recipient cells. As mentioned above, 
the composition of MPs determines their role in cell 
communication.

Proteins in microparticles
Many proteins, including selectins, integrins, cluster of 
differentiation (CD) 40, matrix metalloproteinases, phos-
phatidylserine, ADP-ribosylation factor 6, and Rho fam-
ily members, have been indicated as MP-specific [48, 49]. 
One study identified 910 different proteins in salivary 
macrovesicles from healthy participants and patients 
with LC. In particular, 626 proteins were found in sali-
vary MPs from patients with LC [50]. Among these, 243 
proteins were identified as dysregulated candidates and 
284 as unique to patients with LC, of which 40 were orig-
inally from distal organs or tissues, and nine originated 
from the lungs. In total, 109 proteins were upregulated 
and 134 were downregulated (Table 2).

Proteins play a key role in LC progression. For exam-
ple, Ras GTPase-activating-like protein 1 (IQGAP1) acts 
as a signal interrogator in LC cell proliferation. BPI fold-
containing family A member 1 (BPIFA1) takes part in the 
innate immune response of NSCLC [51]. Cornulin is con-
sidered a survival factor related to apoptotic cell death 
and calcium release [52]. Mucin 1 is cross-processed and 
presented to antigen-specific CD8+ T cells when carried 
by MPs. Internalised and soluble mucin 1 is retained in 
the endolysosomal/HLA-II compartment and does not 
induce T cell response [53, 54]. Studies have shown that 
these proteins may be exploited for possible non-invasive 
detection of LC.

Nucleic acids in microparticles
MicroRNAs (miRNAs) are indispensable for cell dif-
ferentiation, proliferation, maturation, and apoptosis 
[55]. miRNAs (e.g., miR-21, miR-19, miR-133, miR-146, 

miR-126, and miR-223) are detectable in platelet-derived 
MPs (PMPs) [56]. In platelets and PMPs, miR-223 is the 
most abundant miRNA [57, 58]. The expression of miR-
223 is aberrant in breast cancer, gastric cancer, LC, and 
ovarian cancer [59–62]. As such, it is considered to be 
a member of an emerging family of cancer-promoting 
miRNAs known as oncomiRs. miR-223 is also the most 
upregulated miRNA in recurrent tumours [62] because 
it directly targets the 3′ UTR of erythrocyte membrane 
protein band 4.1-like 3 (EPB41L3) [61]. PMPs can effec-
tively deliver miR-223 into human LC cells via EPB41L3, 
promoting tumour invasion. miR-223 not only directly 
binds to the 3′ UTR of the EPB41L3 mRNA transcript, 
inhibiting EPB41L3 translation, but also decreases the 
cellular levels of the EPB41L3 protein. As such, increased 
motility and decreased adhesion are observed in LC cells, 
inducing tumour cell invasion. These MP-encapsulated 
miRNAs can be successfully transported into target cells 
to silence target genes, hence influencing recipient cell 
function [63, 64]. Therefore, cell-secreted miRNAs in 
MPs can serve as a novel class of signalling molecules to 
mediate intercellular communication from a distance. 
Some RNA transcripts found in cancer cell-derived MPs 
can function as messages or biomarkers that can be rec-
ognised using available technology or a very sensitive 
way.

Methods for microparticles isolation and quantification
The Minimal Information for Studies of Extracellular 
Vesicles provides research guidelines for EVs to pro-
mote the transparency and reproducibility of EV stud-
ies [65]. Currently, multiple accepted methods, such as 
ultracentrifugation (including differential centrifuga-
tion [DU]), microfluidics, ultrafiltration, immunoaffin-
ity chromatography, and size-exclusion chromatography, 
have been successfully used for the isolation of MPs [66]. 
Immunoaffinity chromatography cannot distinguish MPs 
from exosomes because exclusive markers for each one 
have not been identified yet. This method often serves 
as a purification method after isolating MPs from large 
sample volumes [67]. Traditional ultracentrifugation, 
described as the most dependable method, consists of a 
series of centrifugation cycles with varying centrifugal 
forces and durations to separate EVs based on their den-
sity and size differences [66]. DU is an ideal method of 
EV isolation for many laboratories due to its low-cost and 
high-throughput properties. Microfluidics is an appeal-
ing approach due to its fast and simple operation. Small-
volume samples may even be used for disease diagnosis. 
Combination methods can improve the purity of the col-
lected vesicles [68]. Size-exclusion chromatography can 
be followed by ultracentrifugation or ultrafiltration to 

Table 2  Salivary microparticle proteins in normal participants 
and patients with lung cancer [50]

Microparticles in the saliva Proteins

In normal participants and patients with lung cancer 910

In patients with lung cancer alone 626

 Unique proteins 284

  Originated in distal organs or tissues 40

  Originated in the lung 9

 Upregulated proteins 109

 Downregulated proteins 134
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concentrate isolated but diluted MPs [67]. Methods of 
separation are typically selected with a clinical goal.

Particle number can be measured by light-scattering 
technologies (e.g., nanoparticle tracking analysis [NTA]), 
standard flow cytometry (FCM) [69–72], tunable resistive 
pulse sensing (TRPS) [73], cryogenic electron microscopy 
[74], platform combining surface plasmon resonance 
with atomic force microscopy (AFM) [75], or dynamic 
light scattering (DLS). AFM can be used to study the size, 
antigenic properties, and number of defined subsets of 
MPs [76]. Single-particle analyses like NTA, TRPS, and 
DLS are now widely used to measure the number and 
size of EVs. However, they do not give enough informa-
tion about phenotype and are not the best way to meas-
ure vesicles that are larger than 200  nm. Until recently, 
FCM could analyse only large EVs or the population of 
smaller EVs captured on beads prior to analysis [77]. 
FCM remains the most extensively used technique for 
the enumeration and characterisation of MPs [78, 79]. To 
achieve better specificity of EV subtype separation, two 
or more methods are used for EV characterisation. Taken 
together, essential technologies need to be investigated 
further to ensure the reliable isolation of disease-specific 
MPs from body fluid and tissue samples, as well as to rig-
orously discriminate these vesicles from those formed by 
non-diseased cells. Further, it is important to develop the 
necessary methods for high-sensitivity identification of 
specific cargo proteins, RNAs, or miRNAs.

Different microparticles in the lung cancer 
microenvironment
Cells can release MPs derived from many sources, includ-
ing leukocytes, platelets, erythrocytes, endothelial cells, 
macrophages, and tumour cells, at each stage of their 
lifecycle. In LC, MPs can play a role in inflammation, 
thrombus formation [24, 26, 29, 80], and angiogenesis 
[24, 29–31]. Furthermore, PMPs exhibit pro-angiogenic 
activity, which can promote capillary-like structure for-
mation and pro-angiogenic factor production [14, 20, 23, 
25]. Conversely, EMPs can be either pro- or anti-angio-
genic, depending on exposure to factors stimulating their 
production [24].

Platelets release more MPs when various inflammatory 
factors are upregulated and under disease conditions, 
such as malignancy [81], sepsis [82], thrombocytopenia 
[83], arterial thrombosis [26], thrombotic thrombocyto-
penia [84], uraemia [85], and rheumatoid arthritis [86]. 
PMPs are activated in a calcium flux-calpain-dependent 
manner [87]. TMPs regulate tumour microenvironment 
(TME); increase tumour invasion, metastasis, and angio-
genesis [88]; and even escape immune surveillance. In the 
airway, alveolar macrophages are a major source of bron-
choalveolar lavage fluid cellular components and have a 

significant influence on inflammation. After interacting 
with different cells in a pathological state, macrophage-
derived MPs (MMPs) are transported to various types of 
respiratory cells, such as lung epithelial cells, endothelial 
cells, fibroblasts, and monocytes, ultimately leading to 
cellular homeostasis and differentiation [89]. EMPs can 
carry a wide range of transcripts and have angiogenic 
activity mainly in quiescent endothelial cells by promot-
ing endothelial cell proliferation, organising capillary-like 
structures, and preventing apoptosis. Elevated levels of 
circulating lymphocyte-derived MPs (LMPs) are associ-
ated with disease progression in advanced NSCLC [90]. 
The total MPs, PMPs, and LMPs increased significantly 
with disease progression in patients with advanced 
NSCLC who were treated with immune checkpoint 
inhibitors. The participation of different MPs in the key 
steps of cancer progression through different functions 
has been considered. The surface antigens that character-
ise and used to enumerate the functions of different MPs 
are summarised in Table 3.

Clinical applications of microparticles 
for diagnosis, prognosis, and therapy
Liquid biopsy, a minimally invasive test, is a promising 
alternative to tissue biopsy for the early screening of LC 
[90, 91]. MPs can be found in blood, urine, sputum, breast 
milk, synovial, and bronchoalveolar lavage. For high sta-
bility, biological fluids can be regarded as ideal materials 
for liquid biopsies. The composition of MPs mirrors the 
contents of donor cells and bears the hallmarks of the 
regulated sorting mechanisms of these cells, providing 
diagnostic utility for LC. The diverse biomolecular infor-
mation from MPs, including that on proteins, lipids, vari-
ous metabolites, and nucleic acids, provides prospective 
biomarkers for LC risk assessment, early detection, diag-
nosis, prognosis, and surveillance.

Microparticles as diagnostic biomarkers for lung cancer
Profiling proteomics has revealed a variety of EV-associ-
ated protein cargoes, including receptors, transcription 
factors, enzymes, signalling proteins, lipid raft proteins, 
cytoskeletal and extracellular proteins, vesicle-traffick-
ing proteins, and immune-interacting proteins [92, 93]. 
BPIFA1, Mucin 5B, and Ras GTPase-activating-like 
protein can prove useful as non-invasive biomarkers of 
LC [50]. Moreover, SPARC-like protein 1 (SPARCL1), 
IQGAP1, BPIFA1, and cornulin are potential candidate 
proteins abnormally expressed in multiple types of can-
cers, especially LC. SPARCL1 is classified as a member of 
a larger family of secreted acidic and cysteine-rich matri-
cellular proteins [94]. According to Isler et al., SPARCL1 
is downregulated in human NSCLC and thus can be 
effectively identified as a predictive factor. A survey 
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Table 3  List of different cellular surface markers according to origin and function

Type Markers Antigen Cellular origin Function Refs.

PMPs

CD41 αIIb chain Platelet They can bind together to form the 
glycoprotein GPIIa/IIb (integrin αIIbβ3) 
which is a member of the integrin 
transmembrane family. The major 
binding site contains the arginine-
glycine-aspartic acid (RGD) sequence 
presenting in several adhesive 
proteins, such as von Willebrand factor 
(VWF). Inside-out signalling activates 
the complex, permitting binding to 
VWF through platelet activation

[151]

CD61 β3 integrin

CD42a GPIb/V/IX Platelet Two membrane glycoproteins that 
bind together to form (GP)Ib‐IX‐V 
complex. (GP)Ib‐IX‐V is expressed on 
platelets’ surfaces and is involved in 
thrombosis, acting as a receptor for 
vWF and other molecules such as 
thrombin

[152]

CD42b GP1bα

CD62P P‐selectin Platelet Also known as Platelet Activation‐
Dependent Granule to External Mem-
brane Protein (PADGEM) or Granule 
Membrane Protein 140 (GMP‐140). It 
is a transmembrane glycoprotein that 
is expressed by activated platelets and 
plays a key role in immune cell adhe-
sion and rolling

[153]

PAC1 GPIIb/IIIa Platelet (activation marker) It is present only on the surface of 
activated platelets and recognises 
an epitope on the GPIIb/IIIa complex 
of activated platelets at or near the 
platelet fibrinogen receptor

[154]

CD63 Platelet CD63 is located in the lysosomal 
integral membrane and is rapidly 
redistributed to the platelet surface 
when platelets are stimulated

[35]

CD40L Platelet It can act as a good candidate 
for platelet activation in an auto-
amplification loop. CD40L is 
involved in inflammation and a pano-
ply of immune-related and vascular 
pathologies

[155]

EMPs
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Table 3  (continued)

Type Markers Antigen Cellular origin Function Refs.

CD54 Intercellular adhesion molecule 
(ICAM‐1)

Endothelial cell It is an inducible cell adhesion 
protein that plays a role in leuko-
cyte and endothelium interaction 
to regulate vascular permeability. 
It is also induced by inflammation 
and is expressed on a wide range of 
immune cells such as monocytes and 
macrophages

[156]

CD62E Endothelial leukocyte adhesion mol-
ecule 1(E‐selectin/ELAM-1)

Endothelial cell (activation marker) A cell adhesion molecule is induced 
in response to inflammation and is 
thought to play a role in recruiting 
leukocytes to the sites of injury

[154, 157, 158]

CD105 Endoglin Endothelial cell CD105 is a component of the receptor 
complex of Transforming Growth 
Factor (TGF)-βinvolved in cellular pro-
liferation, differentiation and migration

[158–162]

CD144 Vascular endothelial cadherin (VE‐
cadherin)

Endothelial cell Constitutively expressed at endothelial 
adherence junctions. It plays a role in 
controlling vascular permeability and 
leukocyte extravasation

[163]

CD31 Platelet and endothelial cell adhesion 
molecule (PECAM‐1)

Endothelial cell It is expressed in most vascular 
compartment cells. It is found at cell 
junctions in endothelial cells and plays 
various roles in inflammation and 
vascular biology

[164]

CD146 Melanoma cell adhesion molecule 
(MCAM)

Endothelial cell An adhesion molecule involved in cell 
signalling, vascular permeability, and 
immune response

[165]

CD106 Vascular cell adhesion molecule 
(VCAM‐1)

Endothelial cell It is a transmembrane glycoprotein 
and is a marker of endothelial cell 
activation and inflammation

[166]

CD51 Vitronectin receptor/vitronectin and 
fibronectin receptor

Endothelial cell It may be related to increased 
airway inflammation and repair pro-
cesses in response to injury

[167]

TMPs

CD47 Tumour cell CD47 interacts with signal-regulatory 
protein alpha (SIRPα) on macrophages 
and monocytes to prevent phago-
cytosis

[168]

EpCAM Tumour cell It promotes tumour invasion when 
expressed in its highly-glycosylated 
isoform on tumour-derived MPs 
(T-MPs) [2]

[88, 169, 170]

CD147 Extra-cellular matrix metalloproteinase 
inducer (EMMPRIN)

Tumour cell T-MPs stimulate cancer cell invasion 
via a direct feedback mechanism 
dependent on highly glycosylated 
EMMPRIN by activation of the p38/
MAPK signalling pathway

[88]

MMPs
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suggested that SPARCL1 downregulation is mediated by 
transacting factors that bind to its exon 1 [95]. IQGAP1 
participates in multiple cellular actions (i.e., transcrip-
tion, cell–cell adhesion, and cytoskeleton regulation) 
by targeting calmodulin, cell division control protein 
42, Ras-related C3 botulinum toxin substrate 1, actin, 
β-catenin, and E-cadherin. BPIFA1 predominantly exists 
in the upper respiratory tract and salivary glands of both 
mice and humans and participates in the lung immune 
response. Cornulin is a newly discovered member of the 
“fused gene” family and the product of the novel gene 
c1orf10, an oesophageal-specific and cancer-associ-
ated gene located on 1q21. The c1orf10 gene encodes a 
Ca2+-binding protein in the upper layer of squamous epi-
thelia that plays an important role in epidermal differen-
tiation and is a marker of late epidermal differentiation.

Microparticles as prognostic biomarkers for lung cancer
MPs have been proposed as indicators of progression and 
aggressiveness of NSCLC [96]. For example, the level of 
EMPs is a useful diagnostic marker for LC [97]. The basal 
value of circulating MPs serves as an independent predic-
tor of 1-year clinical outcomes in patients with advanced 
NSCLC [98]. A level of circulating EMPs ≥ 1100.5 count/
mL is one of the most important predictors of 1-year 
mortality in patients with end-stage NSCLC, with sen-
sitivity and specificity rates of 77.6% and 56.9%, respec-
tively. In addition, patients with small-cell LC who 
initially responded to chemotherapy exhibited low basal 
MP numbers.

EMPs activate matrix metalloproteases, which are 
involved in the degradation of the extracellular matrix 
and the release of growth factors that are essential for 

tissue remodelling, angiogenesis, and metastasis [99]. 
Moreover, Tseng et  al. found that circulating EMPs are 
more closely associated with small cell carcinoma than 
squamous cell carcinoma [36]. Squamous cell carcinoma 
tends to have a slower growth rate and spread later in the 
course of the disease than small cell carcinoma and ade-
nocarcinoma [100]. As a result, squamous cell carcinoma 
displays a slower rate of metastasis and lower degree of 
angiogenesis in the host microenvironment than other 
types of LC, leading to a lower level of EMPs.

Najjar et al. found that before chemotherapy, the total 
MPs in patients with stage IV NSCLC are significantly 
higher than those in patients with stage III NSCLC. Fur-
ther, the rate of change in total MPs after chemotherapy 
can predict disease progression [34]. Elevated levels of 
circulating LMPs are associated with disease progression 
in advanced NSCLC [90]. According to this study, total 
MPs, PMPs, and LMPs increased significantly with dis-
ease progression in advanced NSCLC with treatment. 
Due to their significance as prospective lung cancer bio-
markers and biological communication carriers, MPs 
have drawn the attention of the scientific community. 
MPs have the potential to be used as a specimen for liq-
uid biopsy with a higher sensitivity and accuracy.

Therapeutic applications of microparticles for lung cancer
Microparticles as a novel mode of drug delivery
Remodelling the TME, which profoundly influences 
immunotherapy and clinical outcomes [101, 102], is an 
emerging strategy to improve immunotherapy [103]. Due 
to their capacity to package large amounts of biological 
information, TMPs are ideal for delivering therapeutic 
agents (e.g., oncolytic adenoviruses, chemotherapeutic 

Table 3  (continued)

Type Markers Antigen Cellular origin Function Refs.

CD11b Monocyte It may participate in degrading 
alveolar walls

[88]

CD11c

CD14 Lipopolysaccharide receptor (LPS-R) Monocyte lPs receptor, present on the surface of 
monocytes/macrophages

[154]

CD64 Macrophages Alveolar macrophage surface marker [171]

CD16 Macrophages Act as a surface marker of mac-
rophage activation

[172]

CD32 FcyRII Macrophages It plays a major role in the regula-
tion of humoral immune responses

[173]

LMPs

CD13 Aminopeptidase N Leukocyte Present on the surface of granulocytes 
and monocytes

[154]

CD56 Neural cell adhesion molecule (NCAM) Leukocyte It plays an important role in cell–cell 
adhesion

[154]

CD45 Leukocyte Pan leukocyte marker [154]
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drugs, nucleic acids, antibodies, and antigens) to tumour 
cells, effectively killing the cancer cells [104–106]. 
Drug MPs can be directly injected into superficial solid 
tumours or delivered to target tumour cells through a 
drainage tube in cases of malignant pleural effusion and 
ascites. Drug MPs can also be used to target tumour-
associated macrophages, key players in tumour immu-
nosuppression, cancer stemness, and metastasis [107]. 
M1-like macrophages remodel the TME by reducing the 
number of immunosuppressive cells and augmenting T 
cell infiltration, thereby promoting effective antitumor 
T cell immunity [107]. Drug-packaging TMPs efficiently 
mobilise endogenous neutrophils and induce intrinsic 
antitumour activities. The attracted neutrophils display 
a mature CD11b+/CD15b+ phenotype and kill tumour 
cells by releasing reactive oxygen species and NO into the 
TME [108].

Autologous TMPs packaged with chemotherapeutic 
agents have been approved as a new biological therapy 
for malignant tumours due to their demonstrated safety 
and tolerability [106]. According to our previous studies, 
TMPs packed with methotrexate, a chemotherapeutic 
drug, markedly restrict the growth of malignant pleural 
effusion and provide a survival benefit in both animal 
and human experiments [109, 110]. Ran et al. found that 
TMPs can act effectively deliver oncolytic adenoviruses 
to tumours and induce highly efficient cytolysis [111]. 
Additionally, Chen et  al. proposed a donor cell-assisted 
membrane biotinylation strategy to achieve biocompat-
ible quantum dot labelling of TMPs, thereby creating a 
novel method for nanocarrier preparation [112]. MPs are 
nontoxic and stable in body fluids; however, their effi-
cacy for drug delivery to target cells still requires more 
research before they can be exploited. Efforts should be 
made to load isolated MPs with specific therapeutic car-
gos (drugs, RNAs, or DNAs) and then employ them to 
effectively deliver therapy to diseased or injured target 
cells.

Microparticles and drug resistance
Therapeutic resistance is the leading cause of a poor 
prognosis for cancer. Progression of cancer is a compli-
cated process dependent on interactions between the 
tumour and TME [113]. Although TMPs play important 
roles in promoting the formation of tumour drug resist-
ance, increasing studies have focused on therapeutic 
applications of MPs to reverse drug resistance.

Drug resistance of microparticles in lung cancer
TMPs are capable of conferring resistance to chemo-
therapy. Two mechanisms are involved in MP-induced 
drug resistance. In the first mechanism, TMPs trans-
port functional plasma membrane transporter 

proteins, including P-glycoprotein (P-gp), breast can-
cer resistance protein [114], and multidrug resistance 
(MDR)-associated protein 1 (MRP1) [115] or resist-
ance-associated miRNAs, from drug-resistant can-
cer cells to drug-sensitive cancer cells [116]. MDR is 
innately present in tumours that arise from epithelium 
with a high constitutive P-gp expression [117, 118]. 
MDR development in cancer is clinically associated 
with the overexpression of the efflux transporter P-gp 
(P-gp, ABCB1) or MRP1 (MRP1, ABCC1) in numer-
ous malignancies, including lung, breast, neuroblas-
toma, and prostate cancers [119–121]. P-gp and MRP1 
belong to the ATP-binding cassette (ABC) transporter 
superfamily. ABC-transporters hydrolyse ATP to drive 
the extrusion of chemotherapeutic drugs against a con-
centration gradient from otherwise drug-sensitive cells. 
MRP1 and functional P-gp are transferred into recipi-
ent cells by MPs, imposing a donor dominant ABCC1 
trait on drug-sensitive cells [116, 122, 123]. In addition 
to functional P-gp, MPs can also transport RNA, which 
can re-template recipient cells to ensure the acquisition 
of the donor cell MDR trait [122–124]. Some miRNAs, 
such as miR-27a, miR-326, and miR-451, have a potent 
ability to regulate ABC transporters [120, 123–126]. In 
the second mechanism, chemotherapeutic agents are 
directly expelled from cancer cells [127].

Microparticles and reversing drug resistance
Drug resistance remains a formidable hurdle in cancer 
therapy [128]. It may result from decreased drug uptake, 
increased drug efflux and expression of drug efflux 
pumps, drug inactivation/detoxification, more efficient 
DNA repair, and dysregulation of apoptotic pathways 
[129–131]. Furthermore, system cell-like cancer cells 
(SCLCCs) are a subset of highly tumorigenic cancer cells 
with the ability to self-renew and escape chemotherapy 
[132]. Stem cell-like tumour-repopulating cells (TRCs) 
play a vital role in reprogramming an immunosuppres-
sive TME [107]. For example, TRCs cultured in  vitro 
can replace SCLCCs and exert drug resistance. How-
ever, Ma et al. [109] showed that TMPs loaded with anti-
tumour drugs can reverse the drug resistance of TRCs or 
SCLCCs. Delivering high concentration of drugs into soft 
MPs can effectively facilitate drug entry into the nucleus 
of tumour cells. Subsequently, soft TRCs readily undergo 
deformation, enabling the easy uptake of the MPs [133]. 
These MPs not only release drugs into the cytoplasm of 
TRCs, but also transport drugs into the lysosomes and 
nucleus, causing TRC apoptosis. Research has dem-
onstrated objective evidence for the clinical efficacy of 
TMPs in patients with LC, making TMPs well tolerated 
in clinical practice [134].
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Immunomodulation effect of microparticles in lung cancer
Intricate interactions among the immune system, TME, 
and cancer cells are regulated by bioactive molecules and 
biological information. In human cancer cells, TMPs are 
more immunogenic than soluble antigens [135]. Rughetti 
et  al. found that MP-mediated antigen transfer to den-
dritic cells (DCs) is crucial for the cross-presentation 
of tumour-glycosylated antigens [53, 54]. MP signal-
ling strengthens the immunosuppressive properties of 
tumour cells, promoting the escape of immune surveil-
lance and tumour metastasis. Moreover, MPs may trigger 

T cell-activated apoptosis by exposing the Fas ligand, 
which might contribute to immune suppression and indi-
rectly promote tumour growth [136, 137]. However, MPs 
also mediate antigen presentation by exposing major his-
tocompatibility complex class I and II molecules to DCs 
to facilitate immune surveillance [138]. Similarly, the 
lipid component of MPs can stimulate antigen presen-
tation by activating toll-like receptor 4 on macrophages 
[139]. Further research indicates that the stage of tumour 
progression determines the conflicting effects of MPs in 
modulating the immune system [28].

Fig. 2  Major surface markers of different cells based on their origin and function
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Cancer immunotherapy makes use of innate immune 
response against tumours, proposing a paradigm shift in 
cancer therapy. The key point of this therapy is to present 
cancer-specific immunogens and initiate T cell-mediated 
cancer immunity. Due to the conflicting effects of TMPs, 
the relationship among cancer cells, the TME, and the 
immune system is complex. TMPs are generally more 
immunogenic than soluble antigens in both mouse mod-
els and human cancer cells [135, 140]. Mesenchymal stem 
cell-derived EMPs can be used to carry tumour RNA 
and provoke the strong anti-tumour immune response 
of cytotoxic CD8+ cells. Oral vaccination with TMPs 
effectively accesses and activates the mucosal epithelium, 
leading to anti-tumour T cell response in mouse models. 
The most promising therapeutic application of MPs in 
the field of cancer immunotherapy may be vaccines [28].

Microparticles act as potential cancer vaccines
The fundamental principle of cancer vaccines is to pro-
vide antigen-presenting cells with both tumour antigens 
and immune-stimulating signals, resulting in an effective 
T cell immune response against tumours [141]. Zhang 
et al. proposed TMPs as ideal candidates for the develop-
ment of novel and effective tumour vaccines [141–143]. 
TMPs have several applications in tumour vaccine devel-
opment [144]. Apart from being potential antigen car-
riers, these can also directly target cancer cells. TMPs 
carry repertoires of tumour antigens and present these 
to DCs. Moreover, TMPs derived from UV-irradiated 
tumour cells may contain stimulatory molecules, such as 
DNA fragments, which stimulate DCs to produce type I 
interferons, interleukin (IL)-12, and interferon (IFN)-γ 
[145]. Type I IFNs are essential for CD8+ T cell prim-
ing, whereas IL-12 and IFN-γ promote antitumor T cell 
activation [145]. Research has shown that TMPs con-
tain excessive immunostimulatory factors, resulting in 
the generation of innate immune signals in DCs [144]. 
Herein, TMPs contain tumor antigen spectrums and 
carry potential innate signals, which make them ideal 
candidates for developing novel therapeutic cancer vac-
cines. We have provided a comprehensive summary of 
the roles of MPs in LC patients. MPs that act as remark-
able biological vectors are very promising and attractive 
tools for developing and exploring novel and individual-
ised therapeutic strategies.

Concluding remarks and future direction
Numerous studies on the biology and biogenesis of MPs 
in cancer pathophysiology have revealed the signifi-
cance of MPs in cancer growth, proliferation, apoptosis, 
angiogenesis, coagulation, and dissemination. In the 
airway and LC microenvironment, MPs derived from 
tumour-infiltrating cells and cancer cells are likely to play 

key roles in intercellular communication, promoting a 
microenvironment conducive to tumour growth, inva-
sion, and metastasis (Fig.  2). Due to the evidence from 
current research, an increasing number of studies have 
suggested the possible clinical application of MPs as bio-
markers. The diverse biomolecular information regarding 
EVs provides numerous potential biomarkers for cancer 
risk assessment, early detection, diagnosis, prognosis, 
and surveillance. To date, the development of EV-based 
biomarkers has largely focused on exosome biomarkers, 
and there are a number of key questions regarding MPs 
that will likely receive a great deal of research attention 
in the future. Several studies have investigated LC-related 
proteins in MPs. However, key nucleic acids are yet to 
be elucidated by comparing patients at different stages 
of LC to controls by DNA or RNA sequencing and mass 
spectrometry. In cancer immunotherapy, cancer vaccines 
are the most promising therapeutic application of MPs. 
Accumulated studies have investigated the involvement 
of MPs in lung disorders and attempted to provide new 
insights into the development of drug delivery systems 
and potential cancer vaccines. Although the exact func-
tions and mechanisms of action of MPs have been eluci-
dated, further research in the context of LC is necessary 
to ultimately develop useful means for cancer diagnosis 
and develop novel therapeutic strategies for various types 
of cancers.
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