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Abstract 

Background: To construct a predictive model of immunotherapy efficacy for patients with lung squamous cell carci-
noma (LUSC) based on the degree of tumor-infiltrating immune cells (TIIC) in the tumor microenvironment (TME).

Methods: The data of 501 patients with LUSC in the TCGA database were used as a training set, and grouped using 
non-negative matrix factorization (NMF) based on the degree of TIIC assessed by single-sample gene set enrichment 
analysis (GSEA). Two data sets (GSE126044 and GSE135222) were used as validation sets. Genes screened for mod-
eling by least absolute shrinkage and selection operator (LASSO) regression and used to construct a model based on 
immunophenotyping score (IPTS). RNA extraction and qPCR were performed to validate the prognostic value of IPTS 
in our independent LUSC cohort. The receiver operating characteristic (ROC) curve was constructed to determine the 
predictive value of the immune efficacy. Kaplan–Meier survival curve analysis was performed to evaluate the prog-
nostic predictive ability. Correlation analysis and enrichment analysis were used to explore the potential mechanism 
of IPTS molecular typing involved in predicting the immunotherapy efficacy for patients with LUSC.

Results: The training set was divided into a low immune cell infiltration type (C1) and a high immune cell infiltration 
type (C2) by NMF typing, and the IPTS molecular typing based on the 17-gene model could replace the results of the 
NMF typing. The area under the ROC curve (AUC) was 0.82. In both validation sets, the IPTS of patients who responded 
to immunotherapy were significantly higher than those who did not respond to immunotherapy (P = 0.0032 and 
P = 0.0451), whereas the AUC was 0.95 (95% CI = 1.00–0.84) and 0.77 (95% CI = 0.58–0.96), respectively. In our 
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Background
Lung cancer is a common malignant tumor worldwide. 
According to the 2020 global cancer statistics, the mor-
tality and incidence rates of lung cancer rank first and 
second, respectively [1]. Lung squamous cell carcinoma 
(LUSC) is the second most common histological sub-
type of lung cancer with ~ 30% of all cases [2]. Due to 
the insidious onset and low early diagnosis rate, many 
patients with LUSC have already passed the opportunity 
for surgery by the time of diagnosis [3]. The 5-year sur-
vival rate of patients with LUSC who receive surgery is 
still low at 12.4% [4]. Compared with lung adenocarci-
noma, LUSC has a low rearrangement rate of EGFR gene 
mutation and ALK fusion gene, and strong tumor het-
erogeneity [5], Therefore, LUSC is limited in gene muta-
tion-based targeted therapy applications [6, 7]. Other 
treatments such as chemotherapy and radiotherapy 
also have a limited impact on the long-term survival of 
patients with LUSC [8]. Thus, patients with LUSC gener-
ally have a poor prognosis [9].

In clinical application, immunotherapy plays an inte-
gral anti-tumor role by activating the immune system 
and is rapidly becoming an important tool for cancer 
treatment. The most widely used immunotherapy is 
immune checkpoint inhibitors (ICIs), and they have 
shown promising therapeutic outcomes in non-small cell 
lung cancer (NSCLC) [10]. However, the response rate 
of immunotherapy is relatively low, and only a subset of 
patients show meaningful clinical response or benefit 
[11]. As a target of PD-1/PD-L1 antibodies, the PD-L1 
level in cancer cells as measured by immunohistochemis-
try is the only FDA-approved and widely used biomarker 
for predicting response to ICIs in clinical practice. How-
ever, the predictive ability of the PD-L1 level is limited, 
and despite a high PD-L1 level, a proportion of patients 
receiving ICIs still do not respond; similarly, a negative 
PD-L1 level also does not reliably preclude a response 
to PD-1/PD-L1 blockade [12], suggesting there is an 
urgent need for effective biomarkers capable of screening 
patients with LUSC according to their likelihood of ben-
efiting from ICI therapy. Beyond the intrinsic factors of 
tumor cells, studies have identified the tumor microen-
vironment (TME) characteristics also determine the ICI 

tumor response [13]. Among them, immune cells play 
key roles in mediating immune surveillance and regu-
lating tumor growth [14]. Therefore, tumor-infiltrating 
immune cells (TIICs) may be a potential biomarker to 
predict the efficacy of immunotherapy.

A clinical prediction model is a tool that combines 
multiple predictors to evaluate the probability of an indi-
vidual presenting with a certain disease or clinical out-
come. Some clinical prediction models have potential 
value for screening, diagnosis, treatment, and prognostic 
prediction of lung cancer [15–17]. With the rapid devel-
opment of high-throughput sequencing and bioinformat-
ics analysis methods, obtaining cancer-related genomes, 
transcriptomes, and immune-related information has 
become readily easier. This has enabled the construction 
of lung cancer prediction models based on gene-related 
predictors, which are now widely used in clinical practice.

At present, there is a relative lack of predictive mod-
els for the efficacy of immunotherapy in LUSC based on 
TIIC. Our study intends to construct a predictive model 
for the efficacy of immunotherapy for patients with LUSC 
based on the degree of TIIC. First, non-negative matrix 
factorization (NMF) [18] was used to classify the gene 
expression profile of patients with LUSC from The Can-
cer Genome Atlas (TCGA) database. Then, after inter-
secting differentially expressed genes (DEGs) between 
NMF typing, survival-related genes, and their compari-
son with two validation gene sets of patients receiving 
immunotherapy, a least absolute shrinkage and selection 
operator (LASSO) analysis was performed [19]. Finally, 
17 genes were screened out and the corresponding 
regression coefficients were obtained, which were used to 
construct an immunophenotyping score (IPTS) molecu-
lar typing, and used to analyze the predictive value of 
IPTS on the efficacy of immunotherapy for patients with 
LUSC.

Method
Data collection and processing
The clinical information and gene expression profile 
matrix of patients with LUSC were downloaded from 
the TCGA database (https:// cance rgeno me. nih. gov, 
access date: October 15, 2021). A total of 501 samples 

independent cohort, we validated its ability to predict the response to cancer immunotherapy, for the AUC was 0.88 
(95% CI = 1.00–0.66). GSEA suggested that the high IPTS group was mainly involved in immune-related signaling 
pathways.

Conclusions: IPTS molecular typing based on the degree of TIIC in the TME could well predict the efficacy of immu-
notherapy in patients with LUSC with a certain prognostic value.

Keywords: Lung squamous cell carcinoma (LUSC), Tumor-infiltrating immune cells, Immune checkpoint inhibitors, 
Immunotherapy efficacy, Predictive model, Molecular typing
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with complete clinical information and expression pro-
file matrix were selected as the training set to construct 
the immune efficacy prediction model. Then, the gff3 
file (v37, released on October 14, 2021) was downloaded 
from GENCODE (https:// www. genco degen es. org/ 
human/) [20], the Gene Symbol and ENSG_ID extracted 
using R v4.1.2, and matched with the TCGA-LUSC 
expression profile matrix to convert ENSG_ID to Gene 
Symbol. Next, the count data were transformed into tran-
scripts per kilobase million (TPM) data based on gene 
length for subsequent analyses.

In addition, the clinical information and gene expres-
sion matrix of two data sets of NSCLC with immuno-
therapeutic efficacy, GSE126044 [21] and GSE135222 [22, 
23], were downloaded from the gene expression omnibus 
(GEO) (https:// www. ncbi. nlm. nih. gov/ geo, access date: 
February 11, 2022) database as the validation sets. The 
GSE126044 dataset was sequenced using the HiSeq 2500 
(GPL16791; Illumina, San Diego, CA, USA) platform, 
with a total of 16 NSCLC samples. The GSE135222 data-
set was also sequenced using the GPL16791 platform, 
with a total of 27 samples, and this dataset contained the 
prognosis information of progression-free survival (PFS).

Single‑sample gene set enrichment analysis (ssGSEA) 
to assess the degree of immune cells infiltration
According to the gene signatures of 28 types of immune 
cells reported by Jia Q [24], we used the “GSVA” pack-
age (v1.42.0) [25] and the ssGSEA method to obtain the 
enrichment scores of 28 types of immune cells in each 
of the 501 LUSC cases in the training set. These 28 kinds 
of immune cells can be divided into cell types executing 
anti-tumor immunity (including activated CD4 T, acti-
vated CD8 T, activated dendritic, CD56 bright natural 
killer (NK), central memory CD4 T, central memory CD8 
T, effector memory CD4 T, effector memory CD8 T, NK, 
NK T, type 1 T helper, and type 17 T helper cells), cell 
types executing pro-tumor, immune suppressive function 
(including CD56 dim NK, immature dendritic, myeloid-
derived suppressor, plasmacytoid dendritic, regulatory T, 
type 2 T helper cells, neutrophils, and macrophages), and 
other cell types (activated B, gamma delta T, immature 
B, mast, memory B, T follicular helper cells, eosinophils, 
and monocytes).

NMF typing
After normalizing the above matrix of immune cell 
enrichment scores, we used the “NMF” package (v0.23.0) 
[26] for typing with rank set to 2:10, the method to bru-
net, and nrun to 100. Then, we used the “Rtsne” pack-
age (v0.15) [27] and the “prcomp” function of the “stats” 
package (v3.6.0) [28] to perform dimensionality reduc-
tion analysis to verify the feasibility of the NMF typing 

results. In addition, to clarify the differences in TIIC 
between different types, we performed correlation analy-
sis and difference analysis on the anti-tumor immunity 
enrichment scores and the pro-tumor immunity enrich-
ment score between different subtypes, and analyzed the 
difference in the enrichment scores of 28 kinds of TIIC 
respectively, to further demonstrate the reliability of 
NFM typing results.

DEGs of NMF typing and their functional enrichment 
analysis
To clarify the DEGs of different NMF types, we used the 
“limma” package (v3.50.1) [29] to analyze the DEG pro-
file, and used the “p.adjust” function to calculate the sig-
nificant false discovery rate (FDR, q-value) of each gene. 
FDR (q-value) < 0.05 was considered to be statistically 
significant. Then, the “clusterProfiler” package (v3.14.3) 
[30] was used for functional enrichment analysis of gene 
ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) to obtain the results of gene set enrich-
ment. The minimum gene set was 5 and the maximum 
gene set was 5,000, with P < 0.05 and FDR < 0.05 consid-
ered meaningful. The results were ranked by FDR and the 
top ten functional enrichment results were plotted.

Survival analysis and screening for genes affecting overall 
survival (OS) and disease‑free survival (DFS)
To determine whether there is a difference in survival 
between patients with different molecular types, we 
grouped the patients according to the NMF types, and 
then used the “survival” package (v3.3-1) [31] for survival 
analysis, with the optimal cutoff value calculated using 
the “surv_cutpoint” function. Then, the “survminer” 
package (v0.4.9) was used for plotting survival curves 
[32]. In addition, to screen the genes that have an impact 
on the prognosis and survival of LUSC in the TCGA 
database, we first removed the samples with a survival 
time of fewer than 30 days, and then performed survival 
analyses on all genes in the gene expression profile to 
obtain the genes affecting OS and DFS, respectively.

Construction of an immune efficacy prediction model
Due to the different sequencing platforms or sequencing 
depths, many genes detected in the training set were not 
detected in the validation sets. To better use the valida-
tion set for verification, we used DEGs, genes affecting 
the OS and DFS of patients, and genes measured in the 
two validation sets of GSE126044 and GSE135222. After 
intersecting these five gene sets, the screened genes were 
used to construct the immune efficacy prediction model. 
A Venn diagram was plotted using the online tool Bio-
informatics & Evolutionary Genomics (http:// bioin forma 
tics. psb. ugent. be/ webto ols/ Venn).

https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
https://www.ncbi.nlm.nih.gov/geo
http://bioinformatics.psb.ugent.be/webtools/Venn
http://bioinformatics.psb.ugent.be/webtools/Venn
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The gene expression profile matrix screened above 
for modeling and NMF typing were extracted and then 
the LASSO regression model was constructed using the 
“glmnet” package (v4.1–3) [33, 34], with nfold set to 10 
and λ equaling lambda.min. After obtaining the regres-
sion coefficients of the screened genes, the IPTS equa-
tion was constructed based on these coefficients. Then, 
nomograms and calibration curves were plotted using 
the “rms” package (v6.2-0) [35] to visualize the regression 
analysis results. In addition, we plotted a Sankey diagram 
using the “networkD3” package (v0.4) [36] to visualize the 
typing results and their corresponding gene signatures.

Our independent LUSC validation set collection 
and follow‑up
All paraffin sections from 10 cases of LUSC tissues were 
collected in The Second Affiliated Hospital of Zhejiang 
University School of Medicine from November 2019 to 
February 2022. Clinicopathological characteristics and 
prognostic survival information of these LUSC patients, 
including ages, gender, TNM stage, clinical stage, tumor 
size before and after treatment, tumor site, best response 
evaluation and PD-L1 immunohistochemistry data were 
acquired. The follow-up date was ended at July 7, 2022, 
and outpatient and telephone follow-up were performed. 
This study was approved by the institutional review com-
mittee of The Second Affiliated Hospital of Zhejiang 
University School of Medicine (Approval Number: 2022-
0548/I2022685). All the patients have written informed 
consent before surgery.

RNA extraction and real‑time quantitative PCR (qPCR)
For real-time qPCR analysis, the BIOG RNA FFPE Tissue 
Kit (Baidai, Changzhou, China) was used to extract total 
RNA from 10 samples of Paraffin section of lung from 
patients receiving immunotherapy according to the man-
ufacturer’s instructions. cDNA was synthesized using the 
HiScript III All-in-one RT SuperMix Perfect (Vazyme, 
Nanjing, China). Real-time q-PCR was performed to 
detect the expression of the screened genes using TB 
Green Premix Ex Taq II (Takara, Dalian, China) to cal-
culate IPTS. Gene expression levels were normalized to 
the “housekeeping” gene GAPDH. The primers and their 
sequences were listed in Additional file 2: Table S1.

Reliability and verification of model for immunotherapy 
efficacy prediction
To verify the discrimination of NMF typing by the pre-
diction model and whether it can replace the sample 
typing results, we first calculated the IPTS value of each 
sample in the training and two validation sets as well 
as our independent cohort according to both the gene 
expression value and the constructed IPTS equation. 

Then, the IPTS and NMF typing results of the training set 
were integrated, and the receiver operating characteris-
tic (ROC) curves were constructed through the “pROC” 
package (v1.18.0) [37] to evaluate the ability of the pre-
diction model to judge the NMF typing. Next, according 
to the cutoff value of the ROC curve, the training set was 
divided into high and low score groups. The differences 
and correlations between the high and low IPTSes for 
different NMF typing, as well as the pro- and anti-tumor 
immunity enrichment scores between the high and low 
score groups, were analyzed, respectively. In addition, the 
differences between the enrichment scores of 28 types of 
immune cells were also analyzed to clarify the degree of 
coincidence between the IPTS molecular typing results 
and the NMF typing results, i.e., whether the substitution 
of the IPTS molecular typing results for the NMF typ-
ing results is reasonable. Besides, since the genes in the 
model have an impact on the OS and DFS of the training 
set, we also performed survival analysis and plotted the 
survival curve to evaluate the prognostic predictive value 
of the model.

According to the clinical information of patients with 
LUSC in the TCGA database, almost no patients received 
immunotherapy. To evaluate whether the constructed 
immune typing model can predict immunotherapy effi-
cacy, we validated the immunotherapy efficacy in the 
two validation sets for patients with NSCLC as well 
as our independent LUSC cohort. First, we compared 
whether there were significant differences in the IPTSes 
between groups of patients with lung cancer and dif-
ferent immune responses. Due to the small sample size 
in the GSE126044 dataset and the IPTS in this dataset 
with non-normally distributed and uneven variance, the 
Mann–Whitney rank-sum test was used for the differ-
ences between groups in this dataset, and P < 0.05 was 
considered to be statistically significant. And due to the 
power distribution of IPTSes in our independent LUSC 
cohort, log2 transformation was conducted before using 
the student’s t-test. Then, the ROC curve was constructed 
according to the IPTS and immune response results to 
evaluate the predictive value of the immune efficacy of 
the model. In addition, since the GSE135222 dataset and 
our cohort contain data on the PFS of patients, we fur-
ther conducted survival analyses to verify the predictive 
value of immune efficacy and evaluate the prognostic 
prediction ability of this model.

Efficacy prediction of other anti‑tumor drugs
Genomics of drug sensitivity in cancer (GDSC; https:// 
www. cance rrxge ne. org, access date: February 27, 
2022) [38] contains the sequencing data of more than 
1000 human tumor cell lines and the treatment results 
of tumor cells by more than 100 anti-tumor drugs, 

https://www.cancerrxgene.org
https://www.cancerrxgene.org
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which facilitate finding molecular characteristics of 
tumors and predicting the response of targets to anti-
tumor drugs. The sequencing results of all cell lines 
in the database and the 50% inhibitory concentra-
tion  (IC50) of cell lines treated with anti-tumor drugs 
were downloaded, and the results of all 15 cell lines 
of LUSC sequenced in this database were extracted. 
Next, the IPTS of the 15 cell lines were calculated and 
then divided into two groups: 8 cases with high IPTS 
and 7 cases with low IPTS. The differences in  IC50 of 
anti-tumor drugs between the two groups were tested, 
and the anti-tumor drugs with statistical significance 
(P < 0.05) were selected.

Analysis of differences and correlation between two IPTS 
groups in immune microenvironment score and immune 
molecular typing
Through the “estimate” package (v1.0.13) [39], we evalu-
ated the three immune microenvironment related scores 
of 501 samples in the training set as well as analyzed the 
differences and correlations between the high and low 
IPTS groups. Meanwhile, according to the summary of 
genotype and immunophenotype by Charoentong [40] 
and Hu [41], we obtained the following five genetic mark-
ers of immune molecular typing, namely chemokines, 
receptors, major histocompatibility complex (MHC) 
molecules, immuno-inhibitors, and immuno-stimulators. 
Next, the enrichment scores of the above five immune 
molecular typing in the training set were calculated by 
ssGSEA, and the differences between the high and low 
score groups were then analyzed. As the current clini-
cally used ICIs are mainly anti-CTLA-4 and anti-PD-1/
PD-L1 antibodies, we analyzed the differences and cor-
relations between the expression of four immune check-
points CTLA-4, PD-1 (PDCD1), and its two ligands 
PD-L1 (CD274) and PDL-2 (PDCD1LG2) in the training 
set between high and low score groups.

Gene set enrichment analysis (GSEA)
We performed GSEA (https:// www. gsea- msigdb. org/ 
gsea, access date: March 1, 2022) [42] on the gene expres-
sion profile of the training set based on the high and low 
IPTS groups. First, the subset of c2.cp.kegg.v7.4.symbols.
gmt were downloaded to assess relevant pathways and 
molecular mechanisms. Based on the gene expression 
profile and IPTS grouping, the minimum gene set was 5, 
the maximum gene set was 5000, and the number of resa-
mpling was set to 1000. Then, ranked by the normalized 
enrichment score (NES), the top seven results were visu-
alized. A normalized P-value (NP) < 0.05 was considered 
to be meaningful.

Statistical analysis
All data in this study were analyzed and plotted using 
R v4.1.2 and Prism v8.0.1 (GraphPad, San Diego, CA, 
USA). The parameters not mentioned in the methods 
were all default parameters, and the data visualization 
not mentioned was all plotted by the “ggplot2” pack-
age (v3.3.5) [43]. Continuous variables were displayed 
as mean ± standard deviation. Unless mentioned other-
wise mentioned, the student’s t-test was used to compare 
the differences between the two groups. The differences 
between groups of discrete variables were analyzed using 
the chi-squared test. The Pearson test was used for cor-
relation analysis, and the log-rank test was used for sur-
vival analysis. P < 0.05 was considered as a statistically 
significant difference (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001).

Results
NMF typing divides the training set into low and high 
immune cell infiltration types
The clinical information of the training, two validation 
sets and our independent LUSC cohort is detailed in 
Additional file 3: Table S2. NMF was used to classify 501 
patients with LUSC in the training set. It was found that 
when the rank value was 2–3, the cophenetic typing index 
decreased the most (Fig. 1A). Therefore, a rank value of 
2 was selected, and the patients were divided into a low 
immune cell infiltration type (cluster 1; C1) and a high 
immune cell infiltration type (cluster 2; C2). The typing 
efficacy of other NMF indicators is shown in Additional 
file 1: Figure S1. The heat map also showed that when the 
number of types was limited to two, the samples of the 
training set could be well distinguished (Fig. 1B). The dis-
criminatory capacity when more subtypes were used in 
the training can be seen in Additional file  1: Fig. S2. In 
addition, dimensionality reduction by t-distributed sto-
chastic neighbor embedding (tSNE) (Fig. 1C) and princi-
pal component analysis (PCA) (Fig. 1D) showed that C1 
and C2 had good discrimination ability, suggesting the 
feasibility of using this classification.

There were significant positive correlations between 
the scores of cell types executing anti-tumor immunity 
and those executing pro-tumor immunity in both the 
C1 and C2 patients (Fig.  1E), with a correlation coef-
ficient of 0.86 in C1 patients (P = 1.2e−56) and 0.83 in 
C2 patients (P = 2.8e−82). The enrichment score of the 
anti- (P < 0.0001) and pro-tumor immunity (P < 0.0001) 
were significantly higher in C2 patients than in C1 
patients (Fig.  1F). In addition, there were significant 
differences in the enrichment scores of 28 types of 
immune cells, with significantly lower scores in type 
C1 than type C2 (Fig. 1G). It is suggested that type C1 

https://www.gsea-msigdb.org/gsea
https://www.gsea-msigdb.org/gsea
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of LUSC can be regarded as a “cold tumor” with low 
infiltration of immune cells, while type C2 tends to 
be a “hot tumor”, i.e., a tumor with high infiltration of 
immune cells. These results reveal that NMF typing had 
a strong ability to distinguish the degree of immune cell 
infiltration in the training set.

Clinicopathological characteristics between NMF types
According to the NMF typing, we performed difference 
analyses on several important clinicopathological char-
acteristics of the patients in the training set, including 
age, gender, TNM stage, and clinical stage. The results 
only showed significant differences in gender between 
the two subtypes. A total of 36 patients in type C1 
were female (7.19%), which was significantly less than 
the 94 patients (18.76%) in type C2 (P = 0.0112). There 
were no differences in other clinicopathological char-
acteristics such as age and stage between the subtypes 
(Table 1). Subsequent survival analysis revealed no sig-
nificant difference between the two subtypes for either 
the OS (P = 0.74, Fig. 2A) or DFS (P = 0.5, Fig. 2B) for 
patients with LUSC.

DEGs between NMF types are mainly involved in immune 
system regulation
Through differential analysis, 468 genes were signifi-
cantly up-regulated in type C1 compared with type 
C2, and 2179 genes were significantly down-regulated 
(Fig.  2C). GO enrichment analysis showed that DEGs 
were mainly enriched in the following biological pro-
cesses: immune system process (48.50%), immune 
response (42.02%), regulation of immune system 
process (27.84%), etc. (Fig.  2D); In terms of cellular 
components, they were mainly enriched in the extra-
cellular region (37.87%), intrinsic components of the 
membrane (15.40%), and integral components of the 
membrane (14.78%), etc. (Fig.  2E); while in terms of 
molecular functions, these genes were mainly enriched 
in signaling receptor activity (16.61%), molecular trans-
ducer activity (16.61%), and signaling receptor bind-
ing (15.25%), etc. (Fig. 2F). KEGG enrichment analysis 
showed that DEGs were mainly involved in cytokine-
cytokine receptor interaction (12.75%), chemokine 
signaling pathway (8.55%), viral proteins, viral pro-
tein interaction with cytokine and cytokine receptor 
(7.46%), and other pathways (Fig. 2G). Additional file 4: 

Fig. 1 NMF typing divides the training set into low and high immune cell infiltration types. A NMF typing using the enrichment score matrix of 28 
types of immune cells in the training set. Cophenetic correlation coefficient k = 2–10; B Heat map of the samples typing in the training set for NMF 
typing = 2; C t-SNE analysis divides patients with LUSC in the training set into two subtypes; D PCA divides patients with LUSC in training set into 
two subtypes; E correlation analysis between the enrichment scores of anti- and pro-tumor immunity in two NMF types; F enrichment score of 
anti- and pro-tumor immunity between C2 and C1 patients; G enrichment scores of 28 types of immune cells between types C1 and C2 patients. 
**P < 0.01; ****P < 0.0001
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Table  S3 shows all meaningful GO and KEGG enrich-
ment analysis results.

Construction of an immune infiltration prediction model 
based on 17 genes
Although NMF typing could better distinguish the abun-
dance of TIICs, it could not predict the survival progno-
sis of patients. Therefore, a new predictive model needed 
to be developed on this premise. A total of 20 genes were 
obtained for constructing the prediction model, by tak-
ing the intersection of the following five gene sets: DEGs, 
genes affecting the OS and DFS of patients, and genes 
sequenced in the two validation sets (Fig.  3A). Through 
LASSO regression, a total of 17 genes with a regression 
coefficient were selected (Fig. 3B). In addition, it can be 

seen from Fig. 3C that the model had a higher ROC area 
under the curve (AUC) value when considering the mini-
mum value of the tuning parameter (λ).

Based on these 17 genes and their regression coef-
ficients, the IPTS model was constructed as fol-
lows: IPTS = 0.4869250211 − 0.1428834537 × AKAP2  
expression value −  0.12060842 ×  NANOG expres- 
sion value – 0.0951070744 × TMEM236 expres- 
sion value −  0.0436119966 ×  NTSR1  expression  
v a l u e  −  0 . 0 2 5 8 5 4 2 8 1 4  ×  L R R C 3 8  e x p r e s s i o n  
v a l u e  −  0 . 0 1 7 0 2 2 5 6 8 1  ×  G C G R   e x p r e s s i o n 
v a l u e  −  0 . 0 0 1 1 3 3 0 3 6 3  ×  M A R C O  e x p r e s s i o n  
value −  0 .0008511336 ×  PF4NexpressionNvalue  
− 0.0004418332 × RP1 expression value + 0.0023249088  
× ALOX5 expression value + 0.0021763779 × FCGR2A  

Table 1 Correlation between clinicopathological characteristics and NMF typing in the TCGA database

Bold values indicate P < 0.05 and *P < 0.05, ****P < 0.0001

Characteristics C1 (N = 185) C2 (N = 316) Total (N = 501) P‑value

Age

 Mean ± standard deviation 66.33 ± 8.74 67.71 ± 8.46 67.20 ± 8.58 0.0836

 Median [min, max] 68 [39, 85] 68 [40, 90] 68 [39, 90]

Gender

 Female 36 (7.19%) 94 (18.76%) 130 (25.95%) 0.0112*
 Male 149 (29.74%) 222 (44.31%) 371 (74.05%)

T

 T1 36 (7.19%) 78 (15.57%) 114 (22.75%) 0.5468

 T2 112 (22.36%) 181 (36.13%) 293 (58.48%)

 T3 29 (5.79%) 42 (8.38%) 71 (14.17%)

 T4 8 (1.60%) 15 (2.99%) 23 (4.59%)

N

 N0 112 (22.36%) 207 (41.32%) 319 (63.67%) 0.1161

 N1 57 (11.38%) 74 (14.77%) 131 (26.15%)

 N2 16 (3.19%) 24 (4.79%) 40 (7.98%)

 N3 0 5 (1.00%) 5 (1.00%)

  Nx 0 6 (1.20%) 6 (1.20%)

M

 M0 149 (29.74%) 262 (52.30%) 411 (82.04%) 0.4213

 M1 1 (0.20%) 6 (1.20%) 7 (1.40%)

  Mx 34 (6.79%) 45 (8.97%) 79 (15.76%)

 Unknown 1 (0.20%) 3 (0.60%) 4 (0.80%)

Stage

 Stage I 80 (15.97%) 164 (32.73%) 244 (48.70%) 0.1160

 Stage II 68 (13.57%) 94 (18.76%) 162 (32.34%)

 Stage III 35 (6.99%) 49 (9.78%) 84 (16.77%)

 Stage IV 1 (0.20%) 6 (1.20%) 7 (1.40%)

 Unknown 1 (0.20%) 3 (0.60%) 4 (0.80%)

IPTS groups

 High score 52 (10.38%) 254 (50.70%) 306 (61.08%) < 0.0001****
 Low score 133 (26.55%) 62 (12.38%) 195 (38.92%)
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expression value + 0.0006362408 × KCNQ3 expression  
value + 0.0247048306 × NLRP12 expression value  
+  0 . 0 3 1 4 7 2 0 0 6 9  ×  S C A R F 1  e x p r e s s i o n 
value + 0.0013954206 × SIGLEC12 expression value  
+  0 . 0 0 0 4 9 5 7 6 2 8  ×  T G M 2  e x p r e s s i o n 
value + 0.0617891897 × VSTM1 expression value.

In addition, the predictive effect of the prognos-
tic model on type C2 was visualized by construct-
ing a nomogram (Fig.  3D). It can be seen that when 
IPTS = 0.6369, the probability of patients in type C1 
and C2 was 50%, and the probability of patients in 

type C2 was higher when the value exceeded 0.6369. 
Besides, under the condition of 1000 repetitions, the 
mean absolute error (MAE) of the calibration curve 
(Fig.  3E) was 0.062, and the curve fitting was suitable, 
indicating a sound prediction effect. As can be seen 
from this model, there were nine genes with regression 
coefficient < 0—which can be used as gene signatures 
of type C1; and eight genes with regression coeffi-
cient > 0—which can be used as gene signatures of type 
C2 (Fig. 3F). Thus, molecular typing was achieved to a 
certain extent.

Fig. 2 Differentially expressed genes (DEGs) between NMF types are mainly involved in immune system regulation. A Survival analysis shows no 
significant difference in OS between NMF types; B survival analysis shows no significant difference in DFS between NMF types; C significant DEGs 
between NMF types: 468 up-regulated and 2179 down-regulated in type C1 compared with type C2; D–G top ten enriched D biological processes, 
E cellular components, F molecular functions, and G KEGG pathways in DEGs

(See figure on next page.)
Fig. 3 Construction of an immune infiltration prediction model based on 17 genes. A Venn diagram of the intersection of differentially expressed 
genes, genes affecting overall survival and disease-free survival of patients in the training set, as well as in the two validation sets GSE126044 and 
GSE135222; B Lasso coefficient distribution diagram of 20 genes with x-coordinate log (λ) for screening the best tuning parameter (λ); C screening 
of the tuning parameter in the lasso regression model based on tenfold cross-validation; Plotting was performed based on this value and the AUC 
value of the ROC curve. A vertical dashed line was drawn at the best value by using the minimum standard and 1 standard error of the minimum 
standard (1-SE standard); D nomogram plotted based on the IPTS. IPTS could predict whether the patient had an NMF type of either C1 or C2. The 
higher the IPTS, the higher the probability of the patient having type C2. When IPTS = 0.6369, the probability of the patient in the C1 and C2 types 
was 50%. E Calibration curve plot according to lasso regression analysis. The x-coordinate represented the probability that the model predicts type 
C2 for patients, and the y-ordinate represented the actual probability. F Sankey diagram plotted according to NMF or IPTS subtyping, and 17 gene 
signatures. The low IPTS group tended towards type C1, while the high IPTS group was more representative of type C2
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Molecular typing based on IPTS prediction model can 
replace NMF typing
Through analysis and drawing the ROC curve, the AUC 
was found to be 0.82 (95% CI = 0.86–0.79) (Fig.  4A), 

and the cutoff value corresponding to the maximum 
Youden index showed a prediction probability of 50% 
in the nomogram, i.e., 0.6369. At this point, the predic-
tion sensitivity of the ROC curve was 0.8038, and the 

Fig. 3 (See legend on previous page.)
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specificity was 0.7189, indicating that the IPTS model 
could well predict the NMF typing of patients with 
LUSC. Moreover, the IPTS of patients in type C2 was 

significantly higher than that of patients in type C1 
(P = 0.0026, Fig. 4B), and the number of patients in type 
C2 with higher IPTS was significantly higher than that 

Fig. 4 Molecular typing based on IPTS prediction model can replace NMF typing. A ROC curves plotted based on the IPTS and NMF typing; B 
histogram of IPTS between C1 and C2 subtypes. The IPTS of type C2 was significantly higher than that of type C1; C violin plot between enrichment 
scores of anti- and pro-tumor immunity in both high and low IPTS groups; D scatter plot of correlation between enrichment scores of anti- and 
pro-tumor immunity in both high and low IPTS groups; E violin plot between enrichment scores of 28 types of immune cells in both high and 
low IPTS groups; F survival analysis showed the low score group had better OS than the high score groups (for IPTS = 0.75526); G survival analysis 
showing better DFS in low compared to high score groups (for IPTS = 0.96915); **P < 0.01, ****P < 0.0001
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of patients in type C1 (P < 0.0001, Table  1). It can be 
preliminarily concluded that molecular typing based on 
the IPTS could well predict NMF typing.

To further clarify whether IPTS subtyping could 
replace NMF typing, we also performed difference anal-
ysis and correlation analysis. As shown in Fig. 4C, the 
enrichment scores of anti-tumor immunity (P < 0.0001) 
and pro-tumor immunity (P < 0.0001) in patients with 
high IPTS were significantly higher than those in 
patients with low IPTS. Furthermore, there were sig-
nificant correlations between the enrichment scores of 
anti- and pro-tumor immunity both in the high and low 
IPTS groups (Fig.  4D). The correlation coefficient of 
the high score group was 0.86 (P = 5.1e−89), while the 
correlation coefficient of the low score group was 0.90 
(P = 1.8e−73). In addition, except for CD56 bright NK 
cells (P = 0.07), the enrichment scores of TIICs in the 
high IPTS group were significantly higher than those 
in the low IPTS groups (P < 0.0001, Fig.  4E). There-
fore, molecular typing based on IPTS can replace NMF 
typing and has potential therapeutic value for clinical 
application.

Since our prediction model was constructed based on 
genes that affect the OS and DFS of patients, we per-
formed survival analysis to evaluate the prognostic pre-
dictive value of this model. Furthermore, we assessed 
whether the model could compensate for the missing 
prognostic prediction function of the NMF typing. The 
results suggested that when the optimal cutoff value 
was used instead of the cutoff value of the ROC curve, 
the low IPTS group had better OS (HR = 1.06, 95% 
CI = 0.98–1.16, P = 0.03, Fig.  4F) and DFS (HR = 1.12, 
95% CI = 1.03–1.20, P = 0.0027, Fig. 4G) than the high 
IPTS group. The prediction model could predict the 
prognosis of patients under certain conditions. For 
example, when predicting OS, the best cutoff value of 
IPTS was 0.75526; while when predicting DFS, the best 
cutoff value of IPTS was 0.96915 in the training set.

Immune infiltration prediction model predicts immune 
efficacy of immunotherapy and the potential therapeutic 
value of five anti‑tumor drugs
The above survival analysis results indicated that patients 
with high IPTS have worse prognoses. However, to our 
knowledge, these patients theoretically benefit from 
immunotherapy due to the high degree of immune cell 
infiltration. Therefore, we analyzed and verified this view 
via two data sets in patients that received immunother-
apy. In the NSCLC cohort (GSE126044) receiving anti-
PD-1 antibody immunotherapy, patients who responded 
to immunotherapy had significantly higher IPTSes 
than patients who did not respond to immunotherapy 

(P = 0.0032) (Fig.  5A) with a ROC AUC of 0.95 (95% 
CI = 1.00–0.84), while the ROC AUC of PD-L1 was 0.73 
(95% CI = 0.99–0.46, Fig. 5D) indicating that IPTS has a 
great predictive effect for the efficacy of immunotherapy 
in this dataset. In another NSCLC cohort (GSE135222), 
patients who benefited from immunotherapy had higher 
IPTSes than those who did not benefit from immunother-
apy (P = 0.0451) (Fig. 5B) with a ROC AUC of 0.77 (95% 
CI = 0.96–0.58), and it was also larger than that of PD-L1 
of 0.69 (95% CI = 0.90–0.48, Fig. 5E), suggesting that the 
IPTS has a good predictive value of immunotherapy effi-
cacy in this cohort. In addition, this dataset reported the 
prognostic information on the PFS of patients. By tak-
ing the optimal cutoff value (IPTS = − 2.13), the PFS of 
patients with high IPTS after immunotherapy was bet-
ter than that of patients with low IPTS (HR = 0.72, 95% 
CI = 0.5–1.04, P = 0.0059, Fig. 5G), which also showed a 
good predictive value of immunotherapy efficacy and a 
certain predictive value of survival prognosis.

In our independent LUSC cohort, there are two 
patients received complete response (CR), 3 patients 
received partial response (PR), 4 patients received sta-
ble disease (SD), and 1 patient received progression of 
disease (PD) according to response evaluation criteria 
in solid tumours (RECIST, v1.1). All ten patients were 
divided into two groups, responder group (CR + PR) and 
non-responder group (SD + PD) (Additional file  1: Fig. 
S3). The results showed that patients in responder group 
had significantly higher IPTSes than patients in non-
responder group (P = 0.0325) (Fig. 5C) with a ROC AUC 
of 0.88 (95% CI = 1.00–0.66), which was larger than that 
of PD-L1 of 0.64 (95% CI = 1.00–0.26, Fig. 5F). The PFS of 
patients with high IPTS after immunotherapy was better 
than that of patients with low IPTS (P = 0.0403, Fig. 5H) 
by taking the best cutoff value (IPTS = − 4.05). Therefore, 
it could be confirmed that the constructed immune infil-
tration prediction model has predictive value for immune 
efficacy, i.e., immunotherapeutic efficacy could be better 
for patients with high IPTS.

From the above analysis, patients with low IPTS were 
not likely to benefit from immunotherapy. For this 
subtype of patients, we initially screened other anti-
tumor drugs that may have a curative effect through the 
GDSC database. The analysis results showed that the 
 IC50 of the five anti-tumor drugs acetalax (P = 0.0168), 
AZD2014 (P = 0.0416), GSK2606414 (P = 0.0145), 
obatoclax mesylate (P = 0.0061), and VSP34_8731 
(P = 0.0163) were higher in the high IPTS group than 
in the low IPTS group in LUSC cell lines (Fig.  5I). 
Moreover, it can be seen from the heat map (Fig.  5J) 
that the  IC50 value of the high IPTS group was generally 
higher than that of the low IPTS group, indicating that 
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Fig. 5 Immune infiltration prediction model predicts immune efficacy of immunotherapy vs five anti-tumor drugs. A–C Boxplots of IPTS between 
responder and non-responder groups in the validation set A GSE126044, B GSE135222, and C our independent LUSC cohort. The IPTS was 
significantly higher in the responder/benefit group than in the non-responder/no-benefit group; D–F ROC curve plot based on IPTS and immune 
response of patients in validation dataset D GSE126044, E GSE135222, and F our independent LUSC cohort; G, H survival curve plot according to 
IPTS, PFS time, and survival status of patients in the validation dataset G GSE135222 and H our independent LUSC cohort; I histogram based on IPTS 
molecular typing and the  IC50 of five anti-tumor drugs; J heatmap based on IPTS molecular typing and the  IC50 of five anti-tumor drugs. The  IC50 of 
these drugs in the high score group was generally higher than in the low score group. *P < 0.05, **P < 0.01
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patients in the low IPTS group might be more sensitive 
to these five drugs.

IPTS positively correlates with immune microenvironment 
score and expression of immune‑related genes signatures
The immune microenvironment scores of 501 patients 
with LUSC in the training set were evaluated using 
grouping analysis of IPTS molecular typing. The results 
showed that the stromal score (P < 0.0001), immune 
score (P < 0.0001), and ESTIMATE score  (P < 0.0001) in 
the high IPTS group were significantly higher than those 
in the low IPTS group  (Fig.  6A), suggesting that higher 
stromal cell levels and infiltration levels of immune cells 
in the high compared to low IPTS groups. This further 
confirms that tumors in the high IPTS subtype tended to 
be “hot tumors”. Moreover, through correlation analysis, 

IPTS was significantly positively correlated with the stro-
mal score (P = 2.0e−22, r = 0.42, Additional file  1: Fig. 
S4A), immune score (P = 2.2e−31, r = 0.49, Additional 
file  1: Fig. S4B), and ESTIMATE score (P = 1.9e−30, 
r = 0.48, Additional file 1: Fig. S4C). Meanwhile, the cor-
relation analysis of IPTS molecular typing showed that 
only the immune score (low score: P = 0.04, r = 0.14; High 
score: P = 8.4e−16, r = 0.44, Fig. 6E) was statistically sig-
nificant in the low IPTS group, whereas there was no sig-
nificant difference in stromal score (Low score: P = 0.21, 
r = 0.09; High score: P = 4.5e−9, r = 0.33, Fig.  6D) and 
ESTIMATE score (low score: P = 0.08, r = 0.13; High 
score: P = 1.2e−14, r = 0.42, Fig. 6F), suggesting that the 
three immune microenvironment scores were mainly 
positively correlated with IPTS in the high score group.

Fig. 6 IPTS positively correlates with immune microenvironment score and expression of immune-related genes signatures. A Histograms based 
on IPTS molecular typing and tumor microenvironment (TME)-related enrichment scores; B histograms based on IPTS molecular typing and 
enrichment scores of the five immune molecular typing; C histogram based on IPTS molecular typing and TPM values of four immune checkpoints 
sequenced in TCGA-LUSC database; D–F Scatter plot of correlations based on IPTS and D stromal scores, E immune scores, and F ESTIMATE scores. 
G–J Scatter plot of correlations based on IPTS and expression of G CTLA-4, H PD-1, I PD-L1, and J PD-L2. ****P < 0.0001
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In addition, we analyzed the five immune molecu-
lar typing scores of the samples in the training set by 
ssGSEA. The detailed gene signatures of the immune 
molecular typing gene markers are listed in Additional 
file 5: Table S4. Similarly, according to the IPTS molecular 
typing analysis, the results showed that the enrichment 
scores of chemokines (P < 0.0001), receptors (P < 0.0001), 
MHC molecules (P < 0.0001), immuno-inhibitors 
(P < 0.0001), and immuno-stimulators (P < 0.0001) in the 
high IPTS group were significantly higher than those in 
the low IPTS group (Fig. 6B). Furthermore, the four tar-
gets of immunotherapy drugs commonly used in clinical 
practice all relate to immuno-inhibitors. Therefore, the 
differences in expression values of the four immuno-
inhibitors CTLA-4, PD-1 (PDCD1), and its two ligands 
PD-L1 (CD274) and PDL-2 (PDCD1LG2) were analyzed 
between the IPTS groups in the training set. The results 
showed that the expressions of CTLA-4 (P < 0.0001), PD-
1 (P < 0.0001), and PD-L2 (P < 0.0001) in the high IPTS 
group were significantly higher than those in the low 
IPTS group, whereas that of PD-L1 expression was insig-
nificant (P = 0.22) (Fig.  6C). Further correlation analysis 
showed that IPTS was significantly positively correlated 
with the expressions of CTLA4 (P = 2.6e−11, r = 0.29, 
Additional file  1: Fig. S4D), PD-1 (P = 1.8e−8, r = 0.25, 
Additional file  1: Fig. S4E), PDL1 (P = 8.3e−3, r = 0.12, 
Additional file  1: Fig. S4F), and PD-L2 (P = 6.4e−9, 
r = 0.26, Additional file 1: Fig. S4G). The results of IPTS 
molecular typing correlation analysis showed a signifi-
cant negative correlation of PD-1 expression with IPTS 
in the low score group (P = 0.04, r = − 0.15, Fig.  6H), 
whereas those of the other three immuno-inhibitors 
were not statistically significant. In the high score group, 
the expressions of the four immuno-inhibitors CTLA-4 
(P = 2.7e−7, r = 0.29, Fig. 6G), PD-1 (P = 1.7e−5, r = 0.24, 
Fig. 6H), PD-L1 (P = 7.2e−4, r = 0.19, Fig. 6I), and PD-L2 
(P = 3.4e−9, r = 0.33, Fig.  6J) were positively correlated 
with IPTS. To a certain extent, the above results further 
provide a theoretical basis for better immunotherapy effi-
cacy in patients with high IPTS.

High IPTS involved in immune‑related signaling pathways
The results of GSEA indicated that the IPTS was mainly  
related to Parkinson’s disease (NES = − 1.9186, NP = 0.0097),  
oxidative phosphorylation (NES = − 1.8862, NP = 0.0094),  
Huntington’s disease (NES = − 1.8586, NP = 0.0119), 
Alzheimer’s disease (NES = − 1.8144, NP = 0.0190), spli-
ceosome (NES = − 1.7813, NP = 0.0215), homologous 
recombination (NES = − 1.7466, NP = 0.0214), nucleo-
tide excision repair (NES = − 1.6533, NP = 0.0427), 
etc. (Fig.  7A). In contrast, high IPTS was mainly asso-
ciated with cytokine-cytokine receptor interaction 
(NES = 2.6726, NP < 0.0001), chemokine signaling 

pathway (NES = 2.5505, NP < 0.0001), natural killer 
cell mediated cytotoxicity (NES = 2.5238, NP < 0.0001), 
leukocyte trans-endothelial migration (NES = 2.4652, 
NP < 0.0001), Leishmania infection (NES = 2.4424, 
NP < 0.0001), cell adhesion molecules (NES = 2.4418, 
NP < 0.0001), JAK-STAT signaling pathway 
(NES = 2.4409, NP < 0.0001), etc. (Fig. 7B). These results 
indicate that low IPTS was mainly involved in disease, 
genetic, and metabolic-related signaling pathways, while 
high IPTS was mainly involved in immune-related signal 
pathways. All the results of GSEA are detailed in Addi-
tional file 6: Table S5.

Discussion
The past decade witnessed great strides in cancer diag-
nosis and treatment. However, progress in improving 
the survival of patients with lung cancer has been slow, 
with an average 5-year survival rate of only 10–20% in 
most countries [44, 45]. In recent years, immunother-
apy has achieved promising results in clinical practice. 
The latest research suggested a 5-year survival rate 
as high as 23.2% in patients with advanced NSCLC 
using anti-PD-1 antibodies as the first-line treatment 
[46]. Furthermore, the 5-year survival rate of patients 
treated with anti-PD-1 antibodies as a second-line 
treatment has also reached 16% [47], which is twice 
as high as that of traditional treatments. Neverthe-
less, several studies have revealed that only ~ 20% of 
patients with NSCLC could benefit from ICI therapy 
[48, 49], which illustrates the importance of selecting 
patients that will potentially benefit. Recently, Tian 
et  al. [50] conducted an immune subgroup analysis 
study on NSCLC including LUSC, lung adenocarci-
noma, and lung adenosquamous carcinoma, and found 
that mast cell types had a significant impact on the 
prognosis of patients with LUAD while the presence 
of monocytes was significantly associated with OS in 
patients with LUSC. Furthermore, the authors pointed 
out that LUSC and LUAD may require independent 
analysis. This is in accordance with a study reported 
by Jiang  et al. [115] on the prediction of immunother-
apy efficacy in NSCLC that also suggested the under-
lying immune response mechanism between LUAD 
and LUSC may be different. Therefore, we constructed 
a prediction model of immunotherapy efficacy to 
improve the accuracy of screening patients with LUSC 
for potential benefit from ICI treatment.

Detecting the expression level of PD-L1 is the most 
commonly used method to predict the efficacy of immu-
notherapy [51]. Some scholars have previously con-
structed some efficacy prediction models for tumor 
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immunotherapy, such as the Tumor Immune Dysfunc-
tion and Exclusion (TIDE) [52] and the Tumor Inflamma-
tion Signature (TIS) [53, 54]. By comparing with PD-L1 
expression level to predict the efficacy of immunotherapy, 
in our independent LUSC cohort and two validation sets, 
the ROC AUC of IPTS molecular typing was increased 
by 24%, 22% and 8% respectively compared with that of 
PD-L1 expression level. The results suggest that the pre-
diction effect of our model is similar to that of TIDE or 
TIS. However, compared with TIDE, which needs to 
use whole gene transcriptome data to conduct online 
prediction, or TIS, which only knows the gene type and 
does not disclose the relevant calculation equations, and 
requires a special analysis system, building a IPTS model 
equation to predict the efficacy of immunotherapy have 
the advantages of lower cost and more convenience.

In our study, a total of 17 genes were screened to 
construct a predictive model for immunotherapy effi-
cacy in patients with LUSC, of which 9 genes (AKAP2, 

GCGR , LRRC38, MARCO, NANOG, NTSR1, PF4, RP1, 
and TMEM236) were gene signatures of C1, and 8 
genes (ALOX5, FCGR2A, KCNQ3, NLRP12, SCARF1, 
SIGLEC12, TGM2, and VSTM1) were gene signatures 
of C2. In previous studies, some of these genes have 
been associated with cancer progression and prognosis. 
Among these, AKAP2 was found to be upregulated in 
ovarian cancer, and promotes cancer cell growth as well 
as migration [55]. Increased expression of AKAP2 has 
been linked to metastatic prostate cancer, while knocking 
down its expression could significantly reduce the tumo-
rigenicity and metastatic ability of prostate cancer cells 
[56]. GCGR  was found to be an independent prognostic 
factor for OS in patients with NSCLC [57]. The protein 
encoded by MARCO is a member of the scavenger recep-
tor family. It has been shown that targeting the scaven-
ger receptor MARCO with antibodies reduces tumor 
growth and metastasis in murine tumor models of mela-
noma, colon cancer, and breast cancer [58]. Furthermore, 

Fig. 7 High IPTS involved in immune-related signaling pathways. A, B The top seven pathways with biological significance in GSEA in the A low 
IPTS and B high IPTS groups ranked by NES
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the homeobox-domain transcription factor NANOG, 
a key regulator of embryonic development and cellu-
lar reprogramming, is ubiquitously expressed in human 
cancers [59]. Its overexpression has been linked to a 
worse prognosis in lung cancer [60]. NTSR1 is report-
edly expressed in 40% of lung tumors, and its expression 
is a negative prognostic marker in patients with surgi-
cally resected stage I lung adenocarcinoma [61]. PF4 is a 
cancer-enhancing endocrine signal, and its overexpres-
sion in tumors is associated with reduced OS in patients 
with lung cancer [62]. As six of the nine genes associated 
with low immune cell infiltration (type C1) were involved 
in the pathogenesis, malignant transformation, and pro-
gression of a variety of cancers, including LUSC, as well 
as showing significant correlations with patient survival 
and prognosis, the findings of our bioinformatics analysis 
are meaningful to an extent.

Among the 8-gene signature of high immune cell infil-
tration (type C2), ALOX5 has been found to promote 
gastric cancer growth and attenuate chemotherapy tox-
icity [63], while in breast cancer, ALOX5 activation is 
associated with HER2 expression as well as mediates 
breast cancer growth and migration [64]. Recent stud-
ies have reported that the polymorphism of FCGR2A 
expression is associated with an increased risk of lung 
cancer [65]. NLRP12 is a key factor in maintaining intes-
tinal homeostasis and preventing colorectal tumors [66]. 
Higher SCARF1 expression in hepatocellular carcinoma 
tumor tissues was highly prognostic of better OS, DFS 
and PFS [67]. High frequency of SIGLEC12 expression in 
advanced colorectal cancer cohort and correlation with 
OS [68]. TGM2 has been shown to enhance the migra-
tion and invasion of lung cancer cells [69]. TMEM236 has 
the potential to be a potential novel diagnostic biomarker 
for colorectal cancer [70]. Downregulated in bone mar-
row cells from leukemia patients, VSTM1 may become 
a diagnostic and treatment target [71]. Only the three 
remaining genes, KCNQ3, LRRC38 and RP1, were rarely 
reported in any cancer research, and thus show potential 
value for research in LUSC.

Among these 17 genes, 13 genes were reported to be 
associated with immune-related pathways. The path-
way with the largest number of associated genes is the 
mitogen-activated protein kinases (MAPKs) signal-
ing pathway. Eight genes could regulate it, and they are 
AKAP2 [72], ALOX5 [63], GCGR  [73], NLRP12 [74], 
NTSR1 [75], PF4 [76], SIGLEC12 [68] and TGM2 [77]. 
Wnt/β-catenin signaling pathway could be regulated by 
AKAP2 [55], ALOX5 [78] and TGM2 [79]. PI3K/AKT/
mammalian target of rapamycin (mTOR) signaling path-
way could be regulated by ALOX5 [80], SCARF1 [81] and 
TGM2 [82]. There are seven genes involved in the regula-
tion of nuclear transcription factor-κB (NF-κB) signaling 

pathway, such as ALOX5 [83], MARCO [84], NANOG 
[85], NLRP12 [74], NTSR1 [75], TGM2 [86], and VSTM1 
[87]. Toll-like receptors (TLRs) signaling pathway could 
be regulated by FCGR2A [88], MARCO [89], NANOG 
[90], NLRP12 [74], and PF4 [91]. Six genes could involved 
in the regulation of janus kinase/signal transducer and 
activator of transcription (JAK/STAT) signaling path-
way, such as ALOX5 [78, 92], MARCO [93], NLRP12 
[94], PF4 [95], SCARF1 [81], and TGM2 [96]. In addi-
tion, some genes have other immune-related functions. 
For instance, ALOX5 contributes to the recruitment and 
activation of macrophages thereby adding to the role of 
macrophages in a dynamically changing tumor environ-
ment [97]. FCGR2A encodes the receptor protein on 
the surface of immune cells, which can transmit activa-
tion signals to cells through its tyrosine-based activa-
tion motif [98]. Antibodies targeting MARCO in NSCLC 
restore the anti-tumor activity of T cells and NK cells 
by polarizing suppressor macrophages [99]. NLRP12 
plays critical roles in balancing T cell response to control 
overt activation and maintain cellular homeostasis [100]. 
SCARF1 mediates the clearance of apoptotic cells and 
prevents autoimmunity [101]. SIGLEC12 encodes one of 
the CD33-related SIGLEC family of signaling molecules 
in immune cells [102]. The binding of the TGM2 medi-
ated crosslinked fibrinogens to un-stimulated endothe-
lial cells can assemble leukocytes, platelets or fibrin, and 
promote inflammation [103]. Only the four remaining 
genes, KCNQ3, LRRC38, RP1 and TMEM236 were rarely 
reported in any immue-related research, which provides 
new ideas for follow-up studies based on these four 
genes, especially in the immunological research related 
to LUSC.

ICIs enhance T cell activity by blocking CTLA-4, 
PD-1, or PD-L1 to achieve an anti-tumor effect. The 
high expression of CTLA-4, PD-1, and PD-L1/PD-L2 has 
been positively correlated with the efficacy of immuno-
therapy, which has a certain value for therapeutic predic-
tion [104]. By exploring the relationship between IPTS 
and the expression of CTLA-4, PD-1, PD-L1, and PD-L2, 
we found that the expression of four immuno-inhibitors 
was significantly positively correlated with the IPTS in 
the high score group. In addition, the difference analy-
sis of immune molecular typing between the two IPTS 
subgroups (either high or low scores) revealed that the 
enrichment scores of chemokines, chemokine recep-
tors, MHC molecules, immuno-inhibitors, and immuno-
stimulators in patients with high IPTS were significantly 
higher than those in patients with low IPTS. These find-
ings further indicated evident differences in the immune 
microenvironment between these two subtypes, with 
tumors in the high score group more likely to be “hot 
tumors”.
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Our study found that patients with high IPTS had a 
worse prognosis than those with low IPTS in the train-
ing set (patients not receiving immunotherapy), while 
in the validation set GSE135222 and our LUSC cohort 
(patients receiving immunotherapy), this situation had 
been reversed. In other words, patients with high IPTS 
were more likely to benefit from immunotherapy than 
those with low IPTS. As for patients with low IPTS, 
we further explored the correlation between IPTS and 
anti-tumor drug efficacy, and found that the  IC50 of 
five drugs (i.e., acetalax, AZD2014, GSK2606414, oba-
toclax  mesylate, and VSP34_8731) in LUSC cells with 
high IPTS was higher than that in cells with low IPTS, 
suggesting that patients with low IPTS might be sensi-
tive to these drugs. Among them, acetalax, also known 
as oxyphenisatin acetate, has shown antitumor activity 
in mouse xenograft models by inducing tumor necrosis 
factor (TNF) α expression and TNFR1 degradation, indi-
cating autocrine TNF α-mediated apoptosis. AZD2014 is 
a mTOR inhibitor [105]. mTOR is a key kinase of PI3K/
AKT/mTOR signaling pathway, which can regulate the 
tumor cell proliferation, differentiation, apoptosis and 
other processes. Previous studies have shown that mTOR 
signaling pathway has a significant regulatory effect on 
immune function and T cell differentiation by integrating 
various microenvironment signals [106, 107]. AZD2014 
has been proved to have dramatic anti-tumor effects in 
phase II clinical trials for breast cancer [108] and hepato-
cellular carcinoma [109]. As a protein kinase R-like endo-
plasmic reticulum kinase (PERK) inhibitor, GSK2606414 
can significantly inhibit the PERK dependent signaling 
pathway in human colorectal adenocarcinoma cell line 
HT-29 and human neuroblastoma cell lines SH-SY5Y, 
which can promote apoptosis by inducing endoplas-
mic reticulum stress [110, 111]. The pan-Bcl-2 inhibitor 
Obatoclax can sensitize hepatocellular carcinoma cells 
to promote the anti-tumor efficacy in combination with 
ICIs, for Obatoclax can sensitize T cell mediated kill-
ing by promoting T cell activation and the expression of 
effector cytokines in spleen and tumor [112]. VSP34, as 
a type III phosphatidylinositol kinase, is a key protein in 
the process of autophagy [113]. Recently, Noman et  al. 
[114] reported that VSP34 regulated the TME through its 
kinase activity, and VSP34 protein knockdown or VSP34 
kinase activity inhibition could transform tumors from 
“cold tumors” to “hot tumors” to enhance the effect of 
ICIs. As an inhibitor targeting VSP34, VSP34_8731 has 
the potential to realize the transition from C1 tumors to 
C2 tumors by increasing the infiltration of immune cells 
into tumor tissues. It can be concluded from the above 
studies that these five drugs have the effects of regulating 
immune process thereby promoting tumor cell apoptosis, 

and it might be the reason that the LUSC cell lines with 
low IPTSes may be more sensitive to these five antitumor 
drugs. This also demonstrates the feasibility of our study 
in using high and low immune cell infiltration typing for 
patients with LUSC as a measure of immunotherapy effi-
cacy, and our findings provided a theoretical basis for the 
selection of treatment methods in patients with LUSC, 
and also put forth a new treatment scheme with poten-
tial curative effect for patients with poor outcomes after 
immunotherapy.

Our study presented a potential new method for pre-
dicting the efficacy of immunotherapy in LUSC. Never-
theless, there are still some limitations that should not be 
ignored. First, based on the data from public databases, 
the internal mechanism still needs experimental verifi-
cation. Through functional enrichment analysis, it was 
found that the high IPTS groups involved the regulation 
of multiple pathways related to tumor occurrence and 
development, which requires follow-up molecular mech-
anism research. Second, due to the different sequencing 
platforms of the training set (TCGA-LUSC) and valida-
tion sets (GSE126044 and GSE135222) giving rise to 
different sequencing backgrounds and normalization 
methods, it is difficult to obtain the best IPTS value suit-
able for all data sets to distinguish high or low immune 
cells infiltration. Therefore, the initial IPTS threshold 
should be obtained through small sample testing, and 
then corrected by conducting a large-scale prospective 
clinical study. Furthermore, whether a high IPTS could 
become a predictor of immunotherapy efficacy also 
needs to be further confirmed by large-scale prospective 
clinical trials. Third, regarding anti-tumor drug treat-
ment, the number of LUSC cell lines in the GDSC data-
base is relatively small at only 15. To maximize the test 
efficiency, we grouped them as high and low IPTS groups 
according to 1:1; hence, there is likely to be a certain bias. 
The results of this study may still provide theoretical sup-
port for the treatment of LUSC with anti-tumor drugs.

Conclusion
In conclusion, we constructed a model containing 17 
genes to predict the efficacy of immunotherapy for 
patients with LUSC based on bioinformatics analysis 
on the TCGA database. The prediction effect of the 
model was verified in two independent cohorts in the 
GEO database. The IPTS molecular typing positively 
correlated with both the degree of tumor immune cell 
infiltration and the efficacy of immunotherapy with 
potential prognostic value. This study provides a new 
method for predicting the efficacy of immunotherapy 
for LUSC, which may have potential clinical prospects.
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