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SLC26A4 correlates with homologous 
recombination deficiency and patient prognosis 
in prostate cancer
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Abstract 

Background:  Homologous recombination deficiency (HRD) is closely associated with patient prognosis and treat-
ment options in prostate cancer (PCa). However, there is a lack of quantitative indicators related to HRD to predict the 
prognosis of PCa accurately.

Methods:  We screened HRD-related genes based on the HRD scores and constructed an HRD cluster system to 
explore different clinicopathological, genomic, and immunogenomic patterns among the clusters. A risk signature, 
HRDscore, was established and evaluated by multivariate Cox regression analysis. We noticed that SLC26A4, a model 
gene, demonstrated unique potential to predict prognosis and HRD in PCa. Multi-omics analysis was conducted to 
explore its role in PCa, and the results were validated by qRT-PCR and immunohistochemistry.

Results:  Three HRD clusters were identified with significant differences in patient prognosis, clinicopathological 
characteristics, biological pathways, immune infiltration characteristics, and regulation of immunomodulators. Further 
analyses revealed that the constructed HRDscore system was an independent prognostic factor of PCa patients with 
good stability. Finally, we identified a single gene, SLC26A4, which significantly correlated with prognosis in three 
independent cohorts. Importantly, SLC26A4 was confirmed to distinguish PCa (AUC for mRNA 0.845; AUC for immuno-
histochemistry score 0.769) and HRD (AUC for mRNA 0.911; AUC for immunohistochemistry score 0.689) at both RNA 
and protein levels in our cohort.

Conclusion:  This study introduces HRDscore to quantify the HRD pattern of individual PCa patients. Meanwhile, 
SLC26A4 is a novel biomarker and can reasonably predict the prognosis and HRD in PCa.
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Introduction
Prostate cancer (PCa), a common malignant tumor, is the 
second leading cause of cancer-related mortality in men 
worldwide [1]. It can metastasize to bone (80%-100%), 
lymph nodes, liver, adrenal gland, or lung [2]. Although 
most early localized prostate cancer can achieve satis-
factory results by prostatectomy or radiotherapy with a 
5-year survival rate of 98.9%, metastasis is mainly found 
on initial diagnosis, hampering the avenue to a good 
prognosis. Therapy for metastatic PCa remains limited, 
and the current standard therapy is androgen deprivation 
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therapy (ADT) combined with chemotherapy [3, 4]. 
Although ADT is initially effective, most patients inevi-
tably develop into lethal metastatic castration-resistant 
prostate cancer (mCRPC) within 2–3  years [5], and the 
5-year survival rate of them is only 28.2% [1]. Accord-
ingly, there is significant enthusiasm to improve the 
stratification of patients with prostate cancer so that 
high-risk patients can be found earlier and receive active 
treatment.

The homologous recombination pathway plays a vital 
role in DNA repair and involves many genes [6], includ-
ing BRCA​ (BRCA1/2), ATM, CHEK2, etc. Accumulated 
evidence has revealed the value of homologous recombi-
nation deficiency (HRD) in PCa, representing a high risk 
of PCa carcinogenesis and aggressiveness. A quarter of 
patients with recurrent or advanced PCa carry germline 
or somatic mutations in HRD-related genes [7]. The most 
commonly altered HRD-related gene in prostate cancer is 
BRCA2, with a prevalence of 5–6% at the germline level 
in mCRPC patients [8, 9]. A previous study revealed that 
BRCA2 mutation carriers have a 5.0 to 8.6-fold increased 
risk and a 15% absolute risk of developing PCa [10, 11]. 
Moreover, BRCA2 mutation carriers have higher progres-
sion rates from local to systemic disease, higher Gleason 
scores, shorter metastasis-free survival, and lower overall 
survival rates when compared to non-carriers [12–14]. In 
general, HRD is closely associated with a worse prognosis 
in PCa.

By extracting the HRD scores and other information 
from The Cancer Genome Atlas prostate adenocarci-
noma cohort (TCGA-PRAD), we established an HRD sig-
nature to distinguish between high-risk and low-risk PCa 
patients. Through in-depth analysis, we identified and 
validated the protective effect of Solute Carrier Family 26 
Member 4 (SLC26A4) in PCa, which may guide the appli-
cation of poly(ADP-ribose) polymerase (PARP) inhibitors 
in PCa complementary to the commonly HRD-related 
gene mutations.

Material and methods
Prostate cancer datasets and preprocessing
Three open datasets with prostate cancer samples, 
multi-omics data, and complete clinical information 
were retrieved from the Cancer Genome Atlas (TCGA), 
Memorial Sloan Kettering Cancer Center (MSKCC), and 
Gene-Expression Omnibus (GEO) databases on August 
22, 2021, including TCGA-PRAD [15], MSKCC-PRAD 
[16], and GSE116918 [17] cohorts. Then fragments per 
kilobase of exon model per million mapped fragments 
(FPKM) values were transformed into transcripts per 
kilobase million (TPM) values and log-transformed. The 
HRD, including loss of heterozygosity (LOH), telomeric 
allelic imbalance (TAI), and large-scale state transitions 

(LST), as well as gene-level copy numbers, PARADIGM 
integrated pathways, immune subtypes, gene-level non-
silent mutation, were downloaded from Pan-Cancer 
(PANCAN) cohort in UCSC Xena (https://​xenab​rowser.​
net/) [18, 19]. Patients in the TCGA-PRAD cohorts 
without specific HRD scores were excluded for further 
analysis.

Profiling of HRD‑related genes
The HRD scores and genome-wide DNA damage foot-
prints were updated on June 13, 2017. Since then, patients 
in the TCGA-PRAD cohorts without specific HRD scores 
were excluded for further analysis. We quartered patients 
in the TCGA-PRAD cohort according to the HRD scores. 
Quarters 1 and 4 were defined as the bottom HRD group 
and top HRD group, respectively. Differential analysis 
was performed based on the transcriptomic data of the 
two groups using the “limma” R package. Genes with | 
log2(fold change) |> 0.5 and p value < 0.05 were selected 
for subsequent univariate Cox analysis, and those signifi-
cantly correlating with patient progression-free interval 
(PFI or PFS) were defined as HRD-related genes. Their 
mutational and expressional profiles were investigated. 
We also calculated their Spearman’s correlations based 
on their mRNA expression levels and displayed it as an 
intra-correlation plot.

Unsupervised clustering for HRD‑related genes
Unsupervised clustering analysis was applied to identify 
distinct HRD patterns based on the expression of the 
above prognostic HRD-related genes and classify patients 
for further analysis. The consensus clustering algorithm 
determined the number of clusters and their stability. 
We used the ConsensuClusterPlus package to perform 
the above steps, and 1000 repetitions were conducted to 
guarantee the stability of classification [20].

The mRNA expression level of each HRD-related gene 
was depicted among the clusters. Principal Component 
Analysis (PCA) and Kaplan–Meier survival analysis were 
performed to assess the power of clustering. The distribu-
tions of clinicopathological characteristics, including age 
at diagnosis, Gleason score, primary outcome, biochemi-
cal recurrence (BCR), pathologic T stage, pathologic N 
stage, original zone of cancer, and immune subtype, were 
evaluated across the clusters.

Pathway quantification at transcriptomic and proteomic 
levels
The PARADIGM algorithm integrates pathway, expres-
sion, and copy number data to infer activation of pathway 
features within a superimposed pathway (SuperPath-
way) network structure. The SuperPathway system com-
prises 1387 constituent pathways from three pathway 
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databases, NCI-PID, BioCarta, and Reactome (last 
updated 05/2013), containing 19K pathway features, 
representing 7369 genes, 9354 complexes, 2092 families, 
82 RNAs, 15 miRNAs, and 592 abstract processes. This 
dataset is ssGSEA scores for 1387 constituent pathways 
[19].

Reverse-phase protein array (RPPA) data from the 
PANCAN cohort were used to calculate the pathway 
activity score of 10 cancer-related pathways. RPPA is a 
high-throughput antibody-based technique with pro-
cedures like Western blots. Proteins are extracted from 
tumor tissue or cultured cells, denatured by SDS, printed 
on nitrocellulose-coated slides, followed by an antibody 
probe. The terms included Apoptosis, Cell Cycle, DNA 
Damage Response, Epithelial-Mesenchymal Transition 
(EMT), Hormone a, Hormone b, PI3K/AKT, RTK, and 
TSC/mTOR pathways. In brief, RBN RPPA data were 
median-centered and normalized by the standard devia-
tion across all samples for each component to obtain the 
relative protein level. The pathway activity score is then 
the sum of the relative protein level of all positive regula-
tory elements minus that of negative regulatory compo-
nents in a particular pathway [21].

Estimation of tumor purity and fractions of immune cells
Estimation of stromal and immune components and 
tumor purity in tumor tissues using expression data was 
achieved by the “ESTIMATE” R package [22]. Subse-
quently, the population abundance (fraction) of tissue-
infiltrating immune and stromal cell populations was 
estimated by three well-known algorithms, including 
MCP counter (10 cell types) [23], ImmuneCellAI (24 cell 
types) [24], and Cibersort (22 cell types) [25].

Essential molecular characteristics of the tumor
We extracted vital molecular features of malignant 
tumors from an integrated and in-depth bioinformatics 
study [26], including proliferation, leukocyte fraction, 
B cell receptor (BCR) evenness, T cell receptor (TCR) 
evenness, Th1, Th2, and Th17 cells, aneuploidy score, 
intratumor heterogeneity (ITH), single nucleotide variant 
(SNV) neoantigens, insertion-and-deletion (indel) neo-
antigens, cancer-testis antigen (CTA) score, homologous 
recombination defects, and fraction of altered genome. 
The microsatellite instability (MSI) MANTIS score was 
downloaded from cBioPortol for Cancer Genomics 
(https://​www.​cbiop​ortal.​org/).

Immunomodulator identification and analysis
A list of 78 immunomodulatory genes was obtained 
from a previous study that curated them from a litera-
ture review performed by immuno-oncology experts 
within the TCGA immune response working group [26]. 

Corresponding median mRNA expression levels were 
used to summarize expression in each cluster. We per-
formed a limma differential analysis across clusters to 
examine differences in immunomodulatory gene expres-
sion and found genes to be significantly differentially 
expressed. And the immunomodulatory copy number 
was also outputted from a PANCAN cohort as deep 
amplifications (2), shallow amplifications (1), non-altera-
tions (0), shallow deletions (− 1), and deep deletions (− 2) 
of each immunomodulator gene. Proportions of samples 
with each type of copy number alteration were then com-
pared across HRD clusters.

Profiling of prognostic hub genes and dimensionality 
reduction
We performed differential expression analysis between 
pairs in this cohort of HRD clusters and performed 
Cox survival analysis after taking the intersection of 
the resulting differentially expressed genes. Those with 
survival significance were set as prognostic hub genes, 
whose expression patterns were employed as the basis of 
subsequent PCA analysis. The risk signature was termed 
as ‘HRDscore’ and calculated by the following formula:

where “ expressionrisk ” stood for expression levels of risk 
genes and “ expressionprotective ” stood for that of protective 
genes.

Patients were dichotomized into high HRDscore, and 
low HRDscore groups based on the best cut-off decided 
by X-tile software. A Sankey plot was established to 
investigate the intrinsic relationship among HRD clus-
ter, immune subtype, and HRDscore. Furthermore, we 
explored the correlations between the HRDscore and 
clinicopathological features, including survival. For sub-
group analysis, TCGA-PRAD patients were divided 
into different groups based on features as follows: age 
(≤ 45 years old or > 45 years old) and Gleason score (< 8 
or ≥ 8). Finally, multivariate Cox analyses were conducted 
to test the robustness of the established HRDscore.

Prediction of immunotherapy response and correlation 
with immune cells
ImmuCellAI was used to predict the response of immune 
checkpoint blockade (ICB) therapy based on the tran-
scriptomic data [24]. A receiver operating characteristic 
(ROC) curve was built to illustrate the power of HRD-
score in predicting immunotherapy response.

We calculated the correlations between HRDscore and 
fractions of immune cells and the prognostic value of 

HRDscore =
∑

[

(PC1 + PC2)× expressionrisk

−(PC1 + PC2)× expressionprotective

]

https://www.cbioportal.org/
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these cell types. Next, several genes were obtained after 
the intersection between HRD-related and prognostic 
hub genes. Their relationship to immune cells was also 
measured to find critical genes that bridge HRD scores, 
immune infiltration, and patient prognosis.

Quantitative real‑time PCR assay
Quantitative real-time PCR was performed with SYBR 
Green PCR mixture (Using Roche lightcycler 480 sys-
tem) according to standard protocols. PCR conditions 
were: one cycle of 5 min at 95 °C, then 45 cycles of 10 s 
at 95 °C, 10 s at 60 °C, 10 s at 72 °C. The expression of the 
SLC26A4 gene was normalized to the expression of the 
GAPDH gene using the comparative CT method. Prim-
ers used were: SLC26A4 (F: 5′-AGG​AAA​TAT​GCA​CTG​
CTC​ACT- 3′; R: 5′-AGT​ATT​CCC​GCA​GTT​TGC​TGA-
3′); GAPDH (F: 5′-CAA​GGC​TGA​GAA​CGG​GAA​G-3′; R: 
5′-TGA​AGA​CGC​CAG​TGG​ACT​C-3′).

Prostate cancer samples and immunohistochemistry
Prostate cancer samples were acquired from Xiangya 
Hospital of Central South University. A physician 
obtained informed consent from the patients. The pro-
cedures related to human subjects were approved by the 
Ethics Committee of Xiangya Hospital, Central South 
University. Tissues were fixed in 10% buffered Formalin, 
then transferred to 70% alcohol. These paraffin-embed-
ded tissues were sectioned (4 μm) and stained with anti-
bodies against SLC26A4 (HPA042860, Atlas Antibodies). 
The following detection and visualization procedures 
were performed according to the manufacturer’s proto-
col. To quantify the immunohistochemistry (IHC) result 
of positive staining, five random areas in each tissue sam-
ple were microscopically examined and analyzed by an 
experienced pathologist. The average staining score was 
calculated by dividing the positive areas by entire regions.

Statistical analyses
The univariate and multivariate Cox analyses were per-
formed to detect the prognostic factors. Kaplan–Meier 
curves with the log-rank test were used to assess survival 
differences between groups. Spearman correlation analy-
ses were used to calculate correlations. The cutoff value 
was determined using the X-tile software (version 3.6.1). 
All statistical analyses were conducted using R software 
(version 4.1.2), and most visualization was achieved using 
the “ggplot2” R package. P < 0.05 was considered statisti-
cally significant.

Results
The landscape of genetic variation of HRD‑related genes 
in prostate cancer
The flow chart of our study is summarized in Fig. 1. We 
first ranked the patients in the TCGA-PRAD cohort 
(n = 472) in order of HRD scores from high to low, and 
then subjected their transcriptomic data in the first and 
fourth quartiles (quartile 4 vs. quartile 1) to differential 
expression analysis (Additional file  4: Table  S1; Fig.  2A, 
B). Sixty-six differential expressed genes were obtained, 
and subsequent univariate Cox analysis found 23 of them 
were prognostic (p < 0.05; Additional file  5: Table  S2; 
Fig. 2C), defined as HRD-related genes.

Of the 23 HRD-related genes, most were protec-
tive factors for PFS of patients with prostate cancers, 
except KRT5 and DDC. Moreover, SLC26A4, KRT16, 
COL17A1, and AQP9 were genetically unstable. And 
briefly, the SNV frequencies in MYOT, COL17A1, AQP9, 
KRT16, and SLC26A4 were high, equal to or exceeding 
10% (Fig. 2D). As for the copy number variation (CNV) 
status, BMPER, SLC26A4, and DDC shared a high ampli-
fication frequency, while KRT16, COL17A1, and AQP9 
demonstrated a high deletion frequency (Additional 
file  6: Table  S3; Fig.  2E). And most genes were differ-
entially expressed between prostate cancer tissues and 
adjacent normal controls (Fig.  2F). The intra-correla-
tion among these HRD-related genes was illustrated in 
Fig. 2G (Additional file 7: Table S4).

Molecular patterns mediated by 23 HRD‑related genes
An unsupervised clustering grouped patients from the 
TCGA-PRAD cohort into three distinct clusters based 
on the expression patterns of 23 HRD associated genes, 
including 179, 246, and 47 samples in the HRD clus-
ters 1 to 3 respectively (Fig.  3A, B, E; Additional file  8: 
Table S5). The expression patterns of HRD-related genes 
and the distribution of clinicopathological features in 
the context of HRD clusters are displayed in Fig. 3C. We 
found that all genes were expressed at the lowest lev-
els in HRD cluster 1 in both the heatmap and boxplot 
(Fig.  3C, D). Although the HRD cluster failed to distin-
guish patients’ overall survival (p = 0.53; Fig. 3F), cases in 
cluster 1 demonstrated the worst progression-free inter-
val (p = 0.0021; Fig. 3G). Moreover, we clustered samples 
based on the expressions of 23 differentially expressed 
genes in the MSKCC-PRAD cohort and generated three 
clusters. Consistently, cluster 1 demonstrated the worst 
PFI (Additional file 1: Fig. S1).
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Fig. 1  The flow chart of our analysis

Fig. 2  Profiling of HRD-related genes. A Distribution of prostate cancer samples according to HRD. Green dots meant the top HRD samples 
(Q1, > 75%), blue dots meant the bottom HRD samples (Q4, < 25%), red dots meant the medium HRD samples (Q2–3, 25% ~ 75%). B Volcano plot of 
differentially expressed genes between the top and bottom groups. C Forest plot of differentially expressed genes with significant prognostic value. 
Red block meant a risk effect (HR > 1), and blue block meant a protective effect (HR < 1). D Oncoplot showing the SNV mutation status of the TOP 10 
HRD-related genes. E Dumbbell chart showing the CNV frequency of HRD-related genes. Red dots meant deletion frequency, and blue dots meant 
amplification frequency. F The expression differences of HRD-related genes between prostate cancer tissues and normal tissues. G The correlations 
among HRD-related genes. Red dots meant risk factors, and blue dots meant protective factors. The statistical significance is indicated as asterisks 
(*), *p < 0.05, ** p < 0.01, ***p < 0.001, ns: not significant

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Consensus clustering of HRD-related genes. A CDF and delta area of consensus clustering. B The consensus matrix when k = 3. C Heatmap 
showing expression patterns of HRD-related genes and clinicopathological features in three clusters. D The detailed expression patterns of 
HRD-related genes in three clusters. E The PCA plot for the HRD cluster. F, G The survival differences in three clusters regarding OS and PFI. The 
statistical significance is indicated as asterisks (*), *p < 0.05, ** p < 0.01, ***p < 0.001, ns: not significant
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HRD clusters distinguish clinicopathological characteristics 
and biological pathways
Chi-square analyses among the three HRD clusters 
revealed that patients in cluster 1 harbored higher age 
and higher Gleason scores (Fig.  4A, B). Furthermore, 
prostate cancer samples in HRD cluster 1 showed more 
malignant properties as they displayed lower proportions 
of complete or partial response (CR/PR) but higher ratios 
of biochemical recurrence (Fig. 4C, D), as well as higher 
pathologic T and N stages (Fig. 4E, F).

Compared with clusters 2 and 3, HRD cluster 1 showed 
higher scores of pathways, including Metastasis, cytokine 
production during the immune response, T cell prolif-
eration during the immune response, but lower scores 
of PARADIGM pathways such as cell cycle, macrophage 
activation, DNA damage, and natural killer cell-medi-
ated cytotoxicity (Fig.  4G, H). Importantly, quantifica-
tion of activated pathways using protein expression data 
also demonstrated that our HRD cluster could well 
reflect genetic alterations, as it uniquely distinguished 

Fig. 4  Clinicopathological features in HRD clusters. The differences in A patient age, B Gleason score, C primary outcome, D biochemical 
recurrence, E pathologic T stage, and F N stage in three HRD clusters. The differential PARADIGM pathways G between clusters 1 and 2, and H 
between clusters 1 and 3. I The differences in biological pathways at the protein level in HRD clusters. The statistical significance is indicated as 
asterisks (*), *p < 0.05, ** p < 0.01, ***p < 0.001, ns: not significant
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Fig. 5  Immune and immunogenic features in HRD clusters. The differences in A stromal score, B immune score, C tumor purity, and D infiltration 
score in three HRD clusters. The immune infiltrating fractions in HRD clusters according to E MCP counter, F ImmuneCellAI, and G Cibersort 
algorithms. The cell types were set in red and bold if the corresponding p values for cluster differences were less than 0.0001 (****). The H 
summarized and I differences in HRD clusters’ immunogenic features. Blue, red, and green meant HRD clusters 1–3, respectively
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patients regarding the pathway “DNA damage response” 
(p < 0.001; Fig. 4I).

Immune infiltration characteristics in distinct HRD clusters
HRD cluster 1 distinctly showed the lowest stro-
mal scores, immune scores, and highest tumor purity 
(Fig.  5A–C; Additional file  9: Table  S6). Infiltration 
abundance estimated by ImmuneCellAI showed a con-
sistent result, as cluster 1 had the lowest infiltration 
scores (Fig. 5D). Specifically, the fractions of every stro-
mal or immune cell type were lowest in HRD cluster 1 
(Fig. 5E–G; Additional file 9: Table S6). But there was a 
paradoxical situation where we observed that Th1, Th17, 
central memory cells, and macrophages were most abun-
dant in cluster 1 (based on the ImmuneCellAI algorithm; 
Fig. 5F). Meanwhile, the fraction of M2 macrophage was 
highest in cluster 1 (based on the Cibersort algorithm; 
Fig. 5G).

The HRD clusters showed distinct genetic and immune 
signatures based on the dominant sample characteristics 
of their tumor samples (Fig.  5H, I). HRD cluster 1 har-
bored the highest tumor mutational burden as it had the 
highest aneuploidy scores and SNV neoantigen counts 
(Fig. 5H, I). Meanwhile, cluster 1 was genomically unsta-
ble since we found that fractions of genomic alteration 
and MSI Mantis scores were uniquely highest in cluster 
1 (Fig. 5H, I). Regarding immune infiltration (signature), 
HRD cluster 1 showed the highest infiltrating abun-
dance of M2 macrophage but the lowest cytotoxic T cells 
(Fig. 5H). And it showed the highest Th1/Th2 ratio bias 
to the adaptive immune infiltrate (Fig. 5H). Additionally, 
HRD cluster1 had the highest proliferation rate (Fig. 5H, 
I). The clonal evenness of TCR and BCR, the count of 
indel neoantigens, and CTA scores were not significantly 
different among the three HRD clusters (Fig. 5I).

Regulation of immunomodulators
Immunomodulators (IMs) are critical for cancer immu-
notherapy, with numerous IM agonists and antagonists 
being evaluated in clinical oncology. To advance this 
research, understanding their expression and modes of 
control in different states of the tumor microenviron-
ment (TME) is needed. We examined IM gene expres-
sion, CNVs, and SNVs.

Gene expression of IMs (Additional file  10: Table  S7, 
Additional file  2: Fig. S2A) varied across HRD clusters, 

perhaps indicating their role in shaping the TME. Gen-
erally, most genes encoding IMs were at low expression 
levels in HRD cluster 1. Genes with the most signifi-
cant differences between clusters (Additional file  2: Fig. 
S2B) included CX3CL1 (BH-adjusted p < 10–5), most 
lowly expressed in cluster 1 and TNFSF4 (BH-adjusted 
p = 0.004), most highly expressed in cluster 1. 

Copy-number variations affected multiple IMs and var-
ied across HRD clusters. Cluster 1 showed both frequent 
amplification and deletion of IM genes, consistent with 
their greater genomic instability. In particular, BTLA was 
most frequently amplified in cluster 1, while TIGIT dele-
tion was enriched in cluster 3 (Additional file 2: Fig. S2C). 
Overall, these marked differences in IM copy number 
may reflect more direct modulation of the TME by can-
cer cells. The observed differences in regulation of IMs 
might have implications for therapeutic development and 
combination immune therapies, and the multiple mecha-
nisms at play in evoking them further highlight their bio-
logical importance.

Dimensionality reduction and construction of the HRD 
signature
To accurately quantify the prediction power of the 
HRD clustering, we applied a methodology to establish 
an HRD signature and calculate HRDscore for all the 
patients with prostate cancers. We obtained 64 prog-
nostic hub genes when intersecting three group-paired 
differential expression analyses (DEGs) (Fig.  6A; Addi-
tional file  11: Table  S8). Using the formula introduced 
in the “Method” section, we calculate the HRDscore for 
each patient based on the transcriptomic data. And we 
found that patients with higher HRDscores (threshold 
determined by X-tile) had a higher tendency of PFI event 
(recurrence, metastasis, or death) (55/360 vs. 33/112; 
p = 0.0013) (Fig.  6B). A Sankey plot was established to 
understand better the intrinsic relationship between 
HRD cluster and HRD signature (HRDscore) and other 
features for individuals (Fig.  6C). It intuitively showed 
that patients with higher HRDscores mostly came from 
HRD cluster 1, and they were predominantly classified 
with immune subtypes C3 (Inflammatory) and C4 (lym-
phocyte depleted). Subsequent specific analyses found 
that patients with higher Gleason scores (≥ 8), pathologic 
T and N stages, and those with PFI events had higher 

Fig. 6  Construction and validation of HRDscore system. A Differentially expressed genes between pairs in HRD clusters. B Risk plot. The red dot 
meant sample with high risk, and the blue dot meant sample with low risk. C Sankey plot shows patients’ distribution in HRD clusters and HRDscore 
risk groups. D The HRDscore in different subgroups was stratified by age, Gleason score, PFI status, pathologic T and N stage, as well as clinical 
M stage. E The survival differences regarding DSS, DFI, PFI, and OS between high HRDscore and low HRDscore groups. F The survival differences 
regarding PFI between high HRDscore and low HRDscore groups in subgroups stratified by age (left) and Gleason score (right). H, I The results of 
multivariate Cox analyses for H DFI and I PFI. P value was set in bold if it was less than 0.05

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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HRDscores (Fig.  6D), suggesting the ability of our HRD 
signature to represent malignant features.

An important finding of our study was that the estab-
lished HRDscore could distinguish the survival outcome 
of patients with prostate cancers. Patients with higher 
HRDscore had worse prognosis when compared to those 
with lower scores, in the context of overall survival (OS) 
(p = 0.049), disease free survival (DSS) (p = 0.025), dis-
ease free interval (DFI) (p = 0.0013), and PFI (p < 0.0001) 
(Fig. 6E). Subgroup analyses stratified by patient’s age and 
Gleason score confirmed the stability of our HRD signa-
ture, as higher HRDscores consistently correlated with 
unfavorable prognosis (Fig. 6F). Furthermore, multivari-
ate Cox analyses revealed the robustness of our signature 
since it showed that Gleason score, pathologic T stage, 
and HRDscore were independent predictors of patient’s 
DFI and PFI (Fig. 6H, I).

HRDscore correlates with immunotherapy response, 
genomic instability, and immune infiltration
Patients previously assigned to HRD cluster 1 had the 
highest level of HRDscore (Fig.  7A). Using the bulk 
transcriptomic data, we acquired patient responses to 
ICB by ImmuneCellAI algorithm (Additional file  12: 
Table  S9). High-HRDscore group demonstrated higher 
response rate to ICB than the low-HRDscore group (9% 
vs 4%, p = 0.034) (Fig.  7B). Besides, HRDscore outper-
formed other indicators in ICB response prediction with 
AUC = 70.82 (Fig. 7C). To better illustrate the character-
istics of the HRD signature, we also tested the correlation 
between the known signatures and the HRDscore (Addi-
tional file 13: Table S10). After using the cluster method 
“ward.D2”, our HRD signature was clustered with recog-
nized signatures related to genomic instability. In brief, it 
was strongly correlated with Fanconi anemia, cell cycle, 
DNA damage repair, Nucleotide excision repair, Homol-
ogous recombination, DNA replication, and mismatch 
repair (Fig. 7D).

Next, we explored the relationship between HRD sig-
nature and immune infiltration (Fig.  7E, Table). The 
HRDscore was positively correlated with central memory 
cells, Th1, Th17, macrophage, and natural killer T-cell 
(NKT). In contrast, it was negatively associated with B 
cell, CD8 naïve cell, dendritic cell (DC), and exhausted 
T cell. Univariate Cox analysis found that CD4 naïve T 
cell, exhausted T cell, and Th2 were protective cells, 

whereas Th1 was uniquely related to a poor prognosis in 
PCa patients (Additional file 14: Table S11). Specifically, 
patients with higher Th1 abundance had poor survival 
outcomes (Fig. 7F), and the effects were more significant 
when combined with the HRDscore group (Fig. 7G).

To better focus on a single gene factor, we intersected 
HRD-related genes with prognostic hub genes, resulting 
in four candidate genes: actin alpha 1, skeletal muscle 
(ACTA1), keratin 6A (KRT6A), orosomucoid 2 (ORM2), 
and solute carrier family 26 member 4 (SLC26A4). We 
examined their links with 22 immune cells (Fig.  7H) 
and found that only SLC26A4 was significantly but not 
strongly correlated with the four prognostic immune cell 
types (CD4 naïve T cell, exhausted T cell, Th1, and Th2). 
The scatter plots illustrating correlations are displayed in 
Fig. 8A.

SLC26A4 serves as a critical gene and correlates 
with immune infiltration and clinical prognosis
SLC26A4 was positively correlated with protective 
immune cells (CD4 naïve T cell, exhausted T cell, and 
Th2), while was negatively correlated with risk cell type 
(Th1) (Fig.  8A). Importantly, SLC26A4 consistently 
acted as a protective factor for PFI in TCGA-PRAD 
(p = 0.0003), MSKCC (p < 0.0001), and GSE116918 
(p = 0.0014) cohorts (Fig.  8B). A meta-analysis revealed 
that, compared to low-SLC26A4 group, high-SLC26A4 
group had a higher risk for PFI events (risk ratio = 0.39, 
95% CI 0.29–0.53). And the pooled estimate showed no 
heterogeneity with I2 = 0% and tau-square = 0 (Fig. 8C).

Pan-cancer analysis focusing on SLC26A4 found 
that it was differentially expressed in most cancer types 
(Fig.  8D). Elevated in cholangiocarcinoma (CHOL) and 
liver hepatocellular carcinoma (LIHC) compared to cor-
responding normal tissues. Whereas SLC26A4 expres-
sion level was decreased in various tumor tissues in 
bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), colon adeno-
carcinoma (COAD), glioblastoma multiforme (GBM), 
head and neck squamous cell carcinoma (HNSC), kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary 
cell carcinoma (KIRP), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), rectum adenocar-
cinoma (READ), thyroid carcinoma (THCA), and uter-
ine corpus endometrial carcinoma (UCEC). Moreover, 

(See figure on next page.)
Fig. 7  Correlation between HRDscore and immune signatures. A HRDscore in HRD clusters. B Response to immune checkpoint blockade in high 
and low risks. C ROC plot showing the power of response prediction of HRD to immune checkpoint blockade in high and low risks. D Correlation 
between HRDscore and existing famous biological pathways based on proteomic data. E Correlation between HRDscore and immune cells. F 
Kaplan–Meier survival plot of Th1 cell for PCa patients’ PFI. G Kaplan–Meier survival plot integrating Th1 cell and HRDscore for PCa patients’ PFI. 
H The four genes result from intersecting HRD related genes with prognostic hub genes and the correlation of their expression with immune 
infiltration
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Fig. 7  (See legend on previous page.)
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Fig. 8  The results of multi-omics analysis of SLC26A4. A Correlations between SLC26A4 expression and abundances of immune cells, including 
CD4 naïve T cell, exhausted T cell, Th1, and Th2 cell. B Kaplan–Meier survival plots of SLC26A4 in TCGA-PRAD, MSKCC, and GSE116918 cohorts. C 
Forest plot of meta-analysis integrating SLC26A4’s role in these three datasets. D Expression levels of SLC26A4 between normal and tumor tissues 
in pan-cancer. E Correlations between SLC26A4 and survival in pan-cancer. F Correlations between SLC26A4 expression and functional states at the 
single-cell level. G Correlations between SLC26A4 expression and methylation. The statistical significance is indicated as asterisks (*), *p < 0.05, ** 
p < 0.01, ***p < 0.001, ns: not significant
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SLC26A4 was a risk for uveal melanoma (UVM) and 
LGG. It was protective for UCEC, THCA, SKCM, PRAD, 
and KIRC (Fig. 8E).

To better understand the function of this gene in can-
cer, we next obtained expression data and functional state 
scores at the single-cell level in the CancerSEA database 
(Additional file  15: Table  S12). In all available cohorts, 
SLC26A4 has negatively correlated “DNA damage” and 
“invasion” functions (Fig. 8F). Unfortunately, the prostate 
cancer single-cell cohort there didn’t provide the expres-
sion data for SLC26A4, hampering our understanding of 
the correlations in prostate cancer. Finally, DNA meth-
ylation of SLC26A4 (by Illumina HumanMethylation450 
BeadChip) was increased in prostate cancer tissues than 
the normal controls (Additional file 3: Fig. S3). The meth-
ylation was inversely correlated with its mRNA expres-
sion in TCGA-PRAD cohort (R = -0.60, p = 2.85e−50; 
Fig. 8G), suggesting epigenetic silencing. The methylation 
probe ID was cg15320854, and the methylation site was 
cpg 107660494.

SLC26A4 was down‑regulated in prostate cancer samples 
with HRD in independent external validation
Among the 62 included patients enrolled in Xiangya 
Hospital, nine (14.5%) were diagnosed with benign pro-
static hyperplasia (BPH). Of the remaining 53 patients 
with prostate cancer, 33 carry HRD mutation (Additional 
file 16: Table S13).

Compared to BPH tissues, SLC26A4 mRNA expression 
levels and IHC scores were decreased in prostate cancer 
samples (Fig.  9A). SLC26A4 mRNA surpassed baseline 
total prostate specific antigen (PSA) value in predicting 
prostate cancer (AUC = 0.845; Fig.  9B). Furthermore, 
SLC26A4 was significantly down-regulated in prostate 
cancer tissues with HRD than those without HRD at 
mRNA and protein levels (Fig. 9C). And SLC26A4 dem-
onstrated excellent performance in predicting HRD in 
the context of prostate cancer (AUC = 0.911; Fig.  9D). 
Representative IHC results in three tissue types are 
shown in Fig. 9E–G.

Discussion
For many years, people have been exploring the initia-
tion, development, and treatment of PCa. Gleason score 
and serum PSA level are still the most important prog-
nostic factors of PCa. Recently, increasing evidence has 
suggested that HRD plays a key role in the biological pro-
cess and therapeutic response in various tumors, one of 
the most influential factors for the prognosis of tumors 
[27]. In addition, many studies have found that mCRPC 
patients with HRD-related gene mutations show impres-
sive responses to PARP inhibitors, even in very advanced 
disease settings [28–32]. The common HRD-related gene 

mutations in PCa are BRCA2, ATM, and CHEK2, all of 
which are included in the molecular eligibility criteria 
of virtually all PARP inhibitor trials involving mCRPC 
patients [33]. However, their germline mutations were 
found in 5–6%, 1–2% and 1–2% of mCRPC patients, 
respectively [8, 9].Therefore, new biomarkers need to be 
developed for molecular typing of PCa patients. In this 
study, we deeply analyzed the molecular characteristics 
of PCa patients with different HRD scores and identified 
a biomarker that could be complementary to the HRD 
scores.

HRD score integrates three indicators focusing on 
DNA-based genomic instability, which has been less 
explored in prostate cancer. The previous study has found 
that patients with primary prostate cancer have lower 
HRD scores, while patients with germline BRCA2 muta-
tions have higher HRD scores [34]. Since BRCA2 muta-
tion is the indication of two PARP inhibitors recently 
approved by the Food and Drug Administration (FDA) 
for the treatment of PCa, HRD score analysis may help 
improve treatment options. In this study, by analyzing 
the HRD scores of the TCGA-PRAD cohort, we obtained 
23 genes associated with HRD scores, defined as HRD-
related genes. We identified three molecular patterns 
with distinct clinicopathological characteristics based 
on these genes, and HRD cluster 1 was particularly cor-
related with worse clinicopathological types and poor 
prognosis.

The HRD clusters demonstrated distinct immune 
landscapes. In general, T cells, CD8 T cells, cytotoxic 
lymphocytes, and natural killer (NK) cells were less 
enriched in HRD cluster 1 indicating that the inhibited 
immune response may explain the poor outcome of 
patients in cluster 1. The HRD clusters also showed dif-
ferent immunogenomic characteristics. Specifically, HRD 
cluster 1 harbored the highest mutational burden, high-
est proliferation potentials, and lowest genomic stability, 
indicating an absolute potential to derive mutation and 
subsequent carcinogenesis. Besides, HRD cluster 1 dem-
onstrated the lowest leukocyte abundance but the highest 
M2 macrophage infiltration. Macrophage infiltration in 
solid tumors is associated with poor prognosis [35]. The 
previous study has found that macrophages infiltrating 
PCa were mainly M2 type and associated with invasive-
ness and unfavorable outcome. We also noticed that Th1 
to Th2 ratio was lowest in cluster 1. Cellular immunity 
mediated by Th1 mainly plays an anti-tumor role. Once 
it shifts from Th1 to Th2, resulting in immunosuppres-
sion. Thus, the anti-tumor immunity of the body will be 
seriously disturbed. Yamamura et  al. and Kharkevitch 
et al. first found that Th2 cells were dominant in tumor 
patients [36, 37], and then found that Th2 shift occurred 
in many types of tumors such as non-small cell lung 
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Fig. 9  Validation of SLC26A4 in Xiangya cohort. A Expression difference of SLC26A4 mRNA and IHC between PCa and BPH tissues. B ROC curves of 
age, baseline PSA, and SLC26A4 mRNA and IHC in distinguishing PCa and BPH samples. C Expression difference of SLC26A4 mRNA and IHC between 
HRD and non-HRD PCa tissues. D ROC curves of age, Gleason score, baseline PSA, and SLC26A4 mRNA and IHC in distinguishing HRD and non-HRD 
PCa samples. Representative immunohistochemical results of E BPH, F HRD PCa, and G non-HRD PCa samples
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cancer, choriocarcinoma, glioma, gastric cancer, ovarian 
cancer, melanoma, colorectal cancer, and lymphoma. The 
above results define an immunosuppressive microenvi-
ronment phenotype of prostate cancer and an unstable 
genomic condition in HRD cluster 1.

Given the importance of IMs in cancer immunother-
apy, we compared the differences in IM gene expression 
between these three clusters. The genes with the most 
obvious difference among clusters. In general, most of 
the IMs were in a relatively low expression level in HRD 
cluster 1 than those in clusters 2 and 3, suggesting that 
immune responses regulated by membrane checkpoints 
were less common there. Consistently, copy number 
variations of IMs were more frequent in HRD cluster 
1 in amplification and deletion, confirming the unsta-
ble genomic phenotype. Although such a trend was not 
evident in SNV, several untypical checkpoints still had 
higher variation frequencies like GZMA, PRF1, ENTPD1, 
and ARG1. Paradoxically, TNFSF4 was significantly up-
regulated in HRD cluster 1. Recent studies have shown 
that stimulation of OX40, the ligand of TNFSF4, is help-
ful for therapeutic immunization strategies for cancer 
[38]. It has been found that TNFSF4 is enriched in bone 
metastatic PCa [39]. Combined with our results, it may 
serve as a new therapeutic target in PCa, especially for 
those patients with high expression.

Furthermore, we established a signature (termed 
HRDscore) with excellent power to predict prognosis 
with stability. Based on proteomic data, the HRDscore 
was tightly correlated with existing signatures related to 
genomic instability, including homologous recombina-
tion, DNA damage repair, and Fanconi anemia (correla-
tion coefficient ≥ 0.5, p < 0.001). This result suggested that 
the HRD-derived risk system could represent the signa-
ture of genomic defects. Besides, the HRDscore was posi-
tively related to macrophages, the unfavorable cell type, 
which was consistent with the above suppose. A recent 
article has explored HRD scores in PCa, which focused 
on the correlation between HRD scores and mutations 
of BRCA2 and ATM [34]. However, these mutations are 
not common in PCa, especially in non-mCRPC, so the 
HRD score is of little value to numerous PCa patients 
without these mutations. In comparison, our HRDscore 
has excellent value for predicting the prognosis and even 
guiding treatment in PCa.

To further explore valuable biomarkers, we finally 
focused on a single gene, SLC26A4, correlated with 
immune infiltration and clinical diagnosis. It showed 
protective effects in several independent PRAD cohorts 
(RR 0.39, 95% CI 0.29–0.93, I2 = 0). Functional single-
cell analysis suggested that SLC26A4 was negatively cor-
related with "DNA damage" and "invasion" functions. 
Nevertheless, the lack of prostate cancer single-cell 

cohort with SLC26A4 expression data hampered our 
understanding of its functions in PCa. Previous studies 
have mostly believed that SLC26A4 plays a vital role in 
maintaining normal hearing and never explored its sig-
nificance in malignancies [40]. Our study revealed its 
potential value in tumorigenesis and development for 
the first time, which is worthy of in-depth exploration in 
future research.

SLC26A4 encodes a membrane protein called pendrin 
that permits the anion exchange between the cytosol and 
extracellular space, maintaining the proper function of 
auditory sensory cells. It is mainly expressed in the inner 
ear and thyroid gland, and its mutation is related to dys-
hormonogenic goiter and Pendred syndrome [41, 42]. 
Hypermethylation of SLC26A4 often occurs in cancers 
such as thyroid cancer and acute myoid leukemia [43, 
44], consistent with our results. All the above findings 
indicated that the epigenetic changes of SLC26A4 may 
be involved in tumorigenesis. Our study uniquely found 
that SLC26A4 was highly associated with HRD in pros-
tate cancer.

In our own Xiangya cohort, the SLC26A4 expression 
in PCa samples was lower than that in benign prostatic 
hyperplasia tissues at both mRNA and protein levels, 
which was inconsistent with the results of the TCGA-
PRAD cohort. This may be due to the insufficient sample 
size of our cohort. Therefore, it needs to be further con-
firmed. Importantly, we found that SLC26A4 performed 
well in predicting HRD in patients with PCa. Patients 
with HRD-related gene mutations are often sensitive to 
PARP inhibitors, so we proposed that SLC26A4 may be 
a novel biomarker to screen patients sensitive to PARP 
inhibitors.

Consequently, we herein provided a potential bio-
marker for the treatment of PCa with PARP inhibitors. 
However, several limitations should be addressed in our 
study. First, there is a lack of SLC26A4 expression data 
in the prostate cancer single-cell cohort, which has been 
mentioned above. Secondly, our analyses were also lim-
ited by the relatively small sample size. Finally, due to 
the lack of prognostic and treatment information in 
the cohort, we failed to thoroughly verify the value of 
SLC26A4 in suggesting prognosis and guiding treatment. 
Therefore, further validation based on a large cohort is 
warranted.

Conclusion
We introduced HRDscore to quantify the HRD pattern of 
individual PCa patients, which can predict the prognosis 
of PCa with stability and universality and has a specific 
value in guiding treatment. A new biomarker, SLC26A4, 
plays a protective role in PCa and can screen patients 
suitable for PARP inhibitor treatment.
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