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Abstract 

Purpose:  The current study aimed to construct a novel cancer artificial intelligence survival analysis system for pre-
dicting the individual mortality risk curves for cervical carcinoma patients receiving different treatments.

Methods:  Study dataset (n = 14,946) was downloaded from Surveillance Epidemiology and End Results database. 
Accelerated failure time algorithm, multi-task logistic regression algorithm, and Cox proportional hazard regression 
algorithm were used to develop prognostic models for cancer specific survival of cervical carcinoma patients.

Results:  Multivariate Cox regression identified stage, PM, chemotherapy, Age, PT, and radiation_surgery as independ-
ent influence factors for cervical carcinoma patients. The concordance indexes of Cox model were 0.860, 0.849, and 
0.848 for 12-month, 36-month, and 60-month in model dataset, whereas it were 0.881, 0.845, and 0.841 in valida-
tion dataset. The concordance indexes of accelerated failure time model were 0.861, 0.852, and 0.851 for 12-month, 
36-month, and 60-month in model dataset, whereas it were 0.882, 0.847, and 0.846 in validation dataset. The con-
cordance indexes of multi-task logistic regression model were 0.860, 0.863, and 0.861 for 12-month, 36-month, and 
60-month in model dataset, whereas it were 0.880, 0.860, and 0.861 in validation dataset. Brier score indicated that 
these three prognostic models have good diagnostic accuracy for cervical carcinoma patients. The current research 
lacked independent external validation study.

Conclusion:  The current study developed a novel cancer artificial intelligence survival analysis system to provide 
individual mortality risk predictive curves for cervical carcinoma patients based on three different artificial intelligence 
algorithms. Cancer artificial intelligence survival analysis system could provide mortality percentage at specific time 
points and explore the actual treatment benefits under different treatments in four stages, which could help patient 
determine the best individualized treatment. Cancer artificial intelligence survival analysis system was available at: 
https://​zhang​zhiqi​ao15.​shiny​apps.​io/​Tumor_​Artif​icial_​Intel​ligen​ce_​Survi​val_​Analy​sis_​System/.
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Introduction
Cervical carcinoma (CC) was one of the most common 
malignant tumors in women, with 569,847 new cases 
and 311,365 deaths in 2018 [1]. Pathological stage was 
proved to be one of the most important risk factors for 
CC patients. It was reported that 5-year disease specific 
survival rates were 80% in stage I, 56% in stage II, 36% in 
stage III, and < 1% in stage IV [2]. Another retrospectively 
cohort study reported that 5-year survival rates were 
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95% for Stage I, 73% for Stage II, 68% for Stage III, and 
19% for Stage IV [3]. The 5-year survival rates of patients 
receiving surgery and radiotherapy were 78.3% and 49.1% 
in 179 elderly cervical carcinoma patients with stage IA 
to stage IIB [4]. Overall, the prognosis of advanced CC 
patients was extremely poor with a significantly shorter 
life expectancy. Therefore, reliable prognostic models 
that could predict the prognosis of CC patients were of 
important clinical significance and application value.

Although radiotherapy and chemotherapy were the 
valuable treatments for CC patients, not all cervical can-
cer patients could benefit from radiotherapy and chem-
otherapy. A meta-analysis based on 2074 CC patients 
from 21 random trials provided convincing evidences 
for chemotherapy benefits: chemotherapy with cycle 
more than 14 days had a pooled HR of 1.25 (P = 0.005), 
whereas chemotherapy with cycle less than 14 days had 
a pooled HR of 0.83 (P = 0.046), suggesting that inap-
propriate chemotherapy cycle might reduce the survival 
rate of CC patients [5]. Meanwhile, neoadjuvant cisplatin 
with dose intensities more than 25 mg/m2 per week had a 
HR of 0.91 (P = 0.20), whereas neoadjuvant cisplatin dose 
intensities less than 25 mg/m2 per week had a HR of 1.35 
(P = 0.002), indicating that inappropriate dose of chemo-
therapy might reduce the survival rate of CC patients 
[5]. The survival of patients receiving radiotherapy was 
poor than that of patients not receiving radiotherapy 
(HR = 1.09, P = 0.169) in 1864 CC patients [5], demon-
strating that not all patients could benefit from radio-
therapy. For neuroendocrine cervical carcinoma patients 
without lymph node metastasis, the survival of patients 
undergo radiotherapy was significantly poor than that of 
patients not undergo radiotherapy (HR = 3.36, P < 0.05) 
[6]. For stage I-IIA neuroendocrine cervical carcinoma 
patients with tumor size more than 4  cm, the median 
survival time (61 months) of patients undergo neo-adju-
vant chemotherapy was shorter than that (63  months) 
of patients not undergo neo-adjuvant chemotherapy 
(P = 0.785) [6]. These previous studies demonstrated that 
not all CC patients could benefit from chemotherapy and 
radiotherapy, especially for CC patients with stage I and 
stage II.

Several previous studies developed prognostic models 
that could predict the prognosis of CC patients [7–10]. 
However, these prognostic models could only provide 
the survival curves for a special group, but not predict 
the survival curves for a specific individual patient at the 
individual level. Individualized survival prediction was 
the essential foundation of precision medicine and indi-
vidualized treatment. Our research team constructed 
several individual mortality risk predictive tools to pro-
vide the individual mortality risk predicted curves for 
different cancers [11–18]. Several artificial intelligence 

algorithms were used to develop prognostic models for 
predicting the individual mortality risk predictive curves 
for different cancers [19, 20]. Recently, a research team 
from Harvard Medical School developed a novel predic-
tive tool for predicting the individual mortality risk for 
glioblastoma patients based on accelerated failure time 
(AFT) algorithm [21]. These previous studies provided 
valuable ideas for artificial intelligence in predicting the 
individual mortality risk curves for different tumors.

Therefore, the current study aimed to construct a novel 
cancer artificial intelligence survival analysis system for 
providing the individual mortality risk predicted curves 
for CC patients receiving different treatments.

Materials and methods
Study dataset
Study dataset was downloaded from Surveillance Epide-
miology and End Results (SEER) database (2010–2015). 
All patients were diagnosed with cervical carcinoma 
through pathological examination. The diagnostic criteria 
for cervical carcinoma was in accordance with the sug-
gestions of American Joint Committee on Cancer (AJCC 
7 edition). In order to eliminate the effects of confound-
ing factors, living patients with survival time less than 
12 months were excluded from the present study. In the 
study of tumor prognosis, 5 years or 10 years is the most 
common follow-up period for tumor prognostic study. 
For a well-designed prognostic study with good patient 
compliance, the survival time of “living patients” should 
be infinitely close to the longest follow-up time. The liv-
ing patients with a survival time shorter than 12 months 
in the study dataset should consider the following two 
different situations: the first one is that this patient died 
within 12 months and can’t continue to follow up. In this 
case, this died patient defined as a living patient in data-
set will has an adverse impact on the study conclusion, 
so it should be excluded from the current study accord-
ingly. The other one is that this patient is still alive, but 
can’t be followed up and provide subsequent survival 
information due to other special reasons. In this case, 
the survival time of this patient is obviously underesti-
mated, and it will has a significant adverse impact on the 
study result. Therefore, the living patients who were fol-
lowed up for less than 12 months were excluded from the 
current study. Meanwhile, patients who died of causes 
other than cancer were excluded from the current study. 
All patients’ privacy information and identity informa-
tion were anonymized in SEER database. All patients in 
SEER database signed the informed consent form at the 
enrollment stage. For the above reasons, ethical review 
and informed consent were exempted by our institutional 
review board. There were 14,946 cervical carcinoma 
patients included in the final survival analysis.
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Artificial intelligence algorithms and restricted mean 
survival time
Cox proportional hazard regression model algorithm 
was performed according to the advices in original arti-
cles [22, 23]. Accelerated failure time (AFT) algorithm 
was performed according to the previous studies [21, 
24]. Multi-task logistic regression (MTLR) algorithm was 
performance in line with the suggestions of the previ-
ous articles [25, 26]. The restricted mean survival time is 
the sum of the areas under the survival curve in a spe-
cific time period [27–31]. As a valuable prognostic index, 
restricted mean survival time was widely applied to dif-
ferent prognostic studies [27–31].

Statistical analyses
Statistical analyses were carried out by SPSS Statistics 
21.0 (SPSS Inc., USA). Artificial intelligence algorithms 
were performed through R software 3.6.0 and Python 
language 3.7.2 according to previous studies [11–18]. 
P value < 0.05 was defined as significant statistical 
difference.

Results
Study cohort
The current study finally enrolled 14,946 eligible cer-
vical cancer patients. The enrolled patients were ran-
domly divided into model dataset (n = 7536) and 
validation dataset (n = 7410). The baseline characteristics 
of patients in model dataset and validation dataset were 
shown in Table 1.

Variable importance assessment
The current study performed random survival for-
est algorithm to evaluate the variable importance and 
explore the error rate with different number of trees. 
Error rate chart assessed by Out-Of-Bag method was 
presented in Fig. 1A. Figure 1B listed the most important 
variables on survival outcome from high to low: stage, 
PT, chemotherapy, PM, age, and radiation_surgery. Mul-
tivariable Cox regression identified stage, PM, chemo-
therapy, age, PT, and radiation_surgery as independent 
prognostic factors for cancer specific survival (CSS) of 
cervical carcinoma in Table 2.

Prognostic nomogram predictive chart
A prognostic nomogram mortality risk predictive chart 
based on Cox regression model was presented in Fig. 1C. The 
prognostic score could be calculated by using the following 
equation: prognostic score = (0.787 * Stage) + (− 0.208 * Chemo-
therapy) + (0.015 * Age) + (0.299 * PT) + (− 0.263 * Radiation_Sur-
gery) + (0.245 * PM).

Cancer artificial intelligence survival analysis system
The current study further developed a novel Cancer 
artificial intelligence survival Analysis system (CAI-
SAS) for predicting the prognosis of cervical carcinoma 
patients. CAISAS was developed based on six previ-
ous influence factors through Cox proportional hazard 
regression model algorithm, accelerated failure time 
model (AFT) algorithm, and Multi-task logistic regres-
sion (MTLR) algorithm. CAISAS could be freely used 

Table 1  Baseline characteristics of patients in model group and validation group

Continuous variables were expressed as mean ± standard deviation or median (first quartile, third quartile) as appropriate

Variable Model group Validation group Group difference

N = 7536 N = 7410 Test value P value

Overall survival [month] 32 (17.54) 31 (17.54) 1.822 0.177

Age [year] 48 (38.59) 47 (38.58) 2.791 0.095

Death [n (%)] 1846 (24.5) 1791 (24.2) 0.198 0.656

PT 0 [n (%)] 1 (0) 6 (0.1) 1.42 0.233

PT 1 [n (%)] 4326 (58.8) 4341 (59.0)

PT 2 [n (%)] 1782 (24.2) 1643 (22.3)

PT 3 [n (%)] 1158 (15.7) 1171 (15.9)

PT 4 [n (%)] 269 (3.7) 249 (3.4)

PN 1 [n (%)] 2018 (26.8) 1913 (25.8) 1.733 0.188

PM 1 [n (%)] 875 (11.6) 836 (11.3) 0.367 0.545

Stage 1 [n (%)] 3696 (49.9) 3708 (50.0) 1.43 0.232

Stage 2 [n (%)] 1057 (14.3) 1014 (13.7)

Stage 3 [n (%)] 1764 (23.8) 1721 (23.2)

Stage 4 [n (%)] 1019 (13.8) 967 (13.0)

Radiation_Surgery [n (%)] 1971 (24.8) 1872 (25.3) 0.355 0.551

Chemotherapy [n (%)] 3937 (52.2) 3826 (51.6) 0.532 0.466
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at: https://​zhang​zhiqi​ao15.​shiny​apps.​io/​Tumor_​Artif​
icial_​Intel​ligen​ce_​Survi​val_​Analy​sis_​System/.

By six major parameters and three artificial intel-
ligence algorithms, CAISAS could provide individual 
mortality risk predicted curves for a special patient 
under different treatments.

Performance of Cox proportional hazard regression model
Cox proportional hazard regression model could pro-
vide individual survival predicted curves for a special 
patient under different treatments (Fig.  2A). The con-
cordance indexes of Cox model were 0.860, 0.849, and 
0.848 for 12-month, 36-month, and 60-month in model 

Fig. 1  Variable selection information of predictive model: A error rate chart of random survival forest; B variable importance assessment chart of 
random survival forest; C prognostic nomogram chart generated by multivariable Cox survival regression

https://zhangzhiqiao15.shinyapps.io/Tumor_Artificial_Intelligence_Survival_Analysis_System/
https://zhangzhiqiao15.shinyapps.io/Tumor_Artificial_Intelligence_Survival_Analysis_System/
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dataset (Fig. 2B), whereas it were 0.881, 0.845, and 0.841 
in validation dataset (Fig.  2D). The higher the C index, 
the better the diagnostic accuracy. Survival curve charts 
demonstrated that Cox model could discriminate high 
mortality risk patients from low mortality risk patients 
in model dataset (Fig. 2C) and validation cohort (Fig. 2E; 
Additional file 1).

Performance of accelerated failure time model
Accelerated failure time model could provide individual 
survival predicted curves for a special patient under dif-
ferent treatments (Fig. 3A). The concordance indexes of 
AFT model were 0.861, 0.852, and 0.851 for 12-month, 
36-month, and 60-month in model dataset (Fig.  3B), 
whereas it were 0.882, 0.847, and 0.846 in validation 
dataset (Fig.  3D). Survival curve charts demonstrated 
that AFT model could discriminate high mortality risk 
patients from low mortality risk patients in model dataset 
(Fig. 3C) and validation cohort (Fig. 3E).

Performance of multi‑task logistic regression model
Multi-task logistic regression model could provide indi-
vidual survival predicted curves for a special patient 
under different treatments (Fig.  4A). The concordance 
indexes of MTLR model were 0.860, 0.863, and 0.861 
for 12-month, 36-month, and 60-month in model data-
set (Fig.  4B), whereas it were 0.880, 0.860, and 0.861 in 
validation dataset (Fig.  4D). Survival curve charts dem-
onstrated that MTLR model could discriminate high 

mortality risk patients from low mortality risk patients in 
model dataset (Fig. 4C) and validation cohort (Fig. 4E).

Brier score assessment
The lower the Brier score, the more consistent the pre-
dicted results with the actual results. Brier scores of 
Cox model were 0.126, 0.127, and 0.137 in model data-
set, whereas it were 0.116, 0.125, and 0.134 in validation 
dataset for 12-month, 36-month, and 60-month, respec-
tively. Brier scores of AFT model were 0.133, 0.128, and 
0.136 in model dataset, whereas it were 0.124, 0.126, and 
0.133 in validation dataset for 12-month, 36-month, and 
60-month, respectively. Brier scores of MTLR model 
were 0.124, 0.126, and 0.137 in model dataset, whereas 
it were 0.116, 0.124, and 0.133 in validation dataset for 
12-month, 36-month, and 60-month, respectively.

Internal validation by bootstrap resampling method
Limited by the special requirements for chemotherapy 
information and radiotherapy information, the current 
study failed to obtain effective external validation data-
sets from public databases other than SEER database. 
Therefore, according to the recommendations of trans-
parent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD) [32], 
we used the self-help guide resampling method to build 
different internal validation datasets for evaluating the 
accuracy of three prognostic models. We re-sampled 
14,946 patients from the original 14,946 patients in the 

Table 2  Model accuracy evaluation based on bootstrap resampling method

MTLR multi-task logistic regression, AFT accelerated failure time

Model Dataset Number C-index C-index C-index Brier-score Brier-score Brier-score
12-month 36-month 60-month 12-month 36-month 60-month

Cox Dataset1 14,946 0.822 0.822 0.822 0.077 0.124 0.133

Dataset2 14,946 0.818 0.818 0.818 0.078 0.124 0.137

Dataset3 14,946 0.819 0.819 0.819 0.075 0.123 0.135

Dataset4 14,946 0.819 0.819 0.819 0.076 0.125 0.138

Dataset5 14,946 0.823 0.823 0.823 0.075 0.122 0.130

AFT Dataset1 14,946 0.824 0.824 0.824 0.077 0.123 0.131

Dataset2 14,946 0.819 0.819 0.819 0.078 0.124 0.136

Dataset3 14,946 0.821 0.821 0.821 0.076 0.123 0.133

Dataset4 14,946 0.821 0.821 0.821 0.077 0.125 0.136

Dataset5 14,946 0.825 0.825 0.825 0.075 0.122 0.128

MTLR Dataset1 14,946 0.827 0.830 0.830 0.077 0.133 0.131

Dataset2 14,946 0.822 0.824 0.825 0.078 0.124 0.137

Dataset3 14,946 0.824 0.828 0.829 0.076 0.122 0.134

Dataset4 14,946 0.824 0.826 0.827 0.077 0.125 0.137

Dataset5 14,946 0.828 0.830 0.830 0.075 0.121 0.130
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way of put back re-sampling to build 5 internal valida-
tion datasets. Then we used these 5 internal validation 
datasets to evaluate the accuracy of three predictive 

models (Table 2). The evaluation results showed that the 
C-indexes of MTLR model were the best, and its high-
est C-indexes of 12-month, 36-month, and 60-month 

Fig. 2  Clinical performance of Cox model: A predictive individual mortality risk curves under different treatments; B time-dependent receiver 
operating characteristic curves in model cohort; C survival curves for high risk group and low risk group in model cohort; D time-dependent 
receiver operating characteristic curves in validation cohort; E survival curves for high risk group and low risk group in validation cohort
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Fig. 3  Clinical performance of accelerated failure time model: A predictive individual mortality risk curves under different treatments; B 
time-dependent receiver operating characteristic curves in model cohort; C survival curves for high risk group and low risk group in model cohort; 
D time-dependent receiver operating characteristic curves in validation cohort; E survival curves for high risk group and low risk group in validation 
cohort
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Fig. 4  Clinical performance of multi-task logistic regression model: A predictive individual mortality risk curves under different treatments; B 
time-dependent receiver operating characteristic curves in model cohort; C survival curves for high risk group and low risk group in model cohort; 
D time-dependent receiver operating characteristic curves in validation cohort; E survival curves for high risk group and low risk group in validation 
cohort
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Fig. 5  Mortality rates and 95% confidence interval by accelerated failure time algorithm for 12-month (A), 36-month (B), and 60-month (C)
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were 0.828, 0.830, and 0.830 respectively, suggesting 
that MTLR model has the best diagnostic efficiency in 
three prognostic models. At the same time, Brier scores 
of MTLR model of 12-month, 36-month, and 60-month 
were 0.075, 0.121, and 0.130 respectively, showing good 
consistency between the actual mortality and predicted 
mortality predicted by MTLR model.

Survival prediction at specific time points
As shown in Fig.  5, AFT algorithm provided predicted 
mortality percentage and 95% confidence interval at spe-
cific time points. This predictive function could provide 
individual mortality predicted percentage and 95% confi-
dence interval for patients receiving different treatments 
at 12-month (Fig. 5A), 36-month (Fig. 5B), and 60-month 
(Fig.  5C). Through comparison of treatment benefits at 
different time points, this predictive function could pro-
vide valuable prognostic information for personalized 
treatment decision.

Treatment benefits in different stages
To explore the treatment benefits in different stages, 
CAISAS provided predictive function in providing indi-
vidual mortality risk predicted curves under different 
treatments in different stages. Treatment benefits under 
different treatments were presented in Fig.  6A for stage 
I, Fig.  6B for stage II, Fig.  6C for stage III, and Fig.  6D 
for stage IV. Figure  6B, Fig.  6C, and Fig.  6D demon-
strated that radiation/surgery and chemotherapy could 
improve the cancer specific survival in stage II, stage III, 
and stage IV, whereas Fig.  6A suggested that radiation/
surgery and chemotherapy did not improve the cancer 
specific survival in stage I. The restricted mean survival 
time could provide lateral prediction of survival time for 
tumor patients, so as to help patients better understand 
the survival benefits brought by different treatments. The 
current predictive system provided the restricted mean 
survival times for patients receiving various treatments in 
four tumor stages (Fig. 6).

Treatment benefit of chemotherapy in different stages
To explore the treatment benefit of chemotherapy in dif-
ferent stages, CAISAS provided predictive function in 
providing individual mortality risk predicted curves for 
patient without chemotherapy and with chemotherapy 
in different stages. Treatment benefit of chemotherapy 
under different treatments were presented in Addi-
tional file  2: Fig. S1A for stage I, Additional file  2: Fig. 
S1B for stage II, Additional file 2: Fig. S1C for stage III, 
and Additional file  2: Fig.  1D for stage IV. As shown in 
Additional file  2: Fig. S1A, the survival of patients with 
chemotherapy was significantly poor than that of patients 
without chemotherapy in stage I (HR = 4.115, P < 0.001), 

whereas the survival of patients with chemotherapy was 
significantly higher than that of patients without chemo-
therapy in stage II, stage3, and stage IV, indicating that 
chemotherapy did not improve the cancer specific sur-
vival in stage I. The current predictive system provided 
the restricted mean survival times for patients receiving 
chemotherapy or not in four tumor stages (Additional 
file 2: Fig. S1).

Treatment benefit of radiation/surgery in different stages
To explore the treatment benefit of radiation/surgery in 
different stages, CAISAS provided predictive function 
in providing individual mortality risk predicted curves 
for patient without radiation/surgery and with radiation/
surgery in different stages. Treatment benefit of radia-
tion/surgery under different treatments were presented 
in Additional file 3: Fig. S2A for stage I, Additional file 3: 
Fig. S2B for stage II, Additional file 3: Fig. S2C for stage 
III, and Additional file 3: Fig. S2D for stage IV. As shown 
in Additional file 3: Fig. S2A, the survival of patients with 
radiation/surgery was significantly poor than that of 
patients without radiation/surgery in stage I (HR = 2.077, 
P < 0.001), whereas the survival of patients with radia-
tion/surgery was significantly higher than that of patients 
without radiation/surgery in stage II, stage 3, and stage 
IV, indicating that radiation/surgery did not improve the 
cancer specific survival in stage I. The current predictive 
system provided the restricted mean survival times for 
patients receiving radiation/surgery or not in four tumor 
stages (Additional file 3: Fig. S2).

Subgroup analyses of prognostic factors in different stages
To explore the differences of prognostic factors in dif-
ferent stages, the current study performed multivariable 
Cox regression in different stages. In stage I, univariable 
Cox regression identified radiation/surgery and chemo-
therapy as risk factors for cervical carcinoma (P < 0.001). 
Multivariable Cox regression demonstrated that chem-
otherapy was an independent risk factor for cervical 
carcinoma in stage I subgroup (P < 0.001). For stage II 
subgroup, stage III subgroup, and stage IV subgroup, 
radiation/surgery and chemotherapy were proved to be 
independent protective factors for cervical carcinoma by 
univariable Cox regression and multivariable Cox regres-
sion (Table 3).

Discussion
Through three artificial intelligence algorithms, we devel-
oped a novel cancer artificial intelligence survival analysis 
system (CAISAS) for individual mortality risk prediction 
of CC patients. CAISAS could provide individual mor-
tality risk prediction under different treatments through 
three artificial intelligence algorithms. CAISAS could 
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provide predicted mortality percentage and 95% confi-
dence interval for specific time points, which was helpful 
to display the actual treatment benefits under different 
treatments. Meanwhile, CAISAS provided comparison 

functions of treatment benefits in different stages, which 
were valuable to understand the treatment benefits under 
different treatments in different stages. Through simu-
lating treatment benefits and individual mortality risk 

Fig. 6  Predictive individual mortality risk curves for patients under different treatments with stage I (A), stage II (B), stage III (C), and stage IV (D)
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predicted curves for a special individual patient under 
different treatments, CC patient could choose the best 
individualized treatment.

Several previous prognostic models could predict the 
prognosis of CC patients [7–10], but failed to provide indi-
vidual mortality risk prediction. CAISAS could not only 
provide the survival prediction for a specific group at the 
group level, but also provide the individual mortality risk 
prediction for a specific patient at the individual level. As 
far as we know, CAISAS was the first artificial intelligence 
survival predictive system that could provide individual 
mortality risk prediction for CC patients in the world.

Cox regression analysis demonstrated that chemo-
therapy and radiation/surgery did not improve the cancer 

specific survival in stage I. Previous studies provided 
evidences to support the result in the current study. 
The 3-year disease-specific survival for cervical cancer 
patients receiving radiotherapy and/or chemotherapy 
was 73.2%, which was significantly lower than 94.3% for 
patients receiving surgery and/or adjuvant treatment 
in cervical cancer patients after primary treatment [33]. 
Patients receiving radiotherapy only had a poor survival 
rate than patients not receiving radiotherapy (HR 1.48, 
P < 0.001) [34]. The overall survival in cervical cancer 
patients receiving radiotherapy was 53%, which was sig-
nificantly lower than 61% for patients receiving conven-
tional surgery in stage I cervical cancer patients [35]. A 
meta-analysis based on 2456 CC patients demonstrated 

Table 3  Results of Cox regression analyses

HR hazard ratio

Subgroup Parameters Univariate analysis Multivariate analysis

HR HR.95L HR.95H P value Coef. HR HR.95L HR.95H P value

All patient (n = 14,946) Age 1.033 1.031 1.035 < 0.001 0.015 1.016 1.013 1.018 < 0.001

PT 2.671 2.588 2.756 < 0.001 0.299 1.348 1.286 1.414 < 0.001

PN 3.826 3.584 4.084 < 0.001 0.044 1.044 0.964 1.131 0.285

PM 7.288 6.798 7.814 < 0.001 0.245 1.278 1.155 1.414 < 0.001

Stage 2.809 2.718 2.902 < 0.001 0.787 2.197 2.054 2.351 < 0.001

Radiation/surgery 0.784 0.724 0.848 < 0.001 − 0.263 0.769 0.708 0.836 < 0.001

Chemotherapy 2.985 2.772 3.215 < 0.001 − 0.208 0.812 0.746 0.885 < 0.001

Stage 1 (n = 7404) Age 1.040 1.033 1.047 < 0.001 0.032 1.033 1.026 1.040 < 0.001

PT NR NR NR NR NR NR NR NR NR

PN NR NR NR NR NR NR NR NR NR

PM NR NR NR NR NR NR NR NR NR

Radiation/surgery 2.259 1.842 2.770 < 0.001 − 0.046 0.955 0.757 1.206 0.699

Chemotherapy 4.538 3.738 5.510 < 0.001 1.369 3.931 3.141 4.921 < 0.001

Stage 2 (n = 2071) Age 1.018 1.011 1.024 < 0.001 0.015 1.015 1.008 1.022 < 0.001

PT NR NR NR NR NR NR NR NR NR

PN NR NR NR NR NR NR NR NR NR

PM NR NR NR NR NR NR NR NR NR

Radiation/surgery 0.699 0.568 0.861 < 0.001 − 0.281 0.755 0.612 0.932 0.009

Chemotherapy 0.574 0.465 0.707 < 0.001 − 0.494 0.610 0.494 0.753 < 0.001

Stage 3 (n = 3485) Age 1.016 1.012 1.020 < 0.001 0.006 1.006 1.002 1.010 0.003

PT 1.736 1.617 1.864 < 0.001 0.514 1.672 1.529 1.827 < 0.001

PN 0.616 0.549 0.690 < 0.001 0.180 1.197 1.047 1.369 0.009

PM NR NR NR NR NR NR NR NR NR

Radiation/surgery 0.495 0.438 0.560 < 0.001 − 0.315 0.730 0.639 0.834 < 0.001

Chemotherapy 0.610 0.531 0.700 < 0.001 − 0.446 0.640 0.556 0.737 < 0.001

Stage 4 (n = 1986) Age 1.014 1.010 1.018  < 0.001 0.005 1.005 1.001 1.009  < 0.001

PT 1.172 1.114 1.233 < 0.001 0.234 1.264 1.189 1.343 < 0.001

PN 1.028 0.919 1.149 0.633 0.009 1.009 0.899 1.132 0.882

PM 1.219 1.045 1.422 0.012 0.610 1.841 1.539 2.202 < 0.001

Radiation/surgery 0.437 0.374 0.511 < 0.001 − 0.621 0.537 0.458 0.631 < 0.001

Chemotherapy 0.388 0.345 0.436 < 0.001 − 0.867 0.420 0.372 0.474 < 0.001
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that chemoradiation could improve the overall survival 
rate with an absolute benefit of 10% (from 60 to 70%) 
[36]. Chemotherapy might be not a protective factor for 
overall survival of stage I or II CC patients with a HR of 
1.31(95% CI 0.46–3.73, P > 0.05) [37]. The overall survival 
of cervical cancer patients receiving radical hysterec-
tomy was superior to that of patients receiving chemora-
diotherapy for CC patients with stage IB–IIA [38]. These 
previous studies demonstrated that radiotherapy and 
chemotherapy might not be the best treatments for CC 
patients with stage I.

Cox proportional hazard regression model algorithm 
was used to construct predictive models for different 
tumors [22, 23]. Accelerated failure time model might be 
a credible alternative to Cox proportional hazard regres-
sion model [24, 39]. AFT algorithm was used for devel-
oping prognostic models for different cancers [40, 41]. 
Multi-task logistic regression algorithm was used to build 
predictive models for prognostic prediction [25, 42, 43]. 
It was reported that multi-task logistic regression model 
was superior to Cox model in survival prediction [44]. 
The concordance indexes and Brier scores of three prog-
nostic models in the current study suggested that these 
three prognostic models have reliable diagnostic accu-
racy for prognostic prediction of CC patients.

Limitations
First, the current study was not able to further explore 
the treatment benefits of specific radiotherapy, chemo-
therapy, and surgery because the SEER database did not 
provide the detailed radiotherapy, chemotherapy, and 
surgery information. Second, because the SEER data-
base did not provide the information of the eighth AJCC 
tumor staging system, the pathological criteria was in 
accordance with the seventh AJCC tumor staging sys-
tem in the current study. Third, in order to improve the 
clinical generality of CAISAS in different regions and 
hospitals with different medical levels, several valuable 
diagnostic biomarkers (such as CA242 and CA199) were 
not included in CAISAS. The addition of serum tumor 
biomarkers might be helpful to improve the predictive 
accuracy of the prognostic models. Fourth, CAISAS pro-
vided individualized mortality risk prediction based on 
the current research dataset of 14,946 cervical cancer 
patients. As far as the prognostic model is concerned, 
all individual predictive results are closely related to the 
clinical characteristics of the enrolled patients, so the 
predicted results have certain limitations and can’t rep-
resent an absolute survival predicted result, which is only 
for the reference of clinicians. Fifth, the current research 
lacked independent external validation study. Large sam-
ple size independent external validation study is very 
important for tumor long-term prognostic study.

In conclusion, the current study developed a novel 
cancer artificial intelligence survival analysis system 
to provide individual mortality risk predictive curves 
for cervical carcinoma patients based on three differ-
ent artificial intelligence algorithms. Cancer artificial 
intelligence survival analysis system could provide 
mortality predicted percentage at specific time points 
and explore the actual treatment benefits under dif-
ferent treatments in different stages, which could help 
patient determine the best individualized treatment. 
Cancer artificial intelligence survival analysis system 
was available at: https://​zhang​zhiqi​ao15.​shiny​apps.​
io/​Tumor_​Artif​icial_​Intel​ligen​ce_​Survi​val_​Analy​sis_​
System/.
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