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Multimodal data analysis reveals 
that pancreatobiliary‑type ampullary 
adenocarcinoma resembles pancreatic 
adenocarcinoma and differs 
from cholangiocarcinoma
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Abstract 

Background:  Ampullary adenocarcinoma (AAC) arises from the ampulla of Vater where the pancreatic duct and 
bile duct join and empty into the duodenum. It can be classified into intestinal and pancreatobiliary types based on 
histopathology or immunohistochemistry. However, there are no biomarkers for further classification of pancreatobil-
iary-type AAC which has important implications for its treatment. We aimed to identify the tumor origin of pancreato-
biliary-type AAC by systematically analyzing whole-slide images (WSIs), survival data, and genome sequencing data 
collected from multiple centers.

Methods:  This study involved three experiments. First, we extracted quantitative and highly interpretable features 
from the tumor region in WSIs and constructed a histologic classifier to differentiate between pancreatic adenocarci-
noma (PAC) and cholangiocarcinoma. The histologic classifier was then applied to patients with pancreatobiliary-type 
AAC to infer the tumor origin. Secondly, we compared the overall survival of patients with pancreatobiliary-type AAC 
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Background
Ampullary adenocarcinoma (AAC) is a rare malignant 
neoplasm that arises within the ampullary complex [1], 
which could originate from three types of epithelial 
cells: biliary, pancreatic ductal, or duodenal. To date, 
the suitable chemotherapy regimens for AAC remain in 
the early exploration stage. The rarity of the disease and 
complexity of histology were the two main barriers to 
the exploration of effective chemotherapy regimens for 
AAC.

AAC can be histologically dichotomized into intestinal 
and pancreatobiliary types [2]. In most studies, pancre-
atobiliary-type AAC is found to have worse prognosis 
than intestinal-type AAC [3, 4]. Cancers that arise from 
different cellular origins often exhibit different sensitivi-
ties to therapeutics [5]. Thus, the chemotherapy regimens 
for AAC should be different for intestinal and pancrea-
tobiliary types [6, 7]. The recommended regimens for 
intestinal-type AAC tend to be similar to those for colo-
rectal cancer [6]. However, it is still unclear whether 
pancreatobiliary-type AAC should be treated like cholan-
giocarcinoma [8, 9] or pancreatic adenocarcinoma (PAC) 
[4, 6], as there are no sensitive and specific immunohis-
tochemical markers to determine the tumor origin [10, 
11]. Effective techniques to identify the tumor origin of 
pancreatobiliary-type AAC are in great demand and can 
greatly promote the development of treatments for this 
disease in the future.

With the rapid development of sequencing technolo-
gies in recent years, researchers have proposed using 
genomics, transcriptomics, and proteomics to infer 
tumor origin [10, 12–16]. However, these technologies 
are not routinely used in clinical practice. Advances in 
computational pathology have demonstrated great suc-
cess in classifying cancer types [17–20], predicting can-
cer prognosis [21–23], and detecting genetic alterations 
[24–26]. Computational analysis of histopathological 

images can identify informative and quantitative features 
that could be too subtle for pathologists to notice.

In this study, we hypothesized that the site of origin 
of pancreatobiliary-type AAC can be directly inferred 
from hematoxylin and eosin (H&E) whole-slide images 
(WSIs). To solve this challenging task, we first devel-
oped a WSI-based classification model using the patients 
with established diagnosis of cholangiocarcinoma and 
PAC and then used this model to classify patients with 
pancreatobiliary-type AAC. The classification model was 
validated using cohorts from multiple sites. In addition, 
to support the findings of the histopathological analysis, 
we compared the overall survival of patients with pancre-
atobiliary-type AAC treated with adjuvant chemothera-
pies designed for either cholangiocarcinoma or PAC and 
compared the mutation landscape of pancreatobiliary-
type AAC with those of cholangiocarcinoma and PAC.

Methods
Study design
We performed histopathological analysis, survival analy-
sis, and mutation analysis to investigate whether pancre-
atobiliary-type AAC is separable. The overview of our 
study design is shown in Fig.  1. For the histopathologi-
cal analysis, we constructed a classification model using 
the H&E WSIs of cholangiocarcinoma and PAC from 
The Cancer Genome Atlas (TCGA). The model was then 
validated in the held-out TCGA dataset (internal valida-
tion set) and the SYSUCC dataset (external validation 
set) to evaluate classification performance and applied 
to the pancreatobiliary-type AACs in the SYSUCC and 
Zhejiang datasets to infer the tumor origin. For the sur-
vival analysis, we investigated whether pancreatobiliary-
type AAC patients receiving adjuvant chemotherapy 
regimens designed for either cholangiocarcinoma or 
PAC had significantly different overall survival. For 
the mutation analysis, we explored and compared the 

stratified by the adjuvant chemotherapy regimens designed for PAC or cholangiocarcinoma. Finally, we compared the 
mutation landscape of pancreatobiliary-type AAC with those of PAC and cholangiocarcinoma.

Results:  The histologic classifier accurately classified PAC and cholangiocarcinoma in both the internal and external 
validation sets (AUC > 0.99). All pancreatobiliary-type AACs (n = 45) were classified as PAC. The patients with pancrea-
tobiliary-type AAC receiving regimens designed for PAC showed more favorable overall survival than those receiving 
regimens designed for cholangiocarcinoma in a multivariable Cox regression (hazard ratio = 7.24, 95% confidence 
interval: 1.28–40.78, P = 0.025). The results of mutation analysis showed that the mutation landscape of AAC was very 
similar to that of PAC but distinct from that of cholangiocarcinoma.

Conclusions:  This multi-center study provides compelling evidence that pancreatobiliary-type AAC resembles PAC 
instead of cholangiocarcinoma in different aspects, which can guide the treatment selection and clinical trials plan-
ning for pancreatobiliary-type AAC.

Keywords:  Ampullary adenocarcinoma, Pancreatobiliary type, Tumor origin, Computational pathology, Adjuvant 
chemotherapy, Mutation landscape
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mutation landscape of AAC with those of PAC and chol-
angiocarcinoma, using the genome sequencing data from 
cBioPortal.

Patient cohorts
The flowcharts of collecting the WSI datasets and 
genome sequencing datasets are shown in Additional 
file 1: Figs. S1, S2, respectively. For the histopathologi-
cal analysis, three datasets were used. The TCGA data-
set consisted of 38 cholangiocarcinoma patients and 
38 PAC patients. The SYSUCC dataset consisted of 71 

cholangiocarcinoma patients, 70 PAC patients, and 35 
pancreatobiliary-type AAC patients from SYSUCC in 
Guangdong Province, China. The Zhejiang dataset con-
sisted of 10 pancreatobiliary-type AAC patients from 
Beilun People’s Hospital and Ningbo Yinzhou People’s 
Hospital in Zhejiang Province, China. The clinico-
pathological characteristics of the three datasets are 
summarized in Additional file 1: Tables S1–S3. In these 
datasets, each patient had one WSI. All WSIs were in 
SVS format, acquired from formalin-fixed and paraffin-
embedded tumor samples after surgical resection, and 

Fig. 1  Study design. A The classification model of cholangiocarcinoma vs. PAC was trained on the TCGA training dataset. The classification 
performance was evaluated on the held-out TCGA validation dataset and SYSUCC dataset, and further applied to the patients with 
pancreatobiliary-type AAC in the SYSUCC dataset and Zhejiang dataset. B Overall survival was compared between the pancreatobiliary-type 
AAC patients who received adjuvant chemotherapy designed for either cholangiocarcinoma or PAC. C The mutational landscape 
of pancreatobiliary-type AAC was compared with those of cholangiocarcinoma and PAC. AAC, ampullary adenocarcinoma; CHOL, 
cholangiocarcinoma; PAC, pancreatic adenocarcinoma
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centrally reviewed by three pathologists (WH, JY, and 
MJ).

In the TCGA dataset, tissue slides were scanned using 
an Aperio ScanScope scanner at 40 × magnification 
(0.25 μm per pixel). Since there are much more PAC cases 
than cholangiocarcinoma cases in TCGA, we randomly 
selected 38 PAC cases to match the number of cholangio-
carcinoma cases while keeping a similar distribution of 
tumor stage, tumor grade, and sex. The identifiers of the 
cholangiocarcinoma and PAC cases used in our TCGA 
dataset are listed in Additional file 1: Tables S4, S5.

In the SYSUCC and Zhejiang datasets, tissue slides 
were scanned using a TEKSSQRAY SQS-1000 scanner at 
20 × magnification (0.20  μm per pixel). The histopatho-
logic phenotype of AAC was determined based on H&E 
staining and immunohistochemical staining if neces-
sary. Pancreatobiliary-type AACs are characterized by 
small solid nest of cells with rounded nuclei surrounded 
by desmoplastic stroma and forming simple or branch-
ing rounded glands. On immunohistochemical staining, 
they mainly express CK7, CK19, MUC1, MUC5AC, and 
MUC6. Conversely, Intestinal-type AACs are character-
ized by tall often pseudostratified columnar epithelium 
with oval nuclei forming elongated glands. They mainly 
express CK20, CDX2, SATB2, and MUC2.

For the survival analysis, 26 pancreatobiliary-type 
AAC patients in the SYSUCC dataset received adjuvant 
chemotherapy regimens designed for cholangiocarci-
noma (n = 7) or PAC (n = 19). The regimens designed for 
PAC included S-1 based chemotherapy, FOLFIRINOX, 
gemcitabine plus nab-paclitaxel, or gemcitabine plus 
capecitabine, while the regimens designed for cholan-
giocarcinoma included gemcitabine plus oxaliplatin, 
capecitabine, or gemcitabine plus cisplatin. The clin-
icopathological characteristics of the patients used for 
survival analysis are summarized in Additional file  1: 
Table  S6. The overall survival data for these patients 
were retrieved from clinical records. Overall survival was 
measured as the time interval between the date of surgery 
and the date of death or last follow-up. The median and 
range of follow-up time were 23.3 and 9.8–39.6 months.

For the mutation analysis, we used the genome 
sequencing datasets for PAC [27], cholangiocarcinoma 
[28], and AAC [29] from cBioPortal (http://​www.​cbiop​
ortal.​org/​datas​ets). After excluding some cases (see Addi-
tional file  1: Fig.  S2), the resulting 88 pancreatobiliary-
type AACs, 290 cholangiocarcinomas, and 176 PACs 
were used for the mutation analysis. The URLs for these 
datasets are provided below:

PAC at https://​cbiop​ortal-​datah​ub.​s3.​amazo​naws.​com/​
paad_​tcga_​pan_​can_​atlas_​2018.​tar.​gz

AAC at https://​cbiop​ortal-​datah​ub.​s3.​amazo​naws.​
com/​ampca_​bcm_​2016.​tar.​gz

Cholangiocarcinoma at https://​cbiop​ortal-​datah​ub.​s3.​
amazo​naws.​com/​chol_​icgc_​2017.​tar.​gz

Computational pathology workflow
Figure  2 shows the computational pathology workflow. 
We constructed the classification model through manual 
annotation of tumor region, color normalization, and fea-
ture extraction. We then processed the WSIs of pancre-
atobiliary-type AAC using the same workflow and input 
the extracted features into the classification model to 
divide cancers into either cholangiocarcinoma or PAC. 
The TCGA dataset was divided into the training and vali-
dation sets according to a rough ratio of 4:1. We trained a 
linear SVM classifier based on the top K features selected 
by the ANOVA F-value using the training set. The two 
hyperparameters involved in feature selection and model 
selection, i.e., the number of features K and the regulari-
zation parameter C in the linear SVM, were determined 
by a grid search scheme with five-fold cross valida-
tion in the training set. Then, the best hyperparameters 
were used to train the final classification model using 
the whole training set, and the model performance was 
assessed using the untouched validation sets. The linear 
SVM classifier and feature selection were implemented 
with a popular machine learning package in python, 
Scikit-learn v0.19.1.

Extraction of histopathological image features
The feature extraction process consists of three steps: 
manual tumor region annotation, color normalization, 
and feature extraction. The histopathological image fea-
tures were extracted from the tumor region manually 
annotated by a pathologist. It is necessary to limit the fea-
ture extraction to the tumor region. Otherwise, the clas-
sification model built on the WSIs of cholangiocarcinoma 
and PAC will learn from the features specific to normal 
pancreas and liver tissue; the normal tissue does not help 
to identify the origin of tissue of pancreatobiliary-type 
AAC. The annotated tumor region was cropped into tiles 
with a size of 2000 × 2000 pixels without overlap to facili-
tate subsequent analysis. To overcome the undesirable 
color variations due to, for example, different slide scan-
ners and staining protocols in pathology labs, we used a 
structure-preserving color normalization algorithm [30] 
to transform the color appearance of image tiles into that 
of a target image preferred selected by a pathologist.

We extracted a total of 150 highly interpretable image 
features for each WSI using the feature extraction algo-
rithm [17] we previously developed. These features quan-
titatively described the size, staining, shape, and density 
of cell nuclei. Briefly, for each WSI we first segmented all 
nuclei and then computed 10 nucleus-level features for 
each segmented nucleus, including nuclear area (denoted 

http://www.cbioportal.org/datasets
http://www.cbioportal.org/datasets
https://cbioportal-datahub.s3.amazonaws.com/paad_tcga_pan_can_atlas_2018.tar.gz
https://cbioportal-datahub.s3.amazonaws.com/paad_tcga_pan_can_atlas_2018.tar.gz
https://cbioportal-datahub.s3.amazonaws.com/ampca_bcm_2016.tar.gz
https://cbioportal-datahub.s3.amazonaws.com/ampca_bcm_2016.tar.gz
https://cbioportal-datahub.s3.amazonaws.com/chol_icgc_2017.tar.gz
https://cbioportal-datahub.s3.amazonaws.com/chol_icgc_2017.tar.gz
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by area); the major axis length, minor axis length, and 
their ratio (major, minor, and ratio); the mean intensity 
in R, G, and B channels (rMean, gMean, and bMean); the 
mean, maximal, and minimal distance to its neighbors 
(distMean, distMax, and distMin). Finally, we aggregated 
each type of nucleus-level features into 15 image-level 
features, including a 10-bin histogram and five distribu-
tion statistics (mean, standard deviation, skewness, kur-
tosis, and entropy). As a result, each image was described 
by 150 features (10 × 15). Using the nucleus-level fea-
ture ratio as an example, the corresponding 15 image-
level features were denoted by ratio_bin1 to ratio_bin10, 
ratio_mean, ratio_std, ratio_skewness, ratio_kurtosis, 
and ratio_entropy. The histogram features from ratio_
bin1 to ratio_bin10 represent the proportions of nuclei 
with shape varying from round to elongated in the tumor 
region. More details about the feature extraction pipeline 
are provided in our previous work [17].

Statistical analysis
We used a two-sided Mann–Whitney U-test to compare 
each of the 150 image features between cholangiocarci-
noma and PAC. For multiple testing correction, p values 

were adjusted by the false discovery rate (FDR) procedure 
according to Benjamini & Hochberg adjustment [31]. We 
used area under receiver operating characteristic curve 
(AUC) to assess whether the linear SVM classifier could 
separate cholangiocarcinoma and PAC. The AUC was 
computed with the R package pROC v1.15.3. For the pan-
creatobiliary-type AAC patients who received adjuvant 
chemotherapy in the SYSUCC dataset, we stratified them 
into two groups according to the regimens designed for 
either cholangiocarcinoma or PAC. The Kaplan–Meier 
method was used to estimate the overall survival, and the 
log-rank test was performed to test whether the overall 
survival is significantly different between two groups. A 
multivariable Cox regression model was used to evaluate 
the independent prognostic value of the treatment group 
over sex and histologic grade. For the survival analysis, 
we used the R package survival v2.43–3. OncoPlot was 
used to delineate the mutation landscapes of PAC, AAC, 
and cholangiocarcinoma using the R package maftools 
v2.6.05. Fisher’s exact test on each gene was performed to 
detect the differentially mutated genes between two data-
sets (AAC vs. PAC and AAC vs. cholangiocarcinoma). 
FDR adjustment was also performed for multiple testing 

Fig. 2  Computational pathology workflow. A The classification model to differentiate between cholangiocarcinoma and PAC was built 
through tumor region annotation in WSIs, color normalization, and feature extraction. B Through by similar steps, the features extracted from 
a WSI of pancreatobiliary-type AAC were input to the classification model to infer the tumor origin. AAC, ampullary adenocarcinoma; CHOL, 
cholangiocarcinoma; PAC, pancreatic adenocarcinoma; PB, pancreatobiliary; WSI, whole-slide image
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correction. A p value < 0.05 was considered statistically 
significant, or when FDR adjustment was necessary, an 
adjusted p value (i.e., q value) < 0.05 was used.

Results
Quantitative image analysis identifies 
significantly different histopathological features 
between cholangiocarcinoma and PAC
In most cases, pathologists can easily differentiate chol-
angiocarcinoma and PAC by looking for the normal tis-
sue components in a tissue sample. However, it would 
be very challenging for pathologists to perform this dif-
ferentiation by just looking at the tumor region, which 
is the case for the diagnosis of the tumor origin of pan-
creatobiliary-type ACC because tumor surrounding tis-
sue now does not provide any useful information. To 
find the true morphological differences in the two kinds 
of tumors, we compared each of the 150 quantitative 
image features extracted from the tumor region using 
the Mann–Whitney U-test. To enhance the statistical 
power, we combined the cholangiocarcinoma and PAC 
samples in the TCGA dataset and the SYSUCC dataset to 
increase the sample size (n = 109 for cholangiocarcinoma 
and n = 108 for PAC). Of the 150 image features, 108 fea-
tures were found significantly associated with the cancer 
type (q value < 0.05). Figure  3 illustrates the fold change 
and adjusted p value for each of the 108 features. The 
fold change for each feature was defined as the ratio of 
the median feature value between the two groups (chol-
angiocarcinoma/PAC). A fold change less than 1 means 
that the median for a specific feature in the cholangiocar-
cinoma group is less than that in the PAC group.

For the nuclear size related histogram features which 
describe the proportion of nuclei in a tissue sample from 
small size to large size, area_bin1 and area_bin2 had fold 
changes less than one, whereas area_bin4 and area_bin7-
10 had fold changes greater than 1. This indicates that 
cholangiocarcinoma tends to have larger nuclei than 
PAC. For nuclear shape related features, ratio_bin1 and 
ratio_bin2 had fold changes greater than one, while the 
features ratio_bin6-10 had fold changes less than one. 
The first few bins represent the proportions of relatively 
round nuclei, and the latter bins represent the propor-
tions of relatively elongated nuclei. Therefore, we can 
infer that PAC tends to have more elongated nuclei, 
which essentially are stromal cells, compared with chol-
angiocarcinoma. Similar analysis of the nucleus den-
sity related features such as distMean_bin1-10 and 
distMean_mean suggests that nuclei are more densely 
distributed in PAC than cholangiocarcinoma. To the best 
our knowledge, this is the first study comparing quantita-
tive nuclear features in cholangiocarcinoma and PAC.

Model predictions reveal that pancreatobiliary‑type AAC 
resembles PAC
We used the patients with an established diagnosis of 
cholangiocarcinoma or PAC to build a linear SVM clas-
sification model to differentiate between the two cancer 
types. The model was trained with 80% samples of the 
TCGA dataset and validated using the held-out samples 
as the internal validation set and the SYSUCC dataset as 
the external validation set. Additional file 1: Fig. S3 shows 
the receiver operating characteristic curves for the model 
in the two validation sets. We can see that the classifica-
tion model perfectly distinguishes cholangiocarcinoma 
and PAC (AUC > 0.99 in both validation sets). The mod-
el’s outputs for the cholangiocarcinoma and PAC patients 
in the TCGA and SYSUCC datasets are shown separately 
in Fig. 4A (model’s outputs for the training samples in the 
TCGA dataset were also included). We then applied this 
powerful model to the pancreatobiliary-type AACs in the 
SYSUCC and Zhejiang datasets. As shown in Fig. 4A, all 
pancreatobiliary-type AACs were classified as PAC, with 
the predicted probability of being cholangiocarcinoma 
less than 0.5. These results indicate that pancreatobiliary-
type AAC histologically resembles PAC and differs from 
cholangiocarcinoma. Figure 4B shows the H&E patholog-
ical images of six patients which correspond to the black 
squares in Fig. 4A.

Patients with pancreatobiliary‑type AAC benefit more 
from the adjuvant chemotherapy designed for PAC
Now that we have found that pancreatobiliary-type AAC 
was histologically similar to PAC, we further investi-
gated whether patients with pancreatobiliary-type AAC 
receiving adjuvant chemotherapy regimens designed 
for PAC had significantly better prognosis than those 
treated with regimens designed for cholangiocarcinoma. 
In the SYSUCC dataset, 19 pancreatobiliary-type AAC 
patients received the adjuvant chemotherapy designed 
for PAC while seven received the adjuvant chemotherapy 
designed for cholangiocarcinoma. Kaplan–Meier sur-
vival curves for the two groups are presented in Fig.  5. 
The one-year and two-year overall survival rates were 
94.7% and 72% for the PAC treatment group vs. 80% 
and 53.3% for the cholangiocarcinoma treatment group. 
Using Kaplan–Meier estimates, a more favorable overall 
survival was seen in patients treated with the regimens 
designed for PAC (log-rank test P = 0.0162, Fig. 5). More-
over, the type of adjuvant chemotherapy was significantly 
associated with survival in a multivariable Cox regres-
sion model adjusted for sex and histologic grade (haz-
ard ratio = 7.24, 95% confidence interval: 1.28–40.78, 
P = 0.025). The results of multivariable of Cox regression 
are shown in Table  1. Although the survival difference 
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between treatment groups is significant, the statistical 
power may be limited due to the relatively small sample 
size.

Mutation analysis
Somatic mutation analysis was performed to compare 
the mutation landscape  of pancreatobiliary-type AAC 

with those of PAC and cholangiocarcinoma. Figure 6A 
shows the top 50 most frequently mutated genes in 
pancreatobiliary-type AAC. The mutation rates of this 
same set of genes in PAC and cholangiocarcinoma are 
shown in Fig. 6B, C (rows are also rearranged according 
to mutation prevalence). For a more intuitive compari-
son between pancreatobiliary-type AAC and the other 

Fig. 3  Comparison of image features between cholangiocarcinoma and PAC. Two-sided Mann–Whitney U test was performed for each feature, 
and 108 out of 150 features showed significant differences between cholangiocarcinoma and PAC after multiple comparison correction using false 
discovery rate procedure at a 5% level of significance (i.e., q value < 0.05). The fold change for each feature was defined as the ratio of the median 
feature value between the two groups (cholangiocarcinoma/PAC). CHOL, cholangiocarcinoma; PAC, pancreatic adenocarcinoma
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two cancer types, the paired bar charts of the muta-
tion rate for pancreatobiliary-type AAC vs. PAC and 
pancreatobiliary-type AAC vs. cholangiocarcinoma 
are shown in Fig.  6D, E. As we can see, both pancre-
atobiliary-type AAC and PAC had high frequency of 
mutations in TP53 and KRAS (more than 60%). We also 
observed that even though TP53 and KRAS were the 
most frequently mutated genes in cholangiocarcinoma 
(Fig. 6C), their mutation rates were only 26% and 20%, 

respectively, which were much lower than those in pan-
creatobiliary-type AAC and PAC.

As shown in Fig.  6F, the number of differentially 
mutated genes between pancreatobiliary-type AAC and 
PAC was 2, while the number between pancreatobiliary-
type AAC and cholangiocarcinoma was 34 (Fisher’s exact 
test q < 0.05). In addition, we also observed that the char-
acteristically mutated genes in PAC, such as KRAS and 
TP53, were the top 2 most differentially mutated genes 

Fig. 4  The outputs of the classification model showed that pancreatobiliary-type AAC resembled PAC and differed from cholangiocarcinoma. A 
Scatter plot of the predicted probabilities on patients with cholangiocarcinoma, PAC, and pancreatobiliary-type AAC. The central mark indicates 
the median, and the bottom and top edges indicate the 25th and 75th percentiles. B The corresponding pathological images to the patients 
indicated by the black squares in the scatter plot. Scale bar: 0.5 mm. AAC, ampullary adenocarcinoma; CHOL, cholangiocarcinoma; PAC, pancreatic 
adenocarcinoma
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between pancreatobiliary-type AAC and cholangiocar-
cinoma. In contrast, the mutation frequency of the two 
genes were not significantly different between pancrea-
tobiliary-type AAC and PAC. Moreover, previous studies 
showed that the CDKN2A and TTN were also the most 
commonly mutated genes in PAC [32, 33]. The muta-
tion rates of the two genes were not significantly different 
between pancreatobiliary-type AAC and PAC, whereas 
they were significantly different between pancreatobil-
iary-type AAC and cholangiocarcinoma. Together, these 
data showed the mutation landscape of pancreatobiliary-
type AAC was very similar to that of PAC but distinct 
from that of cholangiocarcinoma.

Discussion
The difficulty for exploring the regimens for pancre-
atobiliary-type AAC lies in the lack of reliable tech-
niques to infer the tumor origin. Due to the similar 
immune-histologic manifestations between pancreatic 
cancer and biliary cancer, it is difficult to further clas-
sify pancreatobiliary-type AAC. Therefore, whether 

pancreatobiliary-type AAC should be treated like PAC 
or cholangiocarcinoma is an outstanding issue. To our 
knowledge, this is the first study that uses computa-
tional pathology methods to classify pancreatobiliary-
type AAC based on routinely available H&E tissue slides. 
The experimental results showed that PAC and cholan-
giocarcinoma are highly distinguishable and that pan-
creatobiliary-type AAC resembles PAC and differs from 
cholangiocarcinoma.

Differential diagnosis between PAC and cholangio-
carcinoma has significant implications in patient man-
agement such as chemotherapy regimens and prognosis 
but is quite challenging histologically. Both carcinomas 
present similar histomorphology with infiltrating ductal 
architecture, mild to moderate nuclear atypia, and dense 
desmoplastic reaction [34, 35]. Many immunohisto-
chemical markers have been tested to aid pathologists 
in distinguishing PAC from cholangiocarcinoma [36, 
37]. However, because of the overlapping immunohisto-
chemical profiles, most of them are not sensitive and spe-
cific enough to be used in clinical practice. In this study, 
based on ubiquitously available H&E slides, our compu-
tational analysis of WSIs identified distinctly different 
image features between PAC and cholangiocarcinoma. 
Most importantly, these features are highly interpretable. 
For instance, we found that cholangiocarcinoma tends to 
have larger nuclei than PAC and that PAC tends to have 
denser fibrous tissue than cholangiocarcinoma. These 
subtle differences cannot be captured by human eyes and 
have not been reported before.

Previous studies have showed similar clinical out-
comes and genomic profiles between pancreatobiliary-
type AAC and PAC. Williams et  al. [4] reported that 
pancreatobiliary-type AAC had very similar overall sur-
vival to PAC but was significantly more aggressive than 
intestinal-type AAC. The median overall survival was 
33.3, 31.4, and 71.7  months for pancreatobiliary-type 
AAC, PAC, and intestinal-type AAC, respectively. By 
genomic sequencing, Yachida et  al. [38] showed that 
the prevalence of driver gene mutations was distinct 
between pancreatobiliary-type AAC and intestinal-type 
AAC. Different form previous studies, we, for the first 
time, systematically compared the mutation landscape of 
pancreatobiliary-type AAC with those of PAC and chol-
angiocarcinoma. We found the mutation landscape of 
pancreatobiliary-type AAC resembled that of PAC but 
significantly differed from that of cholangiocarcinoma. 
This indicates that pancreatobiliary-type AAC is likely to 
originate from the pancreatic duct epithelium instead of 
the biliary epithelium.

The role of adjuvant therapy for AAC remains con-
troversial [39–41]. For example, Bonet et  al. showed 
that adjuvant therapy after curative-intent resection of 

Fig. 5  Kaplan–Meier survival curves comparing the overall survival 
of patients with pancreatobiliary-type AAC receiving adjuvant 
chemotherapy designed for PAC or cholangiocarcinoma. AAC, 
ampullary adenocarcinoma; CHOL, cholangiocarcinoma; PAC, 
pancreatic adenocarcinoma

Table 1  Results of multivariable Cox regression for overall 
survival

CHOL cholangiocarcinoma, PAC pancreatic adenocarcinoma, HR hazard ratio, CI, 
confidence interval

Variable HR (95% CI) P value

Adjuvant chemotherapy: for 
CHOL (vs for PAC)

7.24 (1.28–40.78) 0.025

Sex: male (vs female) 1.32 (0.36–4.76) 0.67

Histologic grade: moderately to 
poorly (vs moderately)

2.25 (0.43–11.90) 0.34
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Fig. 6  Comparison of the mutational landscape of pancreatobiliary-type AAC with those of PAC and cholangiocarcinoma. A Oncoplot 
summary of the top 50 most frequently mutated genes in pancreatobiliary-type AAC. B, C oncoplot summary of the same 50 genes in PAC 
and cholangiocarcinoma. D, E Paired bar charts of the mutation frequency of the 50 genes for a more intuitive comparison. F Fisher’s exact 
test after multiple test correction identified 34 genes with significantly different mutation frequency between pancreatobiliary-type AAC and 
cholangiocarcinoma, while only 2 genes were identified between pancreatobiliary-type AAC and PAC. The mutation analysis showed that 
the mutation landscape of pancreatobiliary-type AAC is similar to that of PAC but different from that of cholangiocarcinoma. AAC, ampullary 
adenocarcinoma; CHOL, cholangiocarcinoma; PAC, pancreatic adenocarcinoma
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AAC was not associated with improved long-term sur-
vival [42]. On the other hand, a collaborative study by 
the Johns Hopkins Hospital and Mayo Clinic reported 
that adjuvant chemoradiation therapy would improve 
the outcomes of AAC [43]. There are several reasons for 
this discordance. First, many studies did not consider 
the pancreatobiliary-type and intestinal-type separately, 
which have distinct genomic characteristics and thus 
should be considered separately. In addition, the regi-
mens of adjuvant therapy used for AAC were varied. The 
most commonly used chemotherapy regimens for AAC 
were single gemcitabine; however, gemcitabine alone 
may be too weak to improve patient outcomes. Ecker 
et  al. reported that gemcitabine-based chemotherapy 
for pancreatobiliary-type AAC tended to be associated 
with better survival, though the association was not sta-
tistically significant [39]. Since our results showed that 
all pancreatobiliary-type AACs were classified as PAC, 
it is worthy to explore whether more effective adjuvant 
chemotherapy regimens for PAC such as S-1 [44] and 
mFOLFIRINOX [45] can improve the outcomes of pan-
creatobiliary-type AAC. Based on our in-house pancre-
atobiliary-type AAC dataset, we indeed observed that 
the adjuvant chemotherapy regimens designed for PAC 
(mainly S-1) was significantly associated with a survival 
benefit compared with those designed for cholangiocar-
cinoma (gemcitabine plus oxaliplatin, capecitabine, or 
gemcitabine plus cisplatin). This supports our argument 
that pancreatobiliary-type AAC should be considered as 
and managed like PAC.

This study has several limitations. First, intratumor 
heterogeneity is unavoidable in studies that take tumor 
samples and may affect the performance of the histo-
logic classifier. To alleviate the impact of intratumor het-
erogeneity, we only included the tissue slides obtained 
from surgical resection specimens which contain a much 
larger tumor area compared with biopsy specimens. Sec-
ondly, due to the rarity of pancreatobiliary-type AAC and 
only a subset of patients receiving adjuvant therapy, the 
statistical power may be limited in the survival analysis 
comparing two treatment groups. Further clinical trials 
are warranted to validate the effectiveness of applying the 
adjuvant or first-line chemotherapy regimens for PAC to 
pancreatobiliary-type AAC.

Conclusion
This multicenter study provides a promising histologic 
model for the classification of cholangiocarcinoma vs. 
PAC and for inferring the tumor origin of pancreatobil-
iary-type AAC, using routinely available H&E stained 
diagnostic slides without the extra expense of, for 
example, genome sequencing. The analyses of different 

types of data suggest that pancreatic ductal epithe-
lial cells are likely to be the site of origin for pancre-
atobiliary-type AAC, which could guide clinicians and 
researchers to select treatments and plan clinical trials 
for this disease in the near future.
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