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Abstract 

Background: Previous studies demonstrated a positive relationship between birthweight and breast cancer; how-
ever, inconsistent, sometimes even controversial, observations also emerged, and the nature of such relationship 
remains unknown.

Methods: Using summary statistics of birthweight and breast cancer, we assessed the fetal/maternal-specific genetic 
correlation between them via LDSC and prioritized fetal/maternal-specific pleiotropic genes through MAIUP. Relying 
on summary statistics we conducted Mendelian randomization (MR) to evaluate the fetal/maternal-specific origin of 
causal relationship between birthweight, age of menarche, age at menopause and breast cancer.

Results: With summary statistics we identified a positive genetic correlation between fetal-specific birthweight and 
breast cancer (rg = 0.123 and P = 0.013) as well as a negative but insignificant correlation between maternal-specific 
birthweight and breast cancer (rg = − 0.068, P = 0.206); and detected 84 pleiotropic genes shared by fetal-specific 
birthweight and breast cancer, 49 shared by maternal-specific birthweight and breast cancer. We also revealed fetal-
specific birthweight indirectly influenced breast cancer risk in adulthood via the path of age of menarche or age at 
menopause in terms of MR-based mediation analysis.

Conclusion: This study reveals that shared genetic foundation and causal mediation commonly drive the connection 
between the two traits, and that fetal/maternal-specific birthweight plays substantially distinct roles in such relation-
ship. However, our work offers little supportive evidence for the fetal origins hypothesis of breast cancer originating in 
utero.
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Background
Breast cancer remains the most frequent malignant 
tumor that occurs in the glandular epithelium of breast 
[1], and accounts for approximately 12% of the total 9.6 
million deaths due to cancer [2]. Since 1970s, the inci-
dence rate of breast cancer worldwide has continued to 
increase; it is reported that one in eight women suffered 
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from this type of cancer in USA [3]. Although mammary 
gland is not an important organ to maintain human life 
and breast cancer in situ is not fatal, breast cancer cells 
may lose characteristics of normal cells and is easy to fall 
off due to the loose connection among cells. Once falling 
off, cancer cells would spread throughout the body with 
blood or lymph, leading to cancer metastasis and thus 
endangering life [4]. Over the past few decades the treat-
ment of breast cancer has been advanced greatly, but the 
overall survival is still not optimistic [1, 5]. Therefore, it is 
particularly important to understand the etiology, occur-
rence, and development of breast cancer for early pre-
vention. Existing studies have identified a series of risk 
factors involved in breast cancer, including dietary habit, 
age at first birth, age at menarche, age at menopause, 
family history, excessive intake of exogenous hormones 
as well as genetic mutations such as BRCA1, BRCA2, and 
PIK3CA [1, 6–10].

However, these traditionally established risk fac-
tors during women’s adult life appear not to adequately 
interpretate the occurrence pattern of breast cancer. 
To advance our understanding of disease causes, the 
relationship between breast cancer and early growth/
development, perinatal intrauterine environments has 
been attracted much attention since 1990s [11–23]. 
Among those, the association between birthweight and 
breast cancer has also received much research interest. 
Although a positive correlation between women’s birth-
weight and breast cancer risk was discovered in studies 
[11, 12, 20, 23–32], some others failed to replicate such 
connection or even detected inconsistent correlations 
in effect direction [13, 15, 21, 22, 33–41]. These discrep-
ant findings may be partly due to potential confounding 
influences commonly arisen in observational studies, 
making it difficult to draw a definitive conclusion on 
the causal association between birthweight and breast 
cancer. In addition, it is not clear whether there exists a 
mediating association between the two traits [20, 42].

Furthermore, from a genetic perspective, it is also not 
known whether the observed co-existence of low/high 
birthweight and breast cancer is partly driven by causal 
association or shared genetic background between them. 
Moreover, all prior studies cannot distinguish the mater-
nal-specific and fetal-specific effects of birthweight on 
breast cancer from each other. Compared to other fac-
tors, birthweight is a special exposure proxy genetically 
affected by both mother’s and offspring’s genotypes [43]. 
Therefore, partitioning the overall effect of birthweight 
into maternal-specific and fetal-specific components 
holds the key for understanding the origin of the associa-
tion between birthweight and breast cancer. Although the 
longitudinal cohort study can provide empirical evidence 
for causal inference, it requires large-scale populations 

and long-term follow-up before the onset of breast can-
cer [35]; consequently, the implementation is not easy. 
In the traditional scenario, randomized controlled trial is 
the gold standard for inferring causality, but such study 
is also infeasible to investigate the causal association 
between birthweight and breast cancer [29]. In addition, 
both the two types of studies cannot resolve the mater-
nal-specific and fetal-specific impacts of birthweight on 
adult diseases including breast cancer.

The present work attempted to answer these criti-
cal questions via genetic analysis using summary-level 
data available from large-scale genome-wide association 
studies (GWASs). First, to assess the extent of genetic 
overlap shared between birthweight and breast cancer, 
we applied the cross-trait linkage disequilibrium score 
regression (LDSC) to quantify the genetic correlation 
between them [44]. Second, we employed a novel plei-
otropy test method called MAIUP (Mixture Adjusted 
Intersect-Union Pleiotropy test) to determine pleiotropic 
genes [45–47]. Third, to elaborate the causal association 
between birthweight and breast cancer, we resorted to 
apply Mendelian randomization (MR) methods [48–51]. 
In the MR analysis, genetic variants, which are required 
to be associated with the exposure of focus, are used as 
instrumental variables, based on which the causal asso-
ciation between the exposure (e.g., birthweight) and the 
disease (e.g., breast cancer) can be inferred. Recently, one 
such MR study was performed but found no evidence 
supporting the causal association between birthweight 
and breast cancer [52]. However, that study did not 
explore the separate maternal-specific and fetal-specific 
effects of birthweight on breast cancer. The summary sta-
tistics of maternal/fetal-specific effects of SNPs (single 
nucleotide polymorphisms) on birthweight, released by a 
recent GWAS [43], offers us an unprecedented opportu-
nity to untangle the maternal and fetal contributions of 
birthweight to breast cancer by using novel MR methods. 
Furthermore, as a byproduct of our MR analysis, we can 
evaluate the mediating relationship between birthweight 
and breast cancer, with age of menarche and age at men-
opause as two candidate mediators. The flow diagram of 
data process and statistical analysis for the present study 
is illustrated in Fig. 1.

Methods
GWAS summary statistics
We obtained fetal-specific and maternal-specific sum-
mary statistics (e.g., marginal effect size and standard 
error for SNPs) of birthweight (n = 264,498 for own 
birthweight and n = 179,360 for offspring birthweight) 
from the largest GWAS to date published by the Early 
Growth Genetics consortium [43]. These fetal/maternal-
specific datasets provide us an in-depth understanding 
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of biological regulation of birthweight and allows us to 
further investigate the origin of observed relationship 
between birthweight and breast cancer. We yielded sum-
mary statistics of breast cancer from [52] (n = 266,081), 
age at menarche (n = 329,345) [53] and age at menopause 
(n = 69,360) [54] from the ReproGen consortium. All the 
individuals analyzed in these studies were of European 
ancestry.

Genetic correlation estimation with LDSC
To assess the shared polygenic component between fetal/
maternal-specific birthweight and breast cancer, we per-
formed LDSC to estimate the overall genetic correlation 
[44]. In brief, the LDSC analysis proceeded by regress-
ing the product of Z-statistics of the two traits on the LD 
score in a weighted manner via the python script offered 
by the developers with default parameter settings. The 
regression slope of LDSC provided an unbiased estimate 
for genetic correlation even when overlapping individu-
als existed between the two GWASs. Before the analysis, 
the stringent quality control (e.g., removing SNPs located 
within the MHC region) was carried out on summary 

statistics of birthweight and breast cancer following prior 
work [44].

Pleiotropic gene identification with MAIUP
Using summary statistics of birthweight and breast can-
cer, we attempted to further identify fetal/maternal-spe-
cific gene-level pleiotropic associations shared by the two 
traits. Here, pleiotropy is defined the phenomenon that 
a given gene is associated with both traits under inves-
tigation [55–58]. Statistically, the presence of pleiotropy 
means that both the P values (say P1 and P2) of a particu-
lar gene should be equal or less than the preassigned sig-
nificance level (say α); that is, P1 ≤ α and P2 ≤ α (H11) need 
to be held simultaneously for pleiotropic association. In 
contrast, the absence of pleiotropy implies that at least 
one of the two P values would be larger than the signifi-
cance level, which includes three sub-null scenarios; that 
is, (i) H00: P1 > α and P2 > α, (ii) H01: P1 > α and P2 < α, and 
(iii) H10: P1 < α and P2 > α. From a statistical perspective, it 
is easy to see that the pleiotropy detection can be viewed 
as a high-dimensional challenging issue of composite null 
hypothesis testing [45]. To address this problem effec-
tively, we employed a recently proposed pleiotropy test 

Fig. 1 Flow diagram of data process and statistical analysis for the present study. quality control: exclude SNPs having no rs label and remove 
duplicated SNPs; LDSC: the cross-trait linkage disequilibrium score regression; MAGMA: Multi-marker Analysis of GenoMic Annotation; MAIUP: 
Mixture Adjusted Intersect-Union Pleiotropy test; MR: Mendelian randomization; BW: birthweight
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method called MAIUP to detect common genetic loci 
underlying birthweight and breast cancer [59]. Meth-
odologically, MAIUP is constructed under the principle 
of intersect-union test originally proposed within the 
framework of high-dimensional mediation analysis [46, 
47, 59], which takes two sets of P values for each gene as 
input with a three-component mixture null distribution 
for its test statistics and generally behaves much better in 
power compared to other existing pleiotropy test meth-
ods. Technical details regarding MAIUP can be found in 
[59].

To generate P value for each gene in GWAS, we need to 
first integrate multiple SNP-level association signals into 
a single gene-level association signal. For this aim, we 
applied MAGMA (Multi-marker Analysis of GenoMic 
Annotation) which is a powerful SNP-set test method 
and can be efficiently conducted via user-friendly soft-
ware [60]. Due to population stratification, family struc-
tures, and cryptic relatedness [61–63], the empirical null 
distribution in MAGMA may be sometimes inflated. In 
order to correct such deviation, before the formal pleiot-
ropy analysis we performed genomic control if the infla-
tion was observed, which was measured by the genomic 
control inflation factor (> 1.05) for chi-square statistics 
[64, 65]. Afterwards, P values for all genes were avail-
able for each trait. Depending on these P values, we con-
ducted MAIUP to discover significant genes that were 
simultaneously associated with birthweight and breast 
cancer.

Mendelian randomization for causal association 
between birthweight, age at menarche, age at menopause, 
and breast cancer
We finally evaluated the causal association among the 
four traits using various MR methods. Following prior 
studies [43, 66, 67], we selected a set of independ-
ent birthweight-associated SNPs (P < 6.60 ×  10–9 and 
r2 < 0.10) as instruments. Specifically, the total of 104 
instruments for fetal-specific birthweight included 63 
fetal-effect specific SNPs, 26 SNPs exerting both fetal and 
maternal effects with the same effect direction and 15 
SNPs exhibiting both fetal and maternal effects but with 
the opposite effect direction (Additional file 1: Table S1); 
while the total of 72 instruments for maternal-specific 
birthweight included 31 maternal-effect specific SNPs, 
26 SNPs exerting both fetal and maternal effects with 
the same effect direction, 15 SNPs exhibiting both fetal 
and maternal effects but with the opposite effect direc-
tion (Additional file  1: Table  S2). To avoid weak instru-
ment bias, 71 SNPs with unclassified effect direction 
were excluded as fetal-specific or maternal-specific birth-
weight instruments. With these instruments of birth-
weight, we estimated the fetal/maternal-specific causal 

effect of birthweight on age at menarche, age at meno-
pause, or breast cancer. In addition, to estimate the causal 
effect of age at menarche or age at menopause on breast 
cancer, we selected independent associated SNPs for age 
at menarche or age at menopause as candidate instru-
ments by applying the clumping procedure in PLINK 
[68]. We set the primary and secondary significance lev-
els of indexed SNPs to 5 ×  10–8, r2 to 0.001 and physical 
distance to 1 Mb, with the 1000 Genomes Project as the 
reference panel. We estimated the causal effect primar-
ily using the IVW method [49, 51]. To assess the robust-
ness and credibility of our MR results, we also performed 
several sensitivity analyses when necessarily: (1) MR-
Egger regression to evaluate the directional pleiotropy 
of instruments [69]; (2) weighted median-based method 
[70] when instrumental variables might be invalid; (3) 
maximum likelihood method [71]; (4) MR-PRESSO test 
to identify outliers [72].

To examine the causal relationship between birth-
weight and breast cancer while considering menarche age 
and menopausal age as potential confounding factors, we 
conducted the multivariable inverse-variance weighted 
method [73, 74]. We also assessed the causal relationship 
between age at menarche (or/and age at menopause) and 
breast cancer assuming birthweight was a confounding 
factor. In order to avoid the impact of horizontal plei-
otropy, we relied on a conservative strategy to exclude 
some candidate instruments that had a P value less than 
0.05 after Bonferroni’s correction [74–76].

Results
Estimated genetic correlation between birthweight 
and breast cancer
We observed there existed a substantial genetic correla-
tion between fetal-specific birthweight and breast cancer 
(rg = 0.123 and P = 0.013), in contrast to the negative but 
non-significant genetic correlation between maternal-
specific birthweight and breast cancer (rg = − 0.068 and 
P = 0.206). This finding is slightly in contrast to results 
in prior work [43] where neither fetal-specific birth-
weight nor maternal-specific birthweight was genetically 
related to breast cancer (rg = 0.015 and P = 0.828 for fetal 
birthweight; rg = − 0.072 and P = 0.321 for maternal-
birthweight); whereas both showed consistent direction 
for fetal-specific or maternal-specific birthweight. The 
opposite direction in genetic correlation can be expected 
as the maternal-specific and fetal-specific SNP effects on 
birthweight are inversely correlated [43]. In addition, we 
did not discover significant genetic correlation between 
birthweight and age at menarche (or age at menopause) 
(Additional file 1: Table S3).

These non-significant genetic correlations do not nec-
essarily imply the absence of shared genetic component 
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between birthweight and breast cancer (or the two ages) 
as rg only measures the average genetic correlation of 
effect sizes for all SNPs across the whole genome, which 
does not capture detailed patterns for individual shared 
genetic loci. For example, the mixture of a significantly 
positive genetic correlation for a local region and a sig-
nificantly negative genetic correlation for another local 
region would lead to a non-significant overall genetic 
correlation, as partly demonstrated by the chromosome-
specific genetic correlation in Fig. 2, where both negative 
and positive relationships were present across the chro-
mosomes. Therefore, we cannot completely rule out the 
possibility that genes in some local genetic regions would 
be associated with both birthweight and breast cancer.

Pleiotropic genes for birthweight and breast cancer
Using MAIUP [59] we identified a large set of com-
monly associated genes that were shared by birthweight 
and breast cancer. Specifically, there were 84 pleiotropic 
genes (false discovery rate [FDR] < 0.05) shared by fetal-
specific birthweight and breast cancer (Additional file 1: 
Table  S4), while the number was 49 between maternal-
specific birthweight and breast cancer (Additional file 1: 
Table  S5). Among the two sets of pleiotropic associa-
tions, there existed 16 common genes including ANO8, 
BBS1, C15orf39, CDKAL1, DDA1, DPP3, FAM219B, 

GOLGA6C, GTPBP3, LOC100652768, MPI, PCSK7, 
PELI3, SCAMP2, TAGLN, and ZDHHC24. Several genes 
were preciously confirmed to have a connection with 
breast cancer. For example, it was revealed that, together 
with the molecular subtype, the expression signature of 
BBS1 was significantly related to the bone metastasis 
status of breast cancer and encoded mainly membrane-
bound molecules with molecular function of protein 
binding [77]. A locus, rs9368197, located within CDKAL1 
(intron) was detected to be associated with increased 
breast cancer risk in European American women [78]. 
As another example, TAGLN was identified as a target of 
DNA hypermethylation in breast cancer by using micro-
array expression profiling of AZA- or DMSO-treated 
breast cancer and non-tumorigenic breast cells [79].

To evaluate the similarity of genetic influence of these 
pleiotropic genes, for every shared gene we further cal-
culated the Pearson’s correlation coefficient of effect sizes 
between birthweight and breast cancer with local SNPs 
belonging to that gene. We found that most of these 
pleiotropic genes (~ 68.4%)—47 out of 84 for fetal-spe-
cific birthweight and 44 out of 49 for maternal-specific 
birthweight—displayed a positive correlation in effect 
direction, meaning that they generally exerted consistent 
genetic impact on birthweight and breast cancer (Fig. 3A, 
B). These genes with consistent effects are believed to 

Fig. 2 Estimated genetic correlation and 95% confidence intervals for each chromosome between fetal/maternal-specific birthweight and breast 
cancer
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contribute to the observed positive relationship between 
birthweight and breast cancer. The remaining pleio-
tropic genes demonstrated a negative correlation in SNP 
effect sizes between the two traits, indicating that these 
genes exhibit functionally different influence on birth-
weight and breast cancer. Note that, this phenomenon of 
antagonistic effects of shared genetic loci is also widely 
observed for other genetically correlated traits such as 
psychiatric disorders [80, 81] and immune-mediated dis-
eases [82–84].

We further compared the correlation coefficients for 
the 16 genes shared by fetal/maternal-specific birth-
weight with breast cancer. It is very interesting that the 
two sets of correlation coefficients were completely 
opposite, with a highly negative correlation between 
themselves (Fig.  3C), indicating that these pleiotropic 
genes showed considerably distinct genetic impact on 
birthweight and breast cancer. For example, the genes 
FAM219B and TAGLN presented a negative correlation 
of SNP effect sizes between fetal-specific birthweight and 
breast cancer (r = − 0.122 and 0.194, respectively), but 
displayed a positive correlation between maternal-spe-
cific birthweight and breast cancer (r = 0.121 and 0.168, 
respectively).

Estimated causal effect with MR analysis
We conducted a set of MR analyses to assess the causal 
association between birthweight, breast cancer, age at 
menarche, and age at menopause. It is worth mention-
ing that we had chosen two different sets of instruments 
for birthweight: one set of SNPs with fetal-specific effect 
on birthweight and another set of SNPs with maternal-
specific effect on birthweight (Additional file 1: Tables S1, 
S2), which offered us an effective manner to untangle the 
origin of the observed relationship between birthweight 

and breast cancer. First, we carried out the univariate 
inverse-variance weighted (IVW) analysis to evaluate the 
impact birthweight on breast cancer, but failed to find 
evidence of causal relationship between birthweight and 
breast cancer (P = 0.806 for fetal-specific birthweight, 
P = 0.244 for the maternal-specific birthweight). We con-
ducted an online simulation with the same sample size 
and proportion of breast cancer cases used here [85]. 
As a result, we had a statistical power of 72% when the 
odds ratio was assumed to be 0.90 for fetal-specific birth-
weight and breast cancer or 86% for maternal-specific 
birthweight and breast cancer at the significance level of 
0.05 (Additional file  1: Figure S1). This simulation find-
ing indicated that our MR analysis had moderate or high 
power in discovering a significant association. Therefore, 
it to a great extent ruled out the likelihood that the null 
causal association between fetal/maternal-specific birth-
weight and breast cancer observed above was due to low 
power. Then, we performed the univariate IVW analysis 
to assess the association between birthweight and age at 
menarche, and observed that fetal-specific birthweight 
was positively correlated to age at menarche (β = 0.089 
and P = 0.012), indicating higher birthweight can delay 
age at menarche in a fetal way; but we did not detect a 
substantial association between maternal-specific birth-
weight and age at menarche (P = 0.907).

These results were also replicated in various MR sensi-
tivity analyses (Additional file 1: Table S7). For instance, 
compared to the IVW method, the weighted median 
method and the maximum likelihood method produced 
similar causal estimates. In addition, based on MR-
PRESSO, we did not observed no horizontal pleiotropy 
in the association analyses of fetal-specific birthweight 
and age at menarche (Poutlier = 0.576), fetal-birthweight 
and age at menopause (Poutlier = 0.122), as well as age at 

Fig. 3 A Distribution of correlation coefficients of SNP effect sizes of pleiotropic genes between fetal-specific birthweight and breast cancer. 
B Distribution of correlation coefficients of SNP effect sizes of pleiotropic genes between maternal-specific birthweight and breast cancer. C 
Relationship between correlation coefficients of SNP effect sizes for the 16 genes shared by fetal-specific birthweight with breast cancer and these 
of SNP effect sizes for the 16 genes shared by maternal-specific birthweight with breast cancer
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menarche and age at menopause (Poutlier = 0.773). For 
these cases with horizontal pleiotropy, we removed out-
lier instruments and still obtained similar effect estimates 
as before (Additional file 1: Table S8).

Next, we conducted the multivariate IVW analysis 
to assess the relationship between birthweight and age 
at menopause while controlling the influence of age at 
menarche. We discovered that there was no substantial 
causal association between birthweight and age at men-
opause (P = 0.927 for the fetal-specific birthweight and 
P = 0.590 for the maternal-specific birthweight); however, 
we found that age at menarche was a significant con-
founder with a positive effect on age at menopause for 
fetal-specific birthweight (β = 0.111 and P = 0.035), while 
this association was not significant for maternal-specific 
birthweight (β = 0.123 and P = 0.062). This suggests that 
fetal-specific birthweight might play a more important 
role than maternal-specific birthweight in the relation-
ship between age at menarche and age at menopause. 
Note that, age at menarche can influence age at meno-
pause but not vice versa. We also examined the relation-
ship between age at menarche and breast cancer while 
adjusting for birthweight but did not observe obviously 
causal association between them (P = 0.525 when con-
trolling for fetal-specific birthweight, and P = 0.368 when 
controlling for maternal-specific birthweight).

Finally, we evaluated the relationship between age 
at menopause and breast cancer while controlling for 

birthweight and age at menarche. We discovered that 
there only existed a significant positive correlation 
between age at menopause and breast cancer (P = 0.029 
for when adjusting for fetal-specific birthweight and 
age at menarche, P = 0.032 for when adjusting for 
maternal-specific birthweight and age at menarche). 
Again, according to the naïve principle of mediation 
analysis, we can conclude that age at menarche and 
age at menopause mediated the impact of birthweight 
on adult breast cancer, among which the fetal role 
appeared much more evident. The associations identi-
fied by distinct MR analyses are demonstrated in Fig. 4, 
with the detailed results further shown in Additional 
file 1: Table S6. Note that, although we conducted sev-
eral multivariate MR analyses in the mediation analysis 
above, we did not consider the issue of multiple testing 
when assessing the association between the exposure 
(i.e., fetal/maternal birthweight) and the mediator (i.e., 
age at menarche or age at menopause) and the associa-
tion between the mediator and the outcome (i.e., breast 
cancer). The reason was that the mediator was assumed 
to exert a mediating impact if and only if both the two 
associations needed to be significant in terms of the 
essential rationale of mediation analysis [46, 86, 87].

Fig. 4 Estimated effect sizes and corresponding P values in the MR analysis. $ indicates the estimated effect sizes were obtained while adjusting 
for fetal-specific or maternal-specific birthweight; # denotes the estimated effect sizes were obtained while controlling for fetal/maternal-specific 
birthweight and age at menarche. Note here that the color of arrow and number is consistent with that for fetal-specific or maternal-specific 
birthweight. Dot arrow stands for the absence of association, while solid arrow stands for the presence of association. To be concise and easy to 
understand, besides all significant associations, only a few of important null associations are shown
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Discussion
In the present study we have investigated the genetic 
correlation and causal association between birthweight 
and breast cancer. To our knowledge, the present work 
is among the first endeavor to study the relationship 
between the two traits by leveraging novel statistical 
methods with large-scale summary-level genetic data. As 
a result, we offered implicit answers for some key ques-
tions regarding such relationship between them. First, to 
understand whether the observed relationship is due to 
common genetic background, we employed LDSC [44] 
and identified a positively significant genetic correlation 
between fetal-specific birthweight and breast cancer as 
well as a negative but insignificant genetic correlation 
between maternal-specific birthweight and breast can-
cer. Moreover, using MAIUP [59] we showed that there 
were extensively common genetic loci underlying the two 
traits. Second, to examine whether the observed relation-
ship represents a linear causality between birthweight 
and breast cancer, we carried out the MR analysis but 
did not identify a linear causal association, which is in 
agreement with the null finding obtained from another 
MR study [39]. Third, to determine whether some growth 
traits and life processes may mediate the long-term 
impact of birthweight on breast cancer, we depended on 
the principle of mediation analysis [46, 86, 88–90] and 
demonstrated that fetal-specific birthweight can indi-
rectly influence breast cancer risk in adulthood via the 
path of age of menarche or age at menopause.

Unlike prior relevant studies [39], one of the remark-
able strengths of our work is that we resolved the rela-
tive contributions of fetal and maternal genotypes on 
birthweight and employed fetal/maternal-specific effects 
of birthweight in our genetic overlap analysis as well as 
in our MR analysis, which provides us an unprecedented 
opportunity to untangle the origin of the relationship 
between birthweight and breast cancer [43, 66, 67]. For 
example, we discovered that fetal-specific birthweight 
was genetically correlated to breast cancer in a positive 
direction, while maternal-specific birthweight showed 
a negative genetic correlation to breast cancer. In addi-
tion, as demonstrated, the pleiotropic genes shared 
between fetal-specific birthweight and breast cancer was 
not completely overlapped with those shared between 
maternal-specific birthweight and breast cancer, imply-
ing the diverse contribution of fetal-specific birthweight 
and maternal-specific birthweight to the observed rela-
tionship. Furthermore, we found that fetal-specific birth-
weight, rather than maternal-specific birthweight, was 
causally associated with age of menarche which further 
would affect age at menopause and breast cancer, indi-
cating that, together the identified positive genetic cor-
relation mentioned above, fetal-specific birthweight 

might exert a more pronounced influence on the devel-
opment of breast cancer in later life compared to mater-
nal-specific birthweight. Together, these findings suggest 
that the growth environment in childhood might be 
very important for the development of breast cancer in 
adulthood. However, there is insufficient evidence of 
maternal-specific birthweight effect on offspring’s breast 
cancer, implying that the maternal intrauterine environ-
ment does not seem to be the major determinant of the 
risk of breast cancer.

Some limitations of the current work should be men-
tioned. First, like other MR studies, we assumed a linear 
effect association between birthweight and breast cancer 
but cannot completely rule out the likelihood of nonlin-
ear association between birthweight and breast cancer as 
suggested in prior studies [15, 29]. Second, no data on the 
duration and severity of breast cancer can be available for 
us; therefore, we cannot assess the dose–response asso-
ciation between birthweight and breast cancer, which is 
an important aspect of causal inference. Third, due to 
unavailability of relevant data, we cannot further assess 
the impact of birthweight on distinct subtypes of breast 
cancer. Because of the same reason, we also cannot eval-
uate the association between birthweight and breast can-
cer stratified by the menopausal status [15], which may 
indicate various influence of birthweight on breast can-
cer [22, 23, 91]. Fourth, because the traditional mediation 
test methods such as the Sobel test and the joint signifi-
cance test [46], in our analysis we did employ any formal 
approaches but only applied the naïve principle that the 
presence of both the exposure-mediator effect and medi-
ator-outcome effect indicates the existence of media-
tion effect. Therefore, powerful mediation test methods 
would be warranted for a single or only a few mediators 
under the summary-level framework, which is our ongo-
ing work. Fifth, we here only two mediators (e.g., age 
of menarche and age at menopause) were considered; a 
more comprehensive evaluation of growth traits and life 
processes are projected to discover other causal paths 
from birthweight to breast cancer.

Overall, this study reveals that shared genetic foun-
dation and causal mediation commonly drive the 
connection between the two traits, and that fetal/mater-
nal-specific birthweight plays substantially distinct roles 
in such relationship. However, our work offers little sup-
portive evidence for the fetal origins hypothesis of breast 
cancer originating in utero.
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