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Abstract 

Background: In polyglutamine (polyQ) diseases, the identification of modifiers and the construction of prediction 
model for progression facilitate genetic counseling, clinical management and therapeutic interventions.

Methods: Data were derived from the longest longitudinal study, with 642 examinations by International Coopera-
tive Ataxia Rating Scale (ICARS) from 82 SCA3 participants. Using different time scales of disease duration, we per-
formed multiple different linear, quadratic and piece-wise linear growth models to fit the relationship between ICARS 
scores and duration. Models comparison was employed to determine the best-fitting model according to goodness-
of-fit tests, and the analysis of variance among nested models.

Results: An acceleration was detected after 13 years of duration: ICARS scores progressed 2.445 (SE: 0.185) points/
year before and 3.547 (SE: 0.312) points/year after this deadline. Piece-wise growth model fitted better to studied data 
than other two types of models. The length of expanded CAG repeat (CAGexp) in ATXN3 gene significantly influenced 
progression. Age at onset of gait ataxia (AOga), a proxy for aging process, was not an independent modifier but 
affected the correlation between CAGexp and progression. Additionally, gender had no significant effect on progres-
sion rate of ICARS. The piece-wise growth models were determined as the predictive models, and ICARS predictions 
from related models were available.

Conclusions: We first confirmed that ICARS progressed as a nonlinear pattern and varied according to different 
stages in SCA3. In addition to ATXN3 CAGexp, AOga or aging process regulated the progression by interacting with 
CAGexp.
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Introduction
Spinocerebellar ataxia 3 (SCA3), an autosomal dominant 
neurodegenerative disorder, is widely regarded as the 
most common subtype of SCA worldwide. It also belongs 
to the group of polyglutamine (polyQ) diseases, which 
includes ten inherited neurodegenerative diseases such 
as Huntington’s disease (HD) [1–3]. SCA3 arises from an 
expanded CAG repeat (CAGexp) in ATXN3 gene, which 
is hallmarked by progressive cerebellar ataxia and varia-
ble features including pyramidal syndrome, extrapyrami-
dal signs as well as peripheral neuropathy [4, 5].
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There is an unmet clinical need for further charac-
terization of long-term disease progression and natural 
history. Meanwhile, further identification of underlying 
factors and the construction of prediction models for 
progression are also of great value. This would contribute 
to genetic counseling, clinical management and thera-
peutic interventions [6–8].

Time scales could influence the result of disease pro-
gression or outcome occurrence and even lead to con-
tradictory findings [9–11]. Furthermore, substantial 
evidence indicated that the trajectories of disease pro-
gression displayed a non-linear change in various polyQ 
diseases, including HD, SCA2, and SCA6, etc. [12–17]. 
Recently, Leotti et al. performed the longest longitudinal 
study in a Dutch SCA3 cohort of 82 participants over a 
period of 15 years. Using linear growth curve model, they 
only assessed the linear pattern of disease progression as 
measured by the International Cooperative Ataxia Rating 
Scale (ICARS) according to the time scale of age [18].

In our present study, using multiple different linear and 
non-linear models with a different time scale of disease 
duration, we reanalyzed the previously published data of 
Leotti et al. for the following purposes: (1) to assess the 
potential impact of different time scales on study results; 
(2) to investigate whether ICARS progression in SCA3 
follows a non-linear pattern according to disease dura-
tion; (3) to explore whether the speed of progression dif-
fered across early or late stages of the disease duration; 
(4) to develop an appropriate model to predict disease 
progression of SCA3 after considering non-linear effects.

Materials and methods
Subjects
Clinical data from 82 symptomatic SCA3 patients were 
derived from an earlier report by Leotti et al. [18]. In this 
study, all SCA3 subjects were followed up in the Univer-
sity of Groningen Medical Center, Netherlands, between 
2002 and 2017. Disease progression of patients was 
measured by ICARS and 642 complete ICARS examina-
tions were publicly available. This report did not need the 
approval of the local Ethics. More detailed information 
has been reported previously, and will not be covered in 
this paper [18].

Statistical analysis
We removed one outlier sample with disease duration of 
more than 40 years considering its influence on statistical 
results. Finally, 81 participants with 634 complete ICARS 
examinations were included for our analysis. Disease 
duration was defined as the interval between the patient’s 
age of examination and AOga as previously reported 
by Leotti et  al. [18]. In contrast to this study, we chose 

disease duration as the timescale, rather than the age of 
examination.

Linear growth models were first employed to model 
the linear relationship between ICARS scores and dura-
tion for each patient. Further, a quadratic growth model 
was conducted to explore whether the trajectory of pro-
gression tended to a non-linear pattern. Moreover, we 
used piece-wise (two-segment in our analysis) linear 
growth models to investigate whether progression rates 
varied in the early or late stages. The piece-wise growth 
curve model is a flexible approach to model the nonlinear 
growth form. It splits the curvilinear growth trend into 
separate linear segments connected by inflection points 
or knots, thus capturing key features of change for each 
segment [19, 20].

In this study, dt was regarded as the total duration of 
SCA3 to fit linear or quadratic growth models. Similar to 
one previous study [21], to fit two-segment linear growth 
models at each inflection point (I) of duration, we defined 
two new variables (d1 and d2): d1 = dt − I for dt ≤ I but 
d1 = 0 for dt > I; and d2 = 0 for dt ≤ I but d2 = dt − I for 
dt > I. Here, d1 indicated an early stage whereas d2 repre-
sented a late stage.

We calculated the progression rates on the annual 
scores of ICARS. The effects of CAGexp, AOga and gen-
der on the progression of ICARS were also analyzed. 
Such three potential factors were included in the models 
as fixed effects. Obviously, in our analysis, AOga could 
also serve as a proxy for the age at the time of examina-
tion to investigate the aging process on clinical progres-
sion, as described by other similar studies in HD [22, 
23]. Our analytical data were collected naturalistically 
at irregular intervals from SCA3 subjects who entered 
follow-up at various stages. Therefore, age at first assess-
ment has little meaning as a proxy for age during follow-
up [24]. Moreover, this study applied an unstructured 
covariance matrix for random intercepts and slopes 
effects to explain the heterogeneity of individuals regard-
ing baseline measurement and trajectory.

All data analysis and mapping were undertaken in R 
software (version 3.5.3). Two-tailed tests were used and 
P < 0.05 indicated statistical significance.

Models evaluation
The goodness-of-fit statistics tests were performed based 
on a set of evaluation criteria, including Akaike’s infor-
mation criterion (AIC), Bayesian information criterion 
(BIC), log-likelihood (logLike), and Nakagawa R-squared 
(Nakagawa  R2, containing marginal and conditional  R2) 
[25, 26]. Also, we conducted the analysis of variance 
(ANOVA) through likelihood ratio tests to compare the 
fits of different models.
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Models comparison was employed to select the best-
fitting model according to the goodness-of-fit tests and 
ANOVA analysis results. In general, the best-fitted model 
has the smallest values of AIC, and BIC, along with 
the highest logLike and Nakagawa  R2 value [25–28]. If 
p-value in ANOVA is less than 0.05, related models differ 
significantly [29–31].

Results
Description of the participants
After omitting the outlier sample, the general charac-
teristics of the final analysis cohort showed that 81 par-
ticipants (43 for women) were followed up for 8.280 (SD: 
4.190) years on average. The average CAGexp repeat 
length at ATXN3 was 67.700 (SD: 3.650). And the mean 
duration at the first examination was 7.110 (SD: 5.030) 
years, along with the mean AOga of 42.100 (SD: 9.880) 
years (Table  1). The initial characteristics of the study 
cohort were provided in the previous article by Leotti 
et al., which were not described in detail here [18].

The estimated parameters of different growth models
The ICARS scores of each subject over the period were 
shown in Fig. 1A. ICARS scores progressed by an average 
of 2.744 (SE: 0.154) points/year during the total duration 
in LM1 model (Table 2). We compared the value of log-
Like, AIC, and BIC to determine the inflection point in 
the two-segment growth model, with 18 inflection point 
(at a duration of 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 25, 30, 35 years) being tested. Finally, it got the 
best fit at about 13 years of duration in terms of logLike, 
AIC and BIC (data was not shown).

Based on this knot, we fitted the PM1 model (seen 
Table 2) and found that the average progression rates of 
ICARS before and after it were 2.445 (SE: 0.185, P < 0.001) 
and 3.547 (SE: 0.312, P < 0.001) points/year, respectively 
(Table 2, Fig. 1A). The single-slope of LM1 model and the 

double-slope of PM1 model differed in progression rate, 
especially after 13 years of duration (Fig. 1A).

Compared with LM1 and QM1 models, PM1 model 
showed notable superiority in terms of the goodness-of-
fit criteria (LM1, QM1 and PM1 model with logLike of 
−  2003.735, −  1985.389, −  1962.952; AIC of 4019.470, 
3984.778, 3945.904; BIC of 4046.163, 4015.909, 3990.377; 
conditional  R2 of 0.970, 0.978 and 0.979, respectively). 
ANOVA analysis also showed that PM1 model differed 
significantly from LM1 and QM1 model (both P < 0.001). 
Therefore, the piece-wise growth model fit the studied 
data better than other two types of models (i.e., linear 
and quadratic growth model) (Table 2).

LM2 and PM2c models suggested that ATXN3 CAG-
exp repeat length significantly influenced the progression 
rate (both P < 0.001 for the slopes of CAGexp). It was fur-
ther confirmed by the fact that LM2 and PM2c models 
showed superiority over their corresponding null mod-
els (i.e., LM2 vs LM1 model; and PM2c vs PM1 model, 
respectively). AOga was not a direct modifier of ICARS 
progression rate, since related P values for the slopes of 
AOga were all greater than 0.05 in three models of LM3, 
PM3, and PM3c with AOga as a variable. Interestingly, 
LM4 and PM4c models combining both CAGexp and 
AOga as co-modifiers displayed significant improve-
ments in evaluation indicators over their counterpart 
models only including CAGexp (i.e., LM4 vs LM2 model; 
and PM4c vs PM2c model, respectively). Incorporating 
AOga increased the effect size of the effect of CAGexp 
on ICARS progression. According to these results, it can 
be deduced that AOga, a proxy for age during follow-
up, was not an independent modifier of progression 
rate but affected the correlation between CAGexp and 
progression.

These models of PM2c, PM3c, and PM4c with sin-
gle-slope of ATXN3 CAGexp repeat length or/and 
AOga, were superior to their respective corresponding 

Table 1 General characteristics of the final analysis data after the removal of an outlier sample

No. = Number; SD = standard deviation; ATXN3 CAGexp = the length of expanded ATXN3 allele; AOga = Age at onset of gait ataxia

Patients

Total subjects, No 81

Gender (female), No. (%) 43(53.09%)

Mean number of examinations per participant, Mean ± SD [Range] 7.830 ± 3.670 [1–16]

Mean number of years of follow up per participant, Mean ± SD [Range] 8.280 ± 4.190 [0–15.300]

Mean interval between visits per participant (years), Mean ± SD [Range] 1.210 ± 0.783 [0.071–7.010]

ATXN3 CAGexp, Mean ± SD [Range] 67.700 ± 3.650 [60.000–75.000]

AOga (years), Mean ± SD [Range] 42.100 ± 9.880 [20.000–72.000]

Disease duration at first examination (years), Mean ± SD [Range] 7.110 ± 5.030 [0.529–24.500]

Age at first examination (years), Mean ± SD [Range] 49.200 ± 11.300 [22.200–77.000]

ICARS score at first examination, Mean ± SD [Range] 21.600 ± 15.500 [2.000–81.000]



Page 4 of 12Peng et al. Journal of Translational Medicine          (2022) 20:226 

models with two-segment slopes of related modifiers, 
respectively (i.e., PM2c vs PM2, PM3c vs PM3, and 
PM4c vs PM4, respectively). Furthermore, in the latter 
models, the fixed slopes of the two studied modifiers 
in early-stage basically  coincided  with that in the fol-
lowing late-stage. These results suggested that the dif-
ference in ICARS progression rate between the early 
and late disease stages may not be attributed to CAG-
exp and AOga.

We also examined the effect of gender on clinical 
progression. And the results showed that the P val-
ues associated with the fixed slopes of gender did not 
reach statistical significance in two models of LM5 and 
PM5 with gender as a potential influencing factor (i.e., 
all related P values were greater than 0.05) (Additional 
file 1). These results suggested that gender had no sig-
nificant effect on ICARS progression.

PM4c model had the lowest value of AIC (3928.450) 
and BIC (3990.623), as well as the highest value of 
logLike (−  1950.225) and marginal  R2 of Nakagawa 
 R2 (0.643) in goodness-of-fit tests. In ANOVA analy-
sis, the PM4c model differed significantly from LM4 
(P < 0.001) and PM4 models (P = 0.037). Therefore, 
the PM4c model was the best fit to the studied data 
according to our model evaluation criteria (Table 2).

The predictive results of the optimal growth model
Using the optimal PM4c growth model, we obtained the 
predicted ICARS scores of each participant (Fig. 1B). The 
general conformity between the predicted and actual tra-
jectory of ICARS progression could be detected by com-
paring Fig.  1A and B. Also, a scatter graph was used to 
show the differences between the actual and predicted 
ICARS scores for all subjects. Most of the ICARS scores 
predicted by the PM4c model based on CAGexp repeat 
length of ATXN3 and AOga were approximate to the 
actual values of ICARS. Further, its optimal fitted regres-
sion line was very close to the ideal line (i.e., predicted 
equaled actual ICARS) (Fig. 2A).

The residual of ICARS versus duration was equally dis-
tributed around the centerline of zero in the residual plot 
(Fig.  2B). Visually, the residual histogram superimposed 
with the density function illustrated an approximately 
normal distribution of residuals (Fig. 3A). The normality 
assumption was also justified by the normal quantile–
quantile (Q–Q) plot because the standardized residuals 
followed a straight diagonal line (Fig.  3B).  These results 
indicated that the PM4c model was appropriate and fit-
ted well to our current data.

Based on the PM4c model, we provided a excel spread-
sheet to predict the average scores and progression of 

Fig. 1 The trajectory and average progression rates of ICARS over the studied period. A showed the actual trajectory of ICARS for each participant. 
The purple line depicted the average progression rate from LM1 model with single-slope, with black lines showing the average progression rate 
from PM1 model with two-segment slopes. Dots were plotted for each subject indicating actual ICARS scores (y-axis) versus disease duration 
(x-axis). The blue dots and lines represented early disease stage, with red dots and lines for late stage. B showed the predicted trajectory of ICARS for 
each participant using the optimal PM4c growth model. Different colored dots and lines represented predicted ICARS scores (y-axis) versus disease 
duration (x-axis) for different subjects
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Fig. 2 The differences and residuals between the actual and predicted ICARS scores. A Displayed the differences between the predicted and actual 
ICARS scores for all subjects. Different colored dots were used for predicted ICARS scores (y-axis) vs true ICARS scores (x-axis), with a red regression 
line of optimal fitting of points, and a shadow representing 95% confidence interval of this line. The dotted black line was the ideal line, where true 
equaled predicted ICARS scores. B in this figure showed the residual of ICARS (predicted minus actual values) versus disease duration. The dotted 
black line was the center line of zero. Different colored dots illustrated the residual (y-axis) versus disease duration (x-axis) for different subjects

Fig. 3 The normality test result of residuals of ICARS scores. A was the histogram of ICARS residuals which plotted the distribution of the residuals, 
with blue curve representing the density curve. B was the normal quantile–quantile (Q–Q) plot of ICARS residuals. Blue dots denoted the expected 
orders of the residuals in a theoretical normal distribution (y-axis) against the observed ordered values of the residuals (y-axis). The adjacent blue 
dots were connected by blue lines. The dashed black lines were the reference where the expected orders of residuals equal the actual orders of 
residuals
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ICARS according to ATXN3 CAGexp repeat length 
together with AOga (Additional file  2). In addition, in 
the case of an unknown AOga, the PM2c model includ-
ing CAGexp as the only modifier, would be more appro-
priate for ICARS prediction than the PM4c model. Also, 
a related spreadsheet was available to the estimate of 
ICARS (Additional file 3). For example, according to the 
PM2c model, an individual with 60 CAGexp repeats in 
ATXN3 gene at 5 years after AOga would have an average 
ICARS score of 14.836. Given that his AOga is 55 years, 
the average ICARS scores at the duration of 5 years pre-
dicted by the PM4 model would be 13.121.

The assessment results of collinearity effect
We calculated the variance inflation factor (VIF) value 
of AOga against CAGexp to assess the collinearity effect 
according to the formula of VIF and the AOga variance 
explained by CAGexp (49% by our study [18] and about 
50% in the previous studies [32]). Generally, a VIF value 
exceeding 5 or 10 suggests a problematic sign of collin-
earity requiring correction [33, 34]. In this study, related 
VIF was estimated to be about 2, which was lower than 
the cut-off level for VIF. Additionally, the fit statistics 
or estimates of models combining AOga and CAGexp 
(LM4, PM4, and PM4c model) were basically consistent 
with their counterpart models with the residual of AOga 
(RAO) and CAGexp as co-modifiers (LM6, PM6, and 
PM6c model, respectively) (Additional file 1). Therefore, 
it is generally reasonable and acceptable to ignore the 
collinearity between the length of CAGexp and AOga.

Discussion
Using a different time scale of disease duration, we con-
ducted a new analysis of the ICARS progression rate in 
the longest longitudinal study of Dutch SCA3 cohort [18]. 
Compared with the previous age-index prediction mod-
els, our duration-index models have some advantages 
and can yield unique valuable insights into disease pro-
gression: (1) it is appropriate to reflect the natural time-
scale of SCA3 because of the strong correlation between 
duration and clinical severity or progression [17, 35, 36]; 
(2) it is more relevant because at baseline the population 
is constrained to be within the patients having already 
developed SCA3, while age as time scale can amplify the 
a priori dis-synchronization of disease process between 
patients; (3) it may be better suited to be used in future 
clinical trials since it is a predictor of outcomes and some 
interventions can be used at different disease stages; (4) 
it is also useful to investigate whether the rates of ICARS 
progression changed by duration.

The results showed that using duration as time scale, 
the piece-wise growth model provided  much better fit 
to the ICARS progression trajectory than linear and 

quadratic growth model. The progression rates of ICARS 
varied during the long period of SCA3 patients. Trajec-
tories of ICARS progression were characterized by non-
linear trend and could change with different stages. At 
early-stage, i.e., in the first 13  years of duration, ICARS 
progressed more slowly than in the following process 
after 13 years. Compared to the initial analysis results by 
Leotti et  al. [18], our findings provide novel insights on 
the progression of SCA3 from another new perspective. 
In SCA3, this is the first study to suggest the non-linear 
pattern of disease progression during the long disease 
duration by comparing multiple linear and nonlinear 
growth models.

Similar phenomena were also observed in a variety of 
polyQ diseases including SCA2 [15, 37], SCA6 [17, 38], 
and HD [12, 39, 40], etc. For example, in SCA2, the dis-
ease progression rates, as measured by Scale for the 
Assessment and Rating of Ataxia (SARA) and Neuro-
logical Examination Score for Spinocerebellar Ataxias 
(NESSCA), were also not uniform during the disease 
process: early phases of disease duration were related 
to slower progressions [15]. In SCA6, two studies sug-
gested a similar non-linear pattern of decline on SARA 
and Inventory of Non-Ataxia Symptoms (INAS) [17, 38]. 
As for HD, one study showed that the annual growth 
rate of chorea was greater in the earlier-stage than in 
the advanced stage [39]. While the total motor score, 
assessed in the Unified Huntington’s Disease Rating Scale 
(UHDRS), exhibited a relatively faster rate of progression 
in patients at mid-stage than those at early and late stage 
[12]. Our findings, together with these previous reports, 
suggested that the non-linear progression pattern of clin-
ical scales was plausible and disease progression may not 
be at the same rate throughout its course.

It might reflect the true biological effect of these dis-
eases. Data from other objective imaging studies were 
also consistent with this natural phenomenon. For 
instance, the rate of caudate atrophy was positively cor-
related with disease duration. It seemed to progress more 
slowly in pre-symptomatic and early HD patients [41]. 
The MRI white matter-ventricle scores displayed simi-
lar nonlinear trajectories with clinical motor-cognitive 
scores across the disease span in HD, with a slow, nonlin-
ear progression pattern over time in gray matter loss [40]. 
Furthermore, the ventricular enlargement rates of HD, 
which reflect the extension of pathology to extra-striatal 
gray matter and white matter regions, also accelerated 
with the prolongation of disease duration [13]. Except 
for the biological causes, scale limitations may also 
explain this non-linearity progression pattern of rating 
scales. Current clinical measures of disease severity and 
outcome are limited by the floor and ceiling effects and 
lack sensitivity to early signs and changes over time [12, 
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15]. On the one hand, in polyQ disease, a large propor-
tion of patients at early-stage have subtle and vague signs 
but were poorly detected by scales. This might be associ-
ated with the slower slope of progression rate in the early 
stage as shown by our results and other similar findings 
[15]. On the other hand, disease severity may not coin-
cide with relevant clinical scales. We postulated that the 
inability of related scales to assess the progression after a 
certain disease stage may contribute to explain the slow-
down of chorea and total motor score in the late stage 
of HD as mentioned above [12, 39]. Notably, our results 
showed that CAGexp repeat length and AOga might not 
be the causes for the different progression rates at differ-
ent stages. Regardless of the mechanism behind it, the 
direct use of linear models during prospective longitu-
dinal studies, without consideration of the differences in 
disease duration, may ignore the non-linear progression 
pattern.

Consistent with previous results of Leotti et al. [18], we 
also confirmed that the ATXN3 CAGexp repeat length 
significantly influenced the speeding ICARS progres-
sion. Unlike this study, we investigated the impact of 
gender on disease progression. The results indicated that 
gender was not a significant modifier of ICARS progres-
sion. Similarly, there was no significant trend of associa-
tion between ICARS increase and gender in one previous 
SCA3 study [42]. Furthermore, three studies found that 
gender had no significant effect on SARA progression 
in SCA3, as well as in other any SCA type, including 
SCA1, SCA2 and SCA6 [6, 17, 43]. Also, gender could 
not influence the NESSCA progression of SCA3 patients 
[44]. However, two studies showed that the rate of INAS 
progression in SCA3 depended on gender, with faster 
increase in female patients than male patients [6, 17]. 
According to our results and those previous studies, it 
can be suggested that there were no consistent conclu-
sions and consensus on whether gender had an effect 
on disease progression in SCAs patients. Various scales 
measuring clinical progression among studies might con-
tribute these inconsistent findings. We suspected that 
gender may not affect the increase of ataxia symptoms 
measured by ICARS, SARA and NESSCA, but the non-
ataxic signs in INAS. Also, different ethnic or population 
background and observation or follow-up period among 
these studies may account for the discrepancies.

Additionally, we focused on the impact of AOga 
rather than RAO on disease progression. It might be 
more convenient and easier to be popularized clinically, 
because: (1) a model fitting the relationship between 
AOga and CAGexp is not required to calculate RAO; 
(2) accurate prediction of AOga based on CAGexp 
is still a great challenge. Our results showed that all 
related P values of the slopes for AOga were greater 

than 0.05 in all models with AOga as the only modi-
fier or combining AOga and CAGexp together. Similar 
phenomena were also observed in related models com-
bining RAO and CAGexp as co-modifiers. It suggested 
that AOga (also a proxy for age during follow-up in our 
study) and RAO could not directly influence the pro-
gression rate of ICARS even if combining with CAG-
exp, which was different from this previous study of 
Leotti et al. [18].

Similarly, some SCA3 studies also did not found a sig-
nificant effect of AOga on the progression of ataxia as 
measured by ICARS and SARA [6, 17]. Whereas two 
studies demonstrated a correlation between AOga and 
the non-ataxia progression rate, which was assessed by 
NESSCA and inventory of non-ataxia signs (INAS) [6, 
44]. Thus, the relationship of AOga to the speeding of 
progression in SCA3 is still debated. Similar to the gen-
der effect, we speculated that it may be explained by the 
fact that AOga might affect the progression of non-ataxia 
in NESSCA and INAS but not ataxia signs in ICARS and 
SARA [22]. Whether there is a different influence pattern 
of AOga on the progression of non-ataxia or ataxia signs 
is worthy of further exploration. Additionally, the differ-
ent time scales among studies might also help to explain 
these discrepancies.

Interestingly, AOga could improve the model per-
formances and increase the effect size of CAGexp on 
the progression of ICARS. Similar to our study, two 
HD studies also used AO as a proxy for age at the time 
of examination and discovered consistent results. One 
study demonstrated that including AO increased the 
correlation between CAGexp and disease progression of 
multiple clinical rating scales by 69–159% [22]. Another 
study showed that CAGexp was the predictive fac-
tor of institutionalization but only after controlling for 
AO [23]. These findings may highlight the importance 
of aging process on the clinical progression of SCA3 as 
reported by previous studies [24, 37]. For example, the 
relationship between CAGexp and clinical progression 
could be masked by the effects of aging [37]. A signifi-
cant correlation between CAGexp and progression was 
observed only after adjusting for age at baseline [24]. And 
the inconsistent results about the relationship between 
CAGexp repeat length and progression may also be asso-
ciated with aging effects adjustment [22]. Thus, it can be 
inferred that the natural effects of aging associated with a 
later AOga adversely influenced the speed of disease pro-
gression mainly through interacting with CAGexp. The 
aging factors may affect functional capacity, balance abili-
ties, motor skills, visual-perceptual abilities, and other 
measures typically used to quantify the severity of polyQ 
disease [45–50].
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Our piece-wise linear growth models could be widely 
utilized in not only scientific research but also clinical 
practice. In scientific research, our predictive models 
can be used in experimental design studies on modifiers 
of progression. We can statistically correct the average 
effects of the major two modifiers, i.e., ATXN3 CAGexp 
and AOga, thus identifying other new risk factors of pro-
gression. Besides, the predictive models are valuable for 
clinical trials to determine the potential efficacy of treat-
ment. The progression prediction from our model could 
be employed in the baseline data analysis, essentially in 
the subject stratification. It is beneficial to eliminate or 
minimize the effects of these known predictors of pro-
gression before randomly assigning patients to different 
treatment branches. In clinical practice, although the 
current model cannot be used directly due to its not very 
good prediction accuracy at this stage, it can be further 
optimized to achieve good prediction performance with 
the future incorporation of more modifiers. At that time, 
in genetic counseling, such accurate prediction may help 
to assess disease progression, which is instructive for 
optimizing future medical plans. Meanwhile, it is also 
crucial for the clinical intervention by classifying low/
high risk patients with predicted lower/higher progres-
sion rates or scores. Those patients in the advanced dis-
ease stage with faster progression, may also require more 
intensive treatment and care to delay the progression and 
improve their quality of life. Such individualized predic-
tions are very useful for personalized medical manage-
ment and cost-effectiveness of treatment.

This study has some limitations. We lacked other com-
monly used clinical assessments like SARA and objective 
imaging data, which prevented us from comprehensively 
assessing disease progression. However, the longest lon-
gitudinal study ensures better monitoring and evaluation 
of the trajectory of progression. We did not conduct an 
independent prospective study and only reanalyzed the 
data of Leotti et al. [18], but our novel insights could still 
provide new clues for future research on the progression 
of SCA3 or other polyQ diseases.

In the future, clinical trials in polyQ disease should 
ensure that different treatment groups are appropri-
ately balanced for these factors of progression, includ-
ing disease duration, CAGexp repeat length, and 
AOga. An imbalance may lead to the group differences 
in the rate of progression being unduly attributed to 
treatment effects. Given that AOga (a proxy for aging 
process) also affect the progression rate in SCA3 by 
interacting with CAGexp as described in HD [22, 24], 
we recommend to consider the effect of age or AOga 
to avoid spurious findings either in randomization pro-
cess or in statistical analysis when examining the influ-
ences of CAGexp on progression. In fact, it may reduce 

sample size requirements and improve statistical power 
to detect treatment-induced effects. Meanwhile, future 
research needs to focus on the exploitation of other 
new modifiers to slow down the progression by target-
ing some new interventionable factors. As mentioned 
above, the acquisition and incorporation of more modi-
fiers would contribute to further optimization of our 
models for more accurate predictions. Furthermore, 
external validations of the models in other independ-
ent SCA3 and other polyQ diseases are needed to test 
its adaptability, flexibility and extensibility. In addi-
tion, further transformation of our models into clinical 
applications will necessarily require rigorous clinical 
testing in large, multicenter, multi-racial/ethnic cohorts 
at different stages, as well as well-designed clinical 
assessments and neuroimaging examinations.

In conclusion, through reanalyzing the longest lon-
gitudinal study of SCA3, we offered novel insights on 
the disease progression using a different time scale and 
analysis strategies. For the first time, this present study 
demonstrated that the progression rate of ICARS scales 
was not uniform during the long duration in SCA3, var-
ying according to the phases of disease. Different time 
scales may affect the results of the analysis and combin-
ing two or more times scales can provide new insights 
into disease progression. It has great implications for 
understanding the biological characteristics of disease 
progression in SCA3 and other polyQ diseases. In addi-
tion to ATXN3 CAGexp repeat length, AOga or aging 
process may also modulate the progression in SCA3 
through interacting with CAGexp. In polyQ disease, 
future clinical trials should take these phenomena into 
account, which would be conducive to determine inclu-
sion criteria, assess treatment effect, reduce sample size 
requirements and increase statistical power. Moreover, 
our piece-wise linear growth models could facilitate 
genetic counseling, identification of novel modifiers 
on progression, personalized clinical management, and 
clinical trials design.
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