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Abstract 

Purpose:  We develop a new risk score to predict patients with stroke-associated pneumonia (SAP) who have an 
acute intracranial hemorrhage (ICH).

Method:  We applied logistic regression to develop a new risk score called ICH-LR2S2. It was derived from examining 
a dataset of 70,540 ICH patients between 2015 and 2018 from the Chinese Stroke Center Alliance (CSCA). During the 
training of ICH-LR2S2, patients were randomly divided into two groups – 80% for the training set and 20% for model 
validation. A prospective test set was developed using 12,523 patients recruited in 2019. To further verify its effective-
ness, we tested ICH-LR2S2 on an external dataset of 24,860 patients from the China National Stroke Registration Man-
agement System II (CNSR II). The performance of ICH-LR2S2 was measured by the area under the receiver operating 
characteristic curve (AUROC).

Results:  The incidence of SAP in the dataset was 25.52%. A 24-point ICH-LR2S2 was developed from independent 
predictors, including age, modified Rankin Scale, fasting blood glucose, National Institutes of Health Stroke Scale 
admission score, Glasgow Coma Scale score, C-reactive protein, dysphagia, Chronic Obstructive Pulmonary Disease, 
and current smoking. The results showed that ICH-LR2S2 achieved an AUC = 0.749 [95% CI 0.739–0.759], which out-
performs the best baseline ICH-APS (AUC = 0.704) [95% CI 0.694–0.714]. Compared with the previous ICH risk scores, 
ICH-LR2S2 incorporates fasting blood glucose and C-reactive protein, improving its discriminative ability. Machine 
learning methods such as XGboost (AUC = 0.772) [95% CI 0.762–0.782] can further improve our prediction perfor-
mance. It also performed well when further validated by the external independent cohort of patients (n = 24,860), 
ICH-LR2S2 AUC = 0.784 [95% CI 0.774–0.794].

Conclusion:  ICH-LR2S2 accurately distinguishes SAP patients based on easily available clinical features. It can help 
identify high-risk patients in the early stages of diseases.
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Introduction
As the major complication of a stroke, stroke-asso-
ciated infections (SAIs) have resulted in increased 
mortality [1]. It is reported that approximately 30% of 
post-stroke patients have infections [2]. Among those 
with infections, stroke-associated pneumonia (SAP), 
the most acute type of SAI, has the worst impact on 
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functional outcomes [3, 4]. The incidence rate of SAP is 
approximately 10% among stroke patients but could be 
as high as 40% among high-risk populations [5]. Except 
for the relatively high incidence rate, SAP has serious 
consequences such as increased mortality, extended 
hospital stays, and deteriorated functional outcomes at 
discharge [6].

However, previous studies lacked effective prophylactic 
treatment for SAP in clinical practice [7, 8]. One of the 
reasons for such a failure of clinical trials of prophylactic 
antibiotics is the difficulty in selecting patients with the 
highest risk of SAP [9]. Consequently, clinical practice 
has no suitable routine measures to identify patients with 
the highest risk of developing SAP. Accurately selecting 
such patients could improve the results of future clinical 
trials. For prevention and treatment, it is, therefore, cru-
cial to accurately identify those patients at risk during the 
acute phases of stroke.

SAP mainly includes acute ischemic stroke (AIS) and 
intracranial hemorrhage (ICH) stroke pneumonia. Rates 
of pneumonia are reportedly higher in patients with ICH 
than those with AIS [10]. However, most SAP research 
focuses on AIS, with relatively few studies examining 
ICH [11–13]. Therefore, it requires an objective and eas-
ily applicable model that predicts the probability of the 
development of pneumonia in ICH patients. Several 
recently developed clinical scores are available to predict 
SAP for stroke patients. Examples are the Pneumonia 
Score [14], Veteran’s Health Administration cohort score 
[15], ICH-APS (Intracerebral Haemorrhage-Associated 
Pneumonia Score) A and B [16], Pneumonia (PNA) pre-
diction score [17], ISAN (Prestroke Independence, Sex, 
Age, NIHSS) score [18], ACDD4 (Age, Dysarthria, Dys-
phagia, CHF) [19], and PASS (Preventive Antibiotics in 
Stroke Study) [20]. Although most of these scores are 
SAP scoring models for AIS, some are also suited to pre-
dicting ICH patient scores [21]. According to previous 
studies [22, 23], SAP is associated with various risk fac-
tors, including older age, male gender, dysphagia, stroke-
induced immunodepression syndrome, and chronic 
obstructive pulmonary disease (COPD). Different clini-
cal scores consider different risk factors, with their com-
parisons detailed in Additional file 1: Table S1. Except for 
this, these studies on clinical scores have two main draw-
backs. First, they rely on relatively small datasets ranging 
from 286 to 11,551 for predicting SAP (see Additional 
file  1: Table  S2). Second, some variables used in these 
risk scores are not easily accessible directly. For example, 
a recent risk score for ICH, ICH-APS-B uses hematoma 
volume, infratentorial location, and extension into ven-
tricles. As such, their conclusions may limit generaliz-
ability. Therefore, a new risk score should be developed 
for predicting ICH-associated SAP by using large-scale, 

multi-center data and clinical variables with readily avail-
able values.

In this study, we developed an ICH risk score called 
ICH-LR2S2 to predict pneumonia for risk assessment. 
It has been evaluated by the two large-scale multi-center 
cohorts. Except for the risk score, our machine learning 
model can be extended by adding additional variables to 
further improve the accuracy of its predictions. Note that 
this is a prospective study on predicting intracerebral 
hemorrhage stroke-associated pneumonia. More impor-
tantly, using the external independent validation data 
cohort has further demonstrated the benefits for clinical 
practice from our methods.

Methods
Participants
This study collected data on over one million patients 
from the Chinese Stroke Center Alliance (CSCA), a 
national, hospital-based, multi-center program initiated 
in August 2015. The CSCA requires participating hospi-
tals to only enroll patients who meet the following crite-
ria: (1) over 18 years old; (2) had the primary diagnosis of 
acute stroke/transient ischemic attacks (TIA) confirmed 
by brain CT or MRI, including acute AIS, TIA, intracer-
ebral hemorrhage, or subarachnoid hemorrhage (SAH); 
(3) within seven days of symptom onset; and (4) admitted 
to hospital either directly or through emergency depart-
ments. Patients with cerebral venous sinus thrombosis or 
non-cerebrovascular diseases were excluded. For ensur-
ing the accuracy of diagnosis and the quality of stroke 
care, performance metrics were used over the whole con-
trolling process by strictly following the national stand-
ards and guideline recommendations prespecified or 
updated by the Steering Committee of CSCA. Detailed 
information about the CSCA design and methodology 
can be found in previous publications [24]. This study 
had been approved by the Central Institutional Review 
Board of Beijing Tiantan Hospital.

Patients with intracranial hemorrhagic stroke were 
selected, resulting in a total of 83,063 patients as our 
study cohort. Among the selected patients, 61,869 
patients had no pneumonia (74.47%), while 21,194 
patients had pneumonia (25.52%). There are more than 
500 characteristic variables, including clinical variables 
on admission such as blood pressure, blood sugar, uric 
acid, pneumonia, National Institute of Health stroke 
scale (NIHSS), and modified Rankin Scale (mRS), as well 
as external variables such as hospital level, education 
level, and family income status.

Definition and indicators of pneumonia
Pneumonia can be diagnosed by a typical chest X-ray, 
clinical symptoms, signs such as a cough, purulent 
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sputum, fever, and laboratory tests such as white blood 
cell count. SAP after ICH can be diagnosed by a treating 
physician who uses clinical and laboratory indicators of 
respiratory infections such as fever, cough, and auscul-
tation of respiratory cracks, new purulent sputum, or 
positive sputum culture, together with typical chest X-ray 
findings from PISCES (Pneumonia in Stroke ConsEnsuS) 
[25]. Hospital-acquired pneumonia was documented by 
excluding those cases that occurred before the stroke. 
Data on the development of SAP after ICH were pro-
spectively collected.

Study procedure
To validate our model for predicting the likelihood of 
pneumonia,  we used data collected from two multi-
center cohorts in this study – the internal prospective 
research cohort of CSCA and the external independent 
verification cohort of CNSR II. In our experiments, we 
allocated the data from 2015 to 2018 for training with 
an internal verification ratio of 8:2, and the 2019 data for 
testing. After that, data records with missing values were 
filled in through data processing. The feature selection 
was then performed to select features that have impor-
tant impacts on pneumonia. To this end, we first trained 
our model by using the two classic models—XGboost 
and logistic regression. ICH-LR2S2 was then calculated 
using the feature weight coefficients of logistic regres-
sion. After consulting doctors, the score interval was 
slightly modified according to the medical risk values to 
comply with the medical consensus [16, 26]. Additionally, 
we examined its performance on an external verification 
cohort. For the benefit of clinical practice, we stratified 
the patient population and analyzed the whole popula-
tion cohort. The flow diagram is shown in Fig. 1.

Data processing
Additional file 1: Table S3 shows the proportion of miss-
ing data for the selected variables. If a variable with a 
missing value was a continuous one, we filled it with 
the median value of that variable in the dataset. If it was 
binary, we filled it with 0, which means that there is no 
such disease history (our binary variables only include 
disease history and gender, and the gender variable is not 
missing). We finally obtained the data with the training 
set = 56,432, internal validation cohort = 14,108, and test 
set = 12,523 in our experiments.

Feature selection
Considering medical variables from the perspective 
of clinical practice, we focused on screening medical 
variables related to human physiological characteristics 
and disease history conditions. We tried to select as few 
variables as possible without reducing the prediction 

accuracy for pneumonia. Feature selection was per-
formed using the permutation method [27], which is 
suitable for tree models. The importance of a feature 
can be measured by how much the objective score 
decreases as a result of removing the feature. Specifi-
cally, the variable weights were calculated through the 
permutation mechanism provided by XGboost [28], 
which is a boosting tree model with the capacity to 
handle missing values. Ten-fold cross-validation tests 
on the training set were conducted to calculate the fea-
ture weights.

We filtered out the feature variables in turn, accord-
ing to their weight order. A newly added feature must 
increase the overall score of the internal verification 
cohort by at least 0.005 in the cross-validation. Consid-
ering the features selected in the previous studies [16–
21] as well as recommended by the doctors, we further 

Fig. 1  Flow diagram for the derivation cohort, validation cohort, and 
the schema of our model
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added three new variables—gender, current smoking, 
and C-reactive protein. Finally, we ended up with 12 
variables of dysphagia, Glasgow  Coma Score (GCS), 
age, gender, fasting blood glucose, uric acid, COPD, 
National Institutes of Health Stroke Scale admission 
score (NIHSS score), mRS, current smoking, serum 
creatinine, and C-reactive protein. Detailed descrip-
tions of these variables are provided in Additional file 1: 
Figure S3.

Baseline scores
In Additional file 1: Tables S1 and S2, we list the scoring 
scales that can be used in ICH as the predictions of SAP 
in recent years. The aged variable is used by all scores, so 
is NIHSS except for the ACDD4 score [19]. In the follow-
ing experiments, we mainly considered clinical variables 
that are easy to obtain. Therefore, we screened ICH-APS-
A (from now on referred to as ICH-APS), PASS, ISAN, 
and PNA. It is worth mentioning that we made a com-
promise for ICH-APS; that is, we used drinking history 
instead of excessive drinking in ICH-APS. And consider-
ing the acquisition of variables, we set a score of 0 for the 
three medical variables (hematoma volume, infratento-
rial location, and extension into ventricles) that are not 
included in our data cohorts.

ICH‑LR2S2
We used classic machine learning models of logistic 
regression. Calculating the medical risk score by using 
the regression coefficient [29] and the prior medical con-
sensus [16, 19, 21], we developed the ICH-LR2S2 risk 
score shown in Table 1. We excluded features with scores 
of less than one point. As such, ICH-LR2S2 used the nine 
patient features: age, mRS, fasting blood glucose, NIHSS 
score, GCS, C-reactive protein, dysphagia, COPD, and 
current smoking. Compared with previous risk scores, 
ICH-LR2S2 has two new variables—fasting blood glu-
cose and C-reactive protein.

External validation cohort
The performance of our model was tested on an inde-
pendent cohort from the China National Stroke Registry 
II (CNSR II) [30]. As a nationwide initiative, the CNSR 
II, launched in 2012 by the Ministry of Health of China, 
established a reliable national stroke database for evalu-
ating the delivery of stroke care in clinical practice. The 
CNSR II cohort included patients recruited from all 219 
urban hospitals that voluntarily participated in the Gen-
eral Administration of Stroke Registration of China from 
June 2012 to January 2013. The study had been approved 
by the Central Institutional Review Board of Beijing Tian-
tan Hospital. Each participant provided written informed 
consent before participating.

Statistical analysis
Continuous variables are described by means and stand-
ard deviations (SD), while categorical variables are 
described by counts and percentages. The prediction per-
formances of the models are measured by the area under 
the receiver operating characteristic curve (AUC), with a 
95% confidence interval (CI). The AUCs of these models 
were compared using the DeLong test [31]. The student’s 
t-test was used for continuous variables and the chi-
square test for categorical variables. Two-sided p < 0.01 
was considered to be statistically significant.

Based on logistic regression, the risk score used weight 
coefficients. By taking ten years as the interval, the ratio 
of a feature weight to the age weight coefficient was cal-
culated to obtain the corresponding feature score and 
numerical interval. For a binary variable, the presence 
or absence of a feature was used as a scoring criterion 
(gender features give scores to men). For a continuous 
variable, in addition to considering the weight coefficient 

Table 1  ICH-LR2S2

Item Range Score

Age group  < 60 0

60–69 1

70–79 2

80–89 3

 ≥ 90 4

mRS  < 4 0

4 2

5 3

Fasting blood glucose  < 6 0

6–8 1

9–11 2

 ≥ 12 3

NIHSS score  < 5 0

5–13 1

14–21 2

22–29 3

 ≥ 30 4

GCS 3–5 2

6–8 1

 ≥ 9 0

C-reactive protein  < 7 0

7–16 1

 ≥ 17 2

Dysphagia Yes 4

No 0

COPD Yes 3

No 0

Current smoking Yes 2

No 0
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from the model, the actual meaning of the medical fea-
ture (medical risk range for this feature) must also be 
considered. In particular, the minimum unit of the score 
was 1 point, and features with less than 1 point were not 
scored. Based on the predictive score of the model, we 
stratified the risk of the population cohort and specified 
the risk threshold. We analyzed different risk groups by 
calculating the number of patients, the pneumonia rate, 
accuracy, sensitivity, specificity, PPV, and NPV (for more 
detailed information, refer to Additional file  1: Tables 
S7–S14).

Results
The composition and characteristics of the population
From July 2015 to June 2019, CSCA recruited 83,063 
ICH patients, of which 21,194 (25.52%) were pneumonia 
patients. Specifically, 62.55% of all patients were male, 
with an average age of 62.48  years. For more detailed 
information, refer to Table 2. It can be found that there 
is a significant difference between the proportion of 

patients with dysphagia and pneumonia (36.63%) and 
those with dysphagia who did not have pneumonia 
(9.01%). This can also explain why the weight coefficient 
of this variable is large.

The external validation cohort of CNSR II included 
24,680 patients with similar demographic characteris-
tics (male 63.75%, mean age 64.1 years, SD 12.0). Related 
surveys show that patients from the 2012 to 2013 data-
set had insurance through new rural cooperative medi-
cal schemes [30]. These patients received better medical 
assistance and thus had a lower incidence of stroke and 
stroke-related complications. Additional file  1: Table  S4 
lists other characteristics of the derived cohort and 
external verification cohort. By comparing the data pop-
ulations of the two cohorts, the proportion of pneumo-
nia patients in CNSR II is only 8.44% and in CSCA it is 
25.52%. We compared their representative characteris-
tics. In medical judgment, a high NIHSS score, or a low 
GCS score indicates that a patient’s condition is seri-
ous. Patients with high scores for NIHSS variables (> 16) 

Table 2  Risk factors and basic knowledge in CSCA cohort (N: number of people)

Basic
information

Total patients (n = 70,540) With pneumonia 
(n = 18,190)

Without pneumonia 
(n = 52,350)

P values

Male (n%) 44,123 (62.55%) 11,864 (65.22%) 32,259 (61.62%)  < 0.01

Age (mean) 62.48 65.03 61.59  < 0.01

 < 60 (N) 28,305 5908 (32.48%) 22,397 (42.783%)  < 0.01

60 ≤ age < 70 (N) 18,435 4636 (25.49%) 13,799 (26.36%) 0.01

70 ≤ age < 80 (N) 12,839 4,013 (22.06%) 8826 (16.86%)  < 0.01

80 ≤ age < 90 (N) 5644 2,170 (11.93%) 3474 (6.64%)  < 0.01

age ≥ 90 (N) 5317 1,463 (8.04%) 3854 (7.36%)  < 0.01

mRS at hospital (mean) 2.11 2.45 2.00  < 0.01

 ≤ 4 (N) 60,044 13,764 (75.67%) 46,280 (88.41%)  < 0.01

 ≥ 5 (5,6) (N) 10,496 4,426 (24.33%) 6,070 (11.60%) 0.02

NIHSS score (mean) 8.17 13.51 6.69  < 0.01

 < 10 (N) 15,348 2061 (11.33%) 13,287 (25.38%)  < 0.01

10–16 (N) 2825 928 (5.10%) 1897 (3.62%) 0.03

 > 16 (N) 2983 1523 (8.37%) 1460 (2.79%) 0.05

GCS (mean) 11.42 9.68 12.17  < 0.01

 ≥ 10 (N) 24,615 5527 (30.38%) 19,088 (36.46%)  < 0.01

 < 10 (N) 10,847 5165 (28.40%) 5,682 (10.85%)  < 0.01

Smoking 14,165 3780 (20.78%) 10,385 (19.83%)  < 0.01

COPD 1,026 517 (2.84%) 509 (0.97%) 0.01

Dysphagia 11,379 6663 (36.63%) 4,716 (9.01%)  < 0.01

CRP (> 10 mg/l) 854 318 (1.75%) 536 (1.02%)  < 0.01

Creatinine (µmol/l) 83.16 86.37 82.06  < 0.01

Uric acid (µmol/l) 288.56 280.83 291.25  < 0.01

Fasting blood glucose (mmol/l) 6.54 7.00 6.38  < 0.01

 < 7.8 56,617 13,421 (73.78%) 43,196 (82.51%)  < 0.01

7.8–11.1 8708 3059 (16.81%) 5649 (10.79%)  < 0.01

 ≥ 11.1 3805 1349 (7.42%) 2456 (4.69%) 0.02
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accounted for 4.93% in CNSR II, which was lower than in 
CSCA (13.18%). Patients with low scores for GCS vari-
ables (< 10) accounted for 1.45% in CNSR II, which was 
also lower than in CSCA (30.67%). For dysphagia, which 
has the greatest impact on the weight coefficient of pneu-
monia, its incidence rate in CNSR II was 8.29%, com-
pared to 15.98% in CSCA. All these results demonstrate 
that the patients in the CNSR II data cohort had milder 
cases of pneumonia.

Classification performance
The performance of the model was examined using the 
test data. The results of risk scores were as follows: ICH-
LR2S2 (AUC = 0.749) [95% CI 0.739–0.759], the exist-
ing scoring method ICH-APS (AUC = 0.704) [95% CI 
0.694–0.714], PASS (AUC = 0.684) [95% CI 0.674–0.694], 
ISAN (AUC = 0.676) [95% CI 0.666–0.686], and PNA 
(AUC = 0.636) [95% CI 0.626–0.646]. As a white-box 
model, ICH-LR2S2 is highly explanatory and intuitive, 
performing significantly better than the baseline of ICH-
APS, PASS, and so on. The DeLong test results (see Addi-
tional file 1: Table S17) show that ICH-LR2S2 performed 
significantly better than other risk scores for ICH.

Compared with the previous scoring scales, we used 
newly added fasting blood glucose variables and C-reac-
tive protein biomarkers in ICH-LR2S2. To validate this 
choice, we compared the effects of ICH-LR2S2 by delet-
ing these two variables, respectively (see Additional file 1: 
Fig. S5 and S6). For the CSCA cohort data, AUC was 
reduced by 0.005 after removing fasting blood glucose, 
by 0.012 after removing C-reactive protein, and by 0.017 
after removing both. For the external verification queue 
CNSR II, the AUC decreases by 0.009 after removing 
these two variables.

Furthermore, the machine learning model that uses 
more variables (gender, uric acid, and serum creatinine) 
shows better predictive performance in terms of com-
paring the risk score. As shown in Fig.  2(a), the results 
were as follows: XGboost (AUC = 0.772) [95% CI 0.762–
0.782] and logistic regression (AUC = 0.755) [95% CI 
0.745–0.765].

External validation
We tested the risk score of ICH-LR2S2 on an independ-
ent external cohort of CNSR II. The CNSR II data sta-
tistics are reported in Additional file  1: Table  S4. The 
results of external validation are consistent with those 
of test data. The overall performance of ICH-LR2S2 was 
AUC = 0.784 [95% CI 0.774–0.794] and the best perfor-
mance of our baseline risk scoring models was ICH-APS 
(AUC = 0.737) [95% CI 0.727–0.747]. Also, our machine 
learning model can be further improved, as shown in 
Fig.  2b. The detailed results are reported in Additional 

file  1: Table  S6, indicating that ICH-LR2S2 has high 
potential application values.

Risk stratification
We divided the validation data set into different risk 
cohorts according to the given risk threshold. For the 
risk scoring scale, for example, we regarded people with 
a score higher than 13 as a high-risk group, people with 
a score lower than 6 as a low-risk group, and the rest as a 
medium-risk group. For the CSCA cohort, the number of 
patients in three risk groups were as follows: 556 (4.44%) 
in the high-risk group, with a pneumonia rate of 61.51%; 
5659 (45.19%) in the middle-risk group, with a pneu-
monia rate of 33.89%; and 6308 (50.37%) in the low-risk 
group with a pneumonia rate of 11.79%. For XGboost, 
we also performed a risk stratification and cohort analy-
sis based on predicted scores. The detailed results of the 
statistical analysis are given in Additional file  1: Tables 
S7–S14.

By using ICH-LR2S2, we listed the pneumonia prob-
abilities in the table in terms of different scores (see 
Additional file  1: Tables S15 and S16). The bar graphs 
in Fig.  2c, d illustrate the corresponding relationships 
between ICH-LR2S2 scores and their probabilities of 
pneumonia. These figures provide doctors with an easy 
way of estimating a risk score in their clinical practice. 
For example, for the CSCA cohort, the probability of 
having pneumonia is 0.86 when the score reaches 20. As 
such, the information in this table can assist doctors in 
making decisions on patients with different conditions.

Discussion
Previous studies have compared the different SAP scores 
in AIS by listing their pros and cons [26, 33]. Similarly, 
we compare the widely used SAP scores in ICH in Addi-
tional file  1: Table  S1 from a different perspective. As 
demonstrated, the performance of our new risk score is 
superior to all existing scoring scales for predicting SAP 
of ICH. Further, the obvious advantage of ICH-LR2S2 
lies in the use of widely available variables upon patients’ 
admissions. The corresponding score and pneumonia 
risk can then be easily calculated. More importantly, 
ICH-LR2S2 for physicians is a simple, intuitive, and easy-
to-use pneumonia assessment model. Surprisingly, we 
discovered new variables that are influential on SAP in 
ICH, and the risk stratification based on our risk score 
corresponds to the probabilities of pneumonia from this 
study.

From this study, we concluded that fasting blood glu-
cose levels and C-reactive protein play an important role 
in predicting SAP based on our large-scale data analy-
sis. Both blood glucose level and diabetes history were 
regarded as important predictors in previous studies on 
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SAP in AIS, but they were ignored in ICH [34]. Note 
that the history of diabetes does not represent abnormal 
blood glucose levels. Also, temporary hyperglycemia may 
indicate stress hyperglycemia rather than diabetes. As 
Hotter et al. [32] pointed out, diabetes history is not an 
independent risk factor for SAP; however, hyperglycemia 
reduces the bactericidal ability of white blood cells so that 
the possibility of lung infection increases, and patients 
with fasting hyperglycemia are likely to suffer from SAP 
[32, 33]. All these conclusions are consistent with our 
findings in this study. On the other hand, as an important 
biomarker, C-reactive protein (CRP) plays a significant 
role in predicting pneumonia [34]. Specifically, elevated 
CRP is an important sign of the poor prognosis of acute 

respiratory distress syndrome, reflecting the persistent 
state of inflammation [34, 35]. Adnet et  al. [36] showed 
that high CRP levels help diagnose pneumonia patients 
with drug-induced coma and secondary inhalation. At 
the same time, they found that the sensitivity and speci-
ficity of other parameters (such as fever and white blood 
cell count) are poor indicators for diagnosing pneumo-
nia. Based on our big data analysis, this study confirmed 
a strong correlation between CRP and SAP in ICH. Note 
that biomarkers and genetic data are needed to further 
investigate the mechanism of this correlation.

In terms of pneumonia in hemorrhagic stroke, it is clear 
from the data that patients with a history of hypertension 
are indeed more susceptible to pneumonia. Angiotensin 

Fig. 2  a Receiver operating characteristic curves (ROC) for discriminatory abilities of the different scores for clinical diagnosis of stroke-associated 
pneumonia (SAP) of CSCA cohort. b Receiver operating characteristic curves (ROC) for discriminatory abilities of the different scores for clinical 
diagnosis of stroke-associated pneumonia (SAP) of CNSR II cohort. c Probability of pneumonia with different scores in the CSCA cohort. d Probability 
of pneumonia with different scores in the CNSR II cohort
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can cause high blood pressure [37, 38], while high blood 
pressure is associated with a variety of diseases including 
stroke, diabetes, and so on [39]. As a drug, ARBs are one 
of the most commonly used first-line treatment drugs for 
hypertension [40]. By selectively blocking the angiotensin 
II receptor (AT1 type) and angiotensin II (Ang II), ARBs 
produce a pharmacological effect that is similar to that 
of angiotensin-converting enzyme inhibitors (ACEI) [41, 
42]. They dilate blood vessels and lower blood pressure. 
Therefore, the use of ARB antihypertensive drugs can 
reduce the blood pressure of patients, which may reduce 
the probability of stroke and pneumonia in patients. In 
addition to ARB, it can be concluded from the data in this 
paper that the use of antihypertensive drugs, hypoglyce-
mic drugs, and anticoagulants (see Additional file 1: Fig.
S3) may be related to subsequent pneumonia infection in 
stroke patients. This warrants further research.

This study was conducted based on a large data registry 
collected from multi-centered hospitals in China. Com-
pared to our CSCA study cohort, patients in the CNSR 
II cohort had fewer strokes and were less likely to have 
pneumonia. The statistical analysis of important char-
acteristic indicators shows that the proportion of the 
population within the characteristic risk threshold is sig-
nificantly smaller. This is due to the different admission 
times of patients and different periods of policies fol-
lowed. Being validated by an external validation cohort, 
ICH-LR2S2 can still make accurate predictions on these 
datasets. This indicates that ICH-LR2S2 has good gener-
alization capabilities. All validation results demonstrate 
that the variables we choose for ICH-LR2S2 can effec-
tively distinguish those who do not have pneumonia from 
those who do.

For the stratification of patients at the greatest risk, we 
used machine learning and scoring methods to conduct 
risk stratification of the current patient population, and 
statistically analyzed various indicators of different risk 
population cohorts. For ICH-LR2S2, we plotted the his-
togram of the probabilities of pneumonia under different 
scores. We also tested the performance of risk stratifi-
cation in an external verification cohort, and the results 
demonstrated its effectiveness in distinguishing different 
risk populations. With the same pneumonia risk rate (the 
error does not exceed 0.02) in the data, we compared our 
risk score ICH-LR2S2 with the two best-performing risk 
scores of ICH-APS and PASS in terms of population cov-
erage in different risk cohorts. As shown in Additional 
file 1: Fig. S7 and S8, ICH-LR2S2 has a higher coverage in 
high-risk and low-risk populations, indicating that it can 
distinguish different risk population cohorts better than 
ICH-APS and PASS. Specifically, in the CSCA cohort, 
the population coverage rate for the high-risk cohort 
was 4.44% by ICH-LR2S2, which was higher than 3.08% 

by ICH-APS and 2.89% by PASS. ICH-LR2S2 has also 
demonstrated consistent performance on different data-
sets (see Additional file  1: Fig. S9 and S10). With such 
good performance, ICH-LR2S2 can be used to score the 
risk of a new patient in clinical practice. A patient can be 
classified into the corresponding risk population cohort 
by using ICH-LR2S2. As such, medical expenses can be 
saved. Further, different post-response measures can be 
adopted for targeted treatment and care. On the other 
hand, several factors should be considered before using 
our ICH-LR2S2. For example, the threshold in ICH-
LR2S2 should be set based on the different incidences 
of SAP or a hospital’s clinical priorities. Factors such as 
the acceptability of risks or the adoption of reasonable 
precautions may also affect the choice of a particular 
threshold.

By using the limited number of scoring variables, 
clinical risk scoring can be simplified at the expense of 
compromising the accuracy of prediction. For example, 
ICH-LR2S2 does not use the variables and factors of 
medical comorbidities, additional imaging data or addi-
tional medication history information such as anticoagu-
lants or antibiotics. However, the prediction from our 
scores should be combined with the use of any other clin-
ically relevant information. In other words, ICH-LR2S2 
is intended for use as a tool to aid a clinical decision-
making process. Moreover, future efforts will be geared 
toward investigating its best use. The experiment results 
also have indicated that ICH-LR2S2 is a valuable tool to 
help identify clinicians’ triage patients with ICH by pre-
dicting their risks of pneumonia reliably and accurately. 
In other words, our score can identify high-risk ICH 
patients who require additional interventional treatment.

Limitations
First, stroke cohorts other than CSCA and CNSR can 
be selected for further validation. Second, the data lacks 
variables such as hematoma volume, submeningeal loca-
tion, and intraventricular hemorrhage, making ICH-APS 
slightly less effective. Finally, ICH-LR2S2 is a model for 
predicting pneumonia risk. This model can be trans-
ferred to other types of stroke complication prediction. 
Its application and prognostic model in daily clinical 
practice remain to be studied.

Conclusion
In this paper, we have presented ICH-LR2S2, which can 
accurately predict pneumonia associated with spon-
taneous intracranial hemorrhage by using data-driven 
machine learning methods. ICH-LR2S2 can be used eas-
ily by physicians of varying specialties.
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