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Abstract 

Background: Genome‑wide association studies (GWAS) have revealed numerous loci associated with stroke. 
However, the underlying mechanisms at these loci in the pathogenesis of stroke and effective stroke drug targets are 
elusive. Therefore, we aimed to identify causal genes in the pathogenesis of stroke and its subtypes.

Methods: Utilizing multidimensional high‑throughput data generated, we integrated proteome‑wide association 
study (PWAS), transcriptome‑wide association study (TWAS), Mendelian randomization (MR), and Bayesian colocali‑
zation analysis to prioritize genes that contribute to stroke and its subtypes risk via affecting their expression and 
protein abundance in brain and blood.

Results: Our integrative analysis revealed that ICA1L was associated with small‑vessel stroke (SVS), according to 
robust evidence at both protein and transcriptional levels based on brain‑derived data. We also identified NBEAL1 that 
was causally related to SVS via its cis‑regulated brain expression level. In blood, we identified 5 genes (MMP12, SCARF1, 
ABO, F11, and CKAP2) that had causal relationships with stroke and stroke subtypes.

Conclusions: Together, via using an integrative analysis to deal with multidimensional data, we prioritized causal 
genes in the pathogenesis of SVS, which offered hints for future biological and therapeutic studies.

Keywords: Stroke, Proteome‑wide association study, Transcriptome‑wide association study, Mendelian 
randomization, Bayesian colocalization

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
As the second-leading cause of death globally, stroke con-
tributed to 6.55 million people’s deaths in 2019 with dis-
ability-adjusted life years (DALYs) increased steadily [1], 
which warranted novel therapies for treatment of stroke. 
Although there are many risk factors that are simultane-
ously associated with stroke, the causal genes responsible 

for stroke has remained unexplored. Thus, efforts are still 
required to identify the key molecular signatures in the 
pathogenesis of stroke to provide a fundamental theory 
for treatment.

With the development of high-throughput sequencing 
technology, genome-wide association studies (GWASs) 
have identified numerous loci associated with stroke [2]. 
Despite several efforts, the underlying mechanism attrib-
uted to stroke risk is elusive, which hinders the transla-
tion from identified risk loci to clinical therapy.

Recently, large-scale quantitative trait loci (QTL) data 
were produced to establish the association between 
genotype with protein abundance (pQTL) and gene 
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expression (eQTL) [3, 4], which led to continuous emer-
gent of statistical methods facilitating the integration 
of the multidimensional data [5]. Proteome-wide asso-
ciation studies (PWASs) have been recently used to find 
candidate genes whose protein abundances are associ-
ated with Alzheimer’s disease and depression [6, 7]. Simi-
larly, transcriptome-wide association studies (TWASs) 
have been applied in the association analyses between 
gene expression and phenotypes [8]. Besides, Mendelian 
randomization (MR) and Bayesian colocalization analy-
sis were also widely used to identify candidate genes via 
integrating QTL and disease GWAS data [9, 10]. Men-
delian randomization, which simulates a natural rand-
omized controlled trial (mutations are randomly assigned 
to gametes during meiosis), can provide causal inference 
under the three core assumptions [11, 12]. Bayesian colo-
calization analysis calculates the probability that two 
traits share a causal genetic variant [13]. Altogether, inte-
grating GWAS data with these multidimensional QTL 
data shall help prioritize specific pathways and candidate 
genes to discriminate the potential genes accounting for 
the pathogenesis of stroke.

Moreover, a previous study pointed out that mononu-
clear cells in peripheral could be used as a biomarker in 
ischemic stroke [14]. Thus, in addition to investigating 
the directly related brain tissue, we also applied our anal-
ysis in blood to reach a more comprehensive understand-
ing of stroke pathogenesis.

In this study, we conducted an integrative analysis to 
identify candidate genes for stroke and stroke subtypes 
by combing brain-derived and blood-derived multi-
omics data with genetic data. The overall analysis pipe-
line is shown in Fig. 1. First, we utilized pQTL and eQTL 
data derived from brain tissues and GWAS findings of 
stroke to perform PWAS and TWAS separately. Then, 
MR, Bayesian colocalization, and Steiger filtering analysis 
were leveraged to detect the causal relationship between 
stroke and genomic architecture-associated protein or 
transcription levels. Second, the integrative analysis was 
mapped on blood-derived multi-omics data to test the 
consistency between brain and blood. Our study pri-
oritized candidate genes underlying complex forms of 
stroke, which could serve as potential treatment targets.

Methods
Stroke GWAS data
The current study utilized stroke GWAS summary data-
sets obtained from the MEGASTROKE consortium 
[2]. The stroke GWAS summary datasets used in the 
main analysis were restricted to European participants, 
including data for 446,696 European descent individu-
als (40,585 any stroke cases and 406,111 controls). The 
ancestry-specific meta-analyses were also conducted for 

four stroke subtypes, including any ischemic stroke (AIS; 
34,217 cases), large artery stroke (LAS; 4,373 cases), car-
dioembolic stroke (CES; 7,193 cases), and small vessel 
stroke (SVS; 5,386 cases).

Human brain proteomic and transcriptomic data
We analyzed the proteomes of 400 postmortem brain 
samples with dorsolateral prefrontal cortex (dPFC) from 
the ROS/MAP [3]. In more details, the digested peptides 
were labeled with isobaric tandem mass tag (TMT) and 
subjected to liquid chromatography coupled to mass 
spectrometry (LC–MS) for sequencing. Genotypes 
were derived from either whole-genome sequencing or 
genome-wide genotyping by either the Illumina Omni-
Quad Express or Affymetrix GeneChip 6.0 platforms 
[15]. The quality control process was described in the pri-
mary study. Finally, 376 subjects with both proteomic and 
genetic data passed the quality control for the PWAS.

The eQTL dataset was from the PsychENCODE Con-
sortium covering 1,129,652 eQTLs of 11,120 genes from 
the prefrontal cortex (PFC) (n = 1387) [4]. We only 
included the data of SNPs within 1 MB window around 
each gene. Genotypes were derived either from genome-
wide single nucleotide polymorphisms (SNP) arrays or 
whole genome sequencing.

Human blood proteomic and transcriptomic data
The serum proteomic data was derived from a large pop-
ulation-based study (AGES Reykjavik study; n = 5457) 
[16]. The AGES Reykjavik study consisting of predomi-
nantly European individuals older than 65  years of age, 
whose phenotype and genotype information were avail-
able. The Slow-Off rate Modified Aptamer (SOMAmer), 
a proteomic profiling platform, was used to determine 
the serum levels of 4137 human proteins.

The whole-blood eQTL data was derived from the 
Genotype-Tissue Expression (GTEx) version 6 database 
(n = 338) [17]. The gene expression data was obtained 
using paired-end RNA-seq (Illumina TruSeq; Illumina 
Inc) and the genotype data was from whole-genome 
sequencing. Full descriptions of donor registration, con-
sent process, biological sample acquisition methods, 
sample attachment and histopathological examination 
procedures are available on the official GTEx website 
[18].

Statistical analysis
Functional Summary-based Imputation (FUSION) soft-
ware was used to estimate protein weights using prot-
eomic and genetic data from ROS/MAP [8]. Briefly, a 
linkage disequilibrium (LD) reference panel was used 
to minimize the influence of LD on the estimated test 
statistics [8]. Then, the SNP-based heritability for each 
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gene was estimated and we used FUSION to compute 
the effect of SNPs with significant heritability (P < 0.01) 
on protein abundance using multiple predictive mod-
els, including top1, blup, lasso, enet and bslmm [8]. The 
weights of protein were obtained from the most predic-
tive model. The protein weights used in the current study 
were derived from [19] and the expression weights were 
derived from transcriptomic data generated from dPFC 
(CommonMind Consortium; n = 452) [20, 21]. Later, we 
used FUSION to combine the genetic effect of stroke 
(stroke GWAS z-score) with the protein or expression 

weights by calculating the linear sum of z-score × weight 
for the independent SNPs at the locus to perform the 
PWAS or TWAS. Bonferroni-corrected P value thresh-
old was used to reduce the instance of a false positive. We 
also calculated the P value adjust for false discovery rate 
(FDR) using Benjamini-Hochberg (BH) method.

Mendelian randomization [22] used the SNPs as an 
instrumental variable (IV) to infer the causal relationship 
between exposure and outcome and the quantitative trait 
loci data can be integrated to investigate the causal gene 
of disease [23]. Genome-wide significant (P < 5 ×  10–08) 

Fig. 1 Flowchart of the study. First, we leveraged p/eQTL data derived from the brain tissue with stroke GWASs to conduct a PWAS/TWAS analysis 
followed by Mendelian randomization (MR), Bayesian colocalization analysis, and Steiger directionality test. Then, we applied similar analysis 
framework to integrate the proteomic data and eQTL data derived from blood with stroke GWASs. * indicated Bayesian colocalization analysis was 
only performed for eQTL data
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SNPs were selected and followed LD clumping to obtain 
independent SNPs  (R2 > 0.001). Then the exposure (QTL 
data) and outcome (stroke GWAS data) data were har-
monized according to the same effect alleles. When 
only a single independent QTL was available, the Wald 
ratio was used to estimate the causality of exposure to 
outcome. Where more than one SNP was available, the 
inverse-variance weighted (IVW) [24] method was used 
to combine the ratios of SNP-exposure to SNP-outcome 
in a fixed-effects meta-analysis or random-effects meta-
analysis. A Bonferroni-corrected threshold of P < 0.05/
number of genes analyzed was set for multiple com-
parison. Besides, the Steiger filtering method [25] was 
employed to test if the causal direction between the 
hypothesized exposure and outcomes was valid using 
the directionality_test() function in “TwoSampleMR” 
package. The Mendelian randomization analysis was per-
formed using the “TwoSampleMR” version 0.5.5 in R ver-
sion 4.0.

We performed Coloc, a Bayesian test for colocaliza-
tion, to evaluate the probability of stroke risk loci and p/
eQTL shared by a same causal signal [13]. We assigned 
the default prior probabilities for a SNP being associated 
with stroke (p1 = 1 ×  10−4), a SNP is a significant QTL 
(p2 = 1 ×  10−4) and for a SNP being associated with both 
traits (p12 = 1 ×  10–5) [26]. “coloc.abf” function in coloc 
R package (version 3.2.1) was used to perform colocaliza-
tion on the shared SNPs from both the QTL and stroke 
datasets, and we focused on genes that met the Bonfer-
roni-corrected P value threshold in previous MR analy-
sis. Five mutually exclusive hypotheses was tested: (1) no 

causal SNP is found for either trait (H0); (2) only trait 1 
has a causal SNP (H1); (3) only trait 2 has a causal SNP 
(H2); (4) both traits have a causal SNP, but the two causal 
SNPs are different (H3); (5) both traits have a causal SNP, 
and share the same SNP (H4) [26]. We mainly focused 
on the last hypothesis H4 and posterior probability 
(PP) was used to quantify support for H4 (denoted as 
PPH4). We defined a strong evidence of colocalization at 
PPH4 ≥ 0.75 [27].

Results
PWAS identified 6 genes associated with stroke
We performed a PWAS of stroke by integrating stroke 
GWAS results with human brain proteomes using the 
FUSION pipeline [6]. The PWAS identified 6 genes 
whose  brain protein abundances were associated with 
stroke (Bonferroni-corrected threshold of P < 0.05/
number of genes analyzed) (Fig.  2 and Table  1). The 
protein abundances of ALDH2 (AS: Z-score: 4.372, 
P = 1.23 ×  10−5; AIS: Z-score: 4.712, P = 2.46×10−6) and 
SLC44A2 (AS: Z-score: − 4.284, P = 1.84×10−5; AIS: 
Z-score: − 4.396, P = 1.10 ×  10−5) were both associated 
with AS and AIS, and the protein abundances of PTPN11 
(Z-score: − 4.484, P = 7.31 ×  10-6) and VPS36 (Z-score: 
− 4.229, P = 2.35 ×  10−5) were also associated with AIS 
(Additional file 1: Table S1 and S2). However, no signifi-
cant association was found for LAS (Additional file  1: 
Table  S3). For CES and SVS, the protein abundances of 
L3HYPDH (CES: Z-score: − 4.153, P = 3.28 ×  10−5) and 
ICA1L (SVS: Z-score: − 4.426, P = 9.60 ×  10−6) were 

Fig. 2 The Manhattan plot for the PWAS of stroke and stroke subtypes. The Manhattan plot shows the genes identified using PWAS for AS, AIS, LAS, 
CES, and SVS, respectively. The red line indicates the significant threshold for Bonferroni correction (P < 0.05/1468). The orange dash line indicates 
the nominal significance level (P < 0.05)
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associated with them respectively (Additional file  1: 
Table S4 and S5).

TWAS identified 7 genes associated with stroke
We then performed TWAS of stroke to provide insight 
into transcription level using data generated from dPFC 
(CommonMind Consortium; n = 452) [20]. There were 
7 genes whose  expression in brain were associated 
with stroke in TWAS (P < 0.05/number of genes ana-
lyzed) (Fig.  3 and Table  2). TWAS identified ATXN2 
(AS: Z-score: 4.805, P = 1.55×10−6; AIS: Z-score: 
5.137, P = 2.79×10−7) and CDK6 (AS: Z-score: − 4.638, 
P = 3.52 ×  10−6; AIS: Z-score: − 4.463, P = 8.08 ×  10−6) 
whose cis-regulated brain mRNA expression was both 

associated with AS and AIS, and the expression of 
NBEAL1 (Z-score: 4.646, P = 3.38 ×  10−6) was also asso-
ciated with AIS (Additional file 1: Table S6 and S7). No 
significant association was found for LAS (Additional 
file  1: Table  S8). As for CES, only SENP6 (Z-score: 
− 4.751, P = 2.03 ×  10-6) and CAV1 (Z-score: − 4.582, 
P = 4.62 ×  10−6) passed the Bonferroni correction (Addi-
tional file 1: Table S9). In the analysis for SVS, NBEAL1 
(Z-score: 5.286, P = 1.25 ×  10−7), ICA1L (Z-score: 
5.109, P = 3.24 ×  10−7) and ALS2CR8 (Z-score: 5.009, 
P = 5.47 ×  10−7) showed evidence for association at the 
mRNA level (Additional file  1: Table  S10). Interestingly, 
ICA1L was also significant in the SVS PWAS, suggesting 

Table 1 Candidate genes in brain proteomes associated with 
stroke and stroke subtypes using PWAS

Stroke subtype Gene CHR Z-score P-value

AS ALDH2 12 4.372 1.23 ×  10–5

SLC44A2 19 − 4.284 1.84 ×  10–5

AIS ALDH2 12 4.712 2.46 ×  10–6

PTPN11 12 − 4.484 7.31 ×  10–6

VPS36 13 − 4.229 2.35 ×  10–5

SLC44A2 19 − 4.396 1.10 ×  10–5

LAS –

CES L3HYPDH 14 − 4.153 3.28 ×  10–5

SVS ICA1L 2 − 4.426 9.60 ×  10–6

Fig. 3 The Manhattan plot for the TWAS of stroke and stroke subtypes. The Manhattan plot shows the genes identified using TWAS for AS, AIS, LAS, 
CES, and SVS, respectively. The red line indicates the significant threshold for Bonferroni correction (P < 0.05/5371). The orange dash line indicates 
the nominal significance level (P < 0.05)

Table 2 Candidate genes in brain associated with stroke and 
stroke subtypes using TWAS

Stroke subtype Gene CHR Z-score P-value

AS ATXN2 12 4.805 1.55 ×  10–6

CDK6 7 − 4.638 3.52 ×  10–6

AIS ATXN2 12 5.137 2.79 ×  10–7

NBEAL1 2 4.646 3.38 ×  10–6

CDK6 7 − 4.463 8.08 ×  10–6

LAS –

CES SENP6 6 − 4.751 2.03 ×  10–6

CAV1 7 − 4.582 4.62 ×  10–6

SVS NBEAL1 2 5.286 1.25 ×  10–7

ICA1L 2 5.109 3.24 ×  10–7

ALS2CR8 2 5.009 5.47 ×  10–7
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that ICA1L regulates brain protein abundance via the 
regulation of brain mRNA expression.

ICA1L was causally associated with SVS using MR in brain
MR analysis of brain pQTL and stroke GWAS identi-
fied 2 protein biomarkers that provided strong evidence 
of associations [P < 8.224 ×  10–5 (0.05/608)] (Table  3). 
Genetically predicted higher ALDH2 was associated with 
higher AS and AIS risk (AS: OR [95% CI] 1.89 [1.41, 2.54]; 
AIS: OR [95% CI] 2.11 [1.53, 2.91]) and both of them were 
replicated in PWAS (Additional file 1: Table S11 and 12). 
However, no evidence was found between protein bio-
markers and LAS or CES (Additional file 1: Table S13 and 
S14). As for SVS, the association between lower ICA1L 
and higher SVS risk was identified (OR [95% CI] 0.08 
[0.03, 0.25]), which was also replicated in PWAS (Addi-
tional file  1: Table  S15). Steiger filtering showed direct 
causal associations from changes of ALDH2 to develop-
ment of AS and AIS (AS: Steiger P Value: 8.78 ×  10–14; 
AIS: Steiger P Value: 9.43 ×  10–14) and ICA1L to SVS 
(Steiger P Value: 1.22 × 10–13) (Table 3).

To figure out whether genes with evidence for being 
causal in stroke at the protein level were also relevant 
to stroke at the transcriptional level, we conducted MR 
analysis using brain eQTL data (Table  3). HDAC9 gene 
displayed robust causal evidence with AS, AIS, and LAS 
in the MR (AS: OR [95% CI] 1.29 [1.19, 1.39]; AIS: OR 
[95% CI] 1.32 [1.21, 1.44]; LAS: OR [95% CI] 2.13 [1.73, 
2.63]) (Additional file  1: Table  S16, 17 and S18). Never-
theless, no association was found between the expression 

level and CES (Additional file  1: Table  S19). Notably, 
4 genes were associated with SVS, of which ICA1L and 
NBEAL1 were also replicated in TWAS (Additional file 1: 
Table S20). All genes identified in the MR analysis passed 
Steiger filtering analysis (Table 3).

Colocalization between stroke risk genes and p/eQTL 
in brain
We examined the posterior probability for a shared 
causal variant between a pQTL and stroke for the genes 
which met the Bonferroni-corrected P value threshold 
in previous MR analysis. However, only ICA1L met the 
criterion (PPH4 > 75%) in the analysis of SVS, indicat-
ing a shared single variant with SVS (Table  3). At tran-
scriptional level, the colocalization analysis identified all 
the 6 genes which provided evidence of colocalization 
(PPH4 > 75%) (Table 3).

Five genes were causally associated with stroke in blood
We investigated whether the genes associated with stroke 
in brain could be expressed through blood data. Applying 
MR to serum proteomic data, 4 genes with 8 significant 
causal associations with stroke survived from correc-
tions for multiple testing methods and passed the Steiger 
filtering analysis (Additional file 1: Table S21). Of these, 
the concentration of MMP12 was inversely associated 
with AS, AIS, and LAS risk (AS: OR [95% CI]: 0.90 [0.87, 
0.94]; AIS: OR [95% CI]: 0.89 [0.85, 0.93]; LAS: OR [95% 
CI]: 0.78 [0.70, 0.86]), while ABO was positively associ-
ated with AIS, LAS, and CES risk (AIS: OR [95% CI]: 1.03 

Table 3 Candidate genes identified by Mendelian randomization, Bayesian colocalization and Steiger filtering analysis in brain

Table shows the beta, SE and P values for the MR analysis of brain pQTL (above) and eQTL (down). PPH4 denotes the posterior probability that two traits share a causal 
genetic variant using Bayesian colocalization analysis. Correct Direction and P value are given for Steiger filtering analysis, which shows the correct direction for the 
effect between exposure and stroke risk in this table. * indicated the gene which was identified in the MR analysis using both pQTL and eQTL data

Data source Stroke subytpe Gene Beta SE P-value PPH4 Correct 
Direction

Steiger_P Value If replicated 
in PWAS/
TWAS

pQTL AS ALDH2 0.639 0.150 2.06E−05 60.20% TRUE 8.78E−14 Yes

AIS ALDH2 0.748 0.164 5.00E−06 17.30% TRUE 9.43E−14 Yes

LAS –

CES –

SVS ICA1L* − 2.521 0.569 9.49E−06 99.20% TRUE 1.22E−13 Yes

eQTL AS HDAC9 0.253 0.041 5.19E−10 100.00% TRUE 1.21E−09 No

AIS HDAC9 0.276 0.044 3.38E−10 100.00% TRUE 1.24E−09 No

HECTD4 0.242 0.050 1.44E−06 95.10% TRUE 4.03E−09 No

LAS HDAC9 0.757 0.106 1.06E−12 100.00% TRUE 1.59E−09 No

CES –

SVS ICA1L* 0.229 0.046 5.73E−07 87.20% TRUE 3.89E−36 Yes

CARF 0.280 0.057 7.14E−07 81.60% TRUE 3.79E−23 No

ADRB1 − 0.359 0.075 1.47E−06 91.10% TRUE 1.52E−33 No

NBEAL1 0.317 0.068 2.64E‑06 79.40% TRUE 7.87E−17 Yes



Page 7 of 11Wu et al. Journal of Translational Medicine          (2022) 20:181  

[1.02, 1.05]; LAS: OR [95% CI] 1.09 [1.05, 1.13]; CES: OR 
[95% CI] 1.07 [1.04, 1.10]) (Additional file 1: Table S22–
S25). As for SVS, results showed no gene survived cor-
rections for multiple testing (Additional file 1: Table S26). 
We next repeated MR analysis using the whole-blood 
eQTL data. However, only CKAP2 displayed robust evi-
dence with AIS in MR (Additional file 1: Table S27–3S1). 
It should be noted that those genes identified in blood 
were different from the genes identified in brains, indi-
cating a distinct pathogenic mechanism in blood.

Summary findings
Using PWAS, TWAS, MR and Bayesian colocalization 
analyses, ICA1L and NBEAL1 were proved to be causal 
for stroke in brains (Fig. 4). Although there was evidence 
that ALDH2 was associated with stroke in PWAS and 
MR, they did not reach the Bayesian colocalization’s cri-
terion. Comparative analyses illustrated that there was no 
overlap between genes identified in brains and those in 
blood.

Discussion
We conducted an integrative analysis of PWAS, TWAS, 
MR and Bayesian colocalization to identify causal genes 
for stroke and stroke subtypes using brain- and blood-
derived data. Collectively, 16 genes were identified in 
brains, of which ICA1L showed causal for SVS at both 

protein and transcriptional level, while NBEAL1 showed 
causal for SVS at transcriptional level only. Furthermore, 
5 different genes (MMP12, ABO, SCARF1, F11, and 
CKAP2) were discovered in blood, which indicated two 
distinct pathogenesis for stroke in brain and blood.

Of the identified genes, ICA1L was previously discov-
ered in a GWAS of cerebral small vessel disease [28] and 
its genetically elevated expression was associated with 
lacunar stroke in TWAS [29]. Employing a larger popula-
tion of stroke in our pipeline, the results further verified 
the important role of ICA1L in SVS. ICA1L and its major 
binding partner PICK1 involved in cellular functions 
required dynamic remodeling of the actin cytoskeleton 
[30, 31], suggesting a potential role of actin cytoskeleton 
in the pathogenesis of SVS. However, it is worth noting 
that there was a diverse direction for ICA1L at protein 
and transcriptional level, and the expression in specific 
tissue may partly explain it. ICA1L mainly expresses 
in brain and testis tissues and its active participation in 
spermiogenesis has been identified [30]. Since stroke 
shows a marked sex bias with men having greater inci-
dence of stroke [32], potential differential expression of 
ICA1L between male and female may account for this 
divarication.

By integrative analysis of TWAS, MR and colocaliza-
tion analysis using brain-derived data, we prioritized 
another gene (NBEAL1), which showed evidence of 
being associated with SVS. Neurobeachin-like 1 protein, 
encoded by NBEAL1, is one of the nine proteins that 
share a highly conserved domain known as the BEACH 
(Beige and Chediak-Higashi) domain [33]. NBEAL1 
have been detected previously in a GWAS of cerebral 
small vessel disease [28] and was found to affect cel-
lular cholesterol metabolism and LDL uptake and was 
associated with coronary artery diseases [33], indicating 
that NBEAL1 may influence the risk of stroke by LDL. 
Furthermore, a recent study also connected NBEAL1 
with white matter hyperintensity volumes [34]. And the 
highest lesion burden was found in patients with small 
artery occlusion [35], which pointed out the close rela-
tionship between NBEAL1 and SVS. However, the bio-
logical functions of NBEAL1 in the pathogenesis of SVS 
is still elusive and need further investigations. Recalling 
the genes identified in each method, only a small part of 
genes was replicated in other approaches and this might 
be due to several reasons. Apart from the differences in 
statistical processing and measurement errors, the rela-
tionship between mRNAs and proteins could also be 
affected by difference in translation efficiency, protein 
degeneration, contextual confounds and protein-level 
buffering [36]. Furthermore, the sample sizes and num-
ber of genes analyzed in the transcriptome and proteome 
data varied considerably. Although the rest of 16 causal 

Fig. 4 The Venn plots of the significant genes among four 
approaches for stroke and stroke subtypes. Brain pQTL and brain 
eQTL indicate the MR analysis using brain pQTL and brain eQTL data 
respectively. The red dots implicate where the significant associations 
are found for each gene among AS, AIS, LAS, CES, and SVS
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genes identified by the integrative analysis were only 
replicated in one or two analyses, some of them (e.g. 
ALDH2, CDK6, HDAC9, and SLC44A2) were previously 
reported linked to stroke, which also demonstrate the 
reliability of our integrative analysis in a way. ALDH2, 
which is associated with a poorer functional outcome of 
ischemic stroke [37] and increases the risk and suscepti-
bility to hypertension or diabetes [38], has been found to 
protect against stroke by clearing the toxic aldehydes, for 
example, 4-hydroxy-2-nonenal (4-HNE) [39]. However, 
in the Bayesian colocalization analysis, there was insuf-
ficient evidence to show the abundance of ALDH2 and 
stroke shared common causal variants (PPH4 < 75%). The 
causal relationship between ALDH2 and stroke still need 
further study. CDK6 has been identified as a key regula-
tor of atherosclerosis for CDK6 knockdown can suppress 
proliferation of HASMC and HUASMC [40]. A previous 
study has also shown the down-regulation of CDK6 in the 
penumbra surrounding the infarction region comparing 
with control [41], which supports the inverse association 
between expression of CDK6 and the risk of AS and AIS 
in our TWAS analysis. In MR analysis, we found a causal 
relationship between an increased expression of HDAC9 
and the higher risk of AS, AIS, and LAS. HDAC9, whose 
enhanced expression is associated with increasing cal-
cification and decreasing contractility in human aortic 
vascular smooth muscle cells [42], has also been identi-
fied in a GWAS for large vessel stroke [43]. Likewise, the 
SLC44A2 rs2288904-A polymorphism showed protective 
effect in venous thrombosis [44], implicating its potential 
role in stroke by modulating thrombosis. Collectively, 
although there is relatively insufficient evidence for the 
associations of these genes with stroke in our integra-
tive analysis, some of them have been reported to play 
an important role in the pathogenesis of stroke, which 
deserves further replication in population with larger 
sample size.

Using blood as a surrogate has been widely found to 
establish associations with brain-related traits. And a 
previous study has found that there were strong correla-
tions between brain and blood  (rb ≥ 0.7) from cis-eQTL 
or mQTL data [45]. In our MR analysis between levels 
of blood proteomes and stroke risk, we found 4 genes 
(MMP12, SCARF1, ABO, and F11), of which MMP12, 
ABO, and F11 were replicated, compared with a previ-
ous study that analyzed the association of circulating 
biomarker levels with stroke and stroke subtypes using 
a different study sample [46]. These candidate genes 
identified in blood are different from those discovered 
in brains. Similarly, in a recently published research, 
MR was used to analyzed the causal effect of pQTL 
data derived from CSF, plasma, and brain with seven 
neurological traits [19]. However, there was no overlap 

between results in plasma and brain for stroke after mul-
tiple testing correction [19]. The biological mechanisms 
of these genes with stroke pathogenesis reported already 
can partly explain this difference. ApoE/MMP-12 dou-
ble knockouts mice showed reduced and more stable 
plaques in the brachiocephalic artery [47], indicating that 
MMP12 might participate in the stability of plaques [48]. 
A previous study reported an increased risk of thrombo-
sis with the non-O blood groups (A, B or AB) [49], and 
this effect was hypothesized to affect von Willebrand 
Factor (vWF) clearance [50]. Similarly, genetic variation 
in F11 was also associated with both deep vein throm-
bosis and the level of coagulation factor XI [51]. Taken 
together, these genes identified in MR from blood pro-
teomes mainly focus on coagulation and atherosclerosis, 
which finally cause stroke. Besides, given that different 
tissues have different expression profiles, the differences 
among methods of tissue collection, extraction and anal-
ysis further lead to only a small overlap of genes derived 
from brains and blood.

In general, our study has a key advantage-we integrated 
multidimensional QTL data to provide comprehen-
sive insights into complex biological systems of stroke 
from both brains and blood. Comparatively, using single 
method or single dimensional data (e.g. TWAS and MR) 
to identify stroke candidate genes has some limitations. 
First, methodologically, the accuracy of TWAS relied on 
training cohort size and the quality of the training data 
[8]. As for MR, the power of MR depended on the pro-
portion of total variance of the exposure explained by the 
genetic variants and the strength of the causal association 
between exposure and outcome [52]. Second, dimen-
sionally, only using single dimensional data (protein or 
transcriptional level) to identify the underlying genes for 
stroke pathogenesis is insufficient, leading to false posi-
tive results. Therefore, our integrative analyses bring data 
from genome, transcriptome, and proteome together 
through multi approaches, and contribute to identify-
ing the key causal genes in the pathogenesis of stroke. 
Besides, two genes (SLC25A44 and LRCH1), whose 
expression were significantly associated with stroke after 
Bonferroni correction, were identified as candidate genes 
in a recent TWAS in adipose [53]. These genes were not 
discovered in our integrative analysis, indicating a tissue-
specific expressional pattern. Using the directly related 
brain tissue, our analysis could prioritize candidate genes 
more relevant with stroke.

There are also some limitations in our study. First, the 
genes tested in PWAS were relatively smaller than those 
tested in TWAS, resulting in fewer genes identified in the 
two analyses. And this can be addressed by using a larger 
brain sample dataset. Second, gene expression is a highly 
complicated process, varying in time and space. Our 
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study only investigated the candidate genes in brains and 
blood, future work may focus on other tissues. Third, we 
only performed the analysis in one dataset for each stroke 
subtype, which needs further validation using larger 
stroke GWAS datasets. Nevertheless, it is worth not-
ing that some genes were replicated in analyses for sev-
eral stroke subtypes, which validated their potential role 
to some degree. Fourth, it is insufficient to elucidate the 
numerous stroke GWAS-identified loci from protein and 
transcriptional level. Methylation data can be integrated 
into the analysis to reach a more comprehensive under-
standing of disease progression. Fifth, our study mainly 
focused on European subjects, and it should be careful to 
extend our results to other ethnicities. In addition, func-
tional genomic approaches and biological experiments 
are necessary to understand the complex biology of 
stroke and illustrate the molecular mechanisms behind.

In conclusion, this integrative analysis identified ICA1L 
and NBEAL1, whose expression and protein abundances 
are associated with the risk of small-vessel stroke. Our 
study offered hints for future biological and therapeu-
tic studies to identify their potential roles in stroke 
pathogenesis.
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