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Abstract 

Background:  The tumor microenvironment (TME) plays an important role in the occurrence and development of 
gastric cancer (GC) and is widely used to assess the treatment outcomes of GC patients. Immunohistochemistry (IHC) 
and gene sequencing are the main analysis methods for the TME but are limited due to the subjectivity of observers, 
the high cost of equipment and the need for professional analysts.

Methods:  The ImmunoScore (IS) was developed in the TCGA cohort and validated in GEO cohorts. The Radiomic 
ImmunoScore (RIS) was developed in the TCGA cohort and validated in the Nanfang cohort. A nomogram was devel-
oped and validated in the Nanfang cohort based on RIS and clinical features.

Results:  For IS, the area under the curves (AUCs) were 0.798 for 2-year overall survival (OS) and 0.873 for 4-year overall 
survival. For RIS, in the TCGA cohort, the AUCs distinguishing High-IS or Low-IS and predicting prognosis were 0.85 
and 0.81, respectively; in the Nanfang cohort, the AUC predicting prognosis was 0.72. The nomogram performed 
better than the TNM staging system according to the ROC curve (all P < 0.01). Patients with TNM stage II and III in 
the High-nomogram group were more likely to benefit from adjuvant chemotherapy than Low-nomogram group 
patients.

Conclusions:  The RIS and the nomogram can be used to assess the TME, prognosis and adjuvant chemotherapy 
benefit of GC patients after radical gastrectomy and are valuable additions to the current TNM staging system. High-
nomogram GC patients may benefit more from adjuvant chemotherapy than Low-nomogram GC patients.

Keywords:  Gastric cancer (GC), Tumor microenvironment (TME), ImmunoScore (IS), Radiomic ImmunoScore (RIS), 
Artificial intelligence (AI)
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Introduction
The tumor-node-metastasis (TNM) staging system is 
widely used in the classification of cancer; is based on 
the primary tumor (T), regional nodes (N) and metas-
tasis (M); and helps in choosing surgery, chemotherapy, 
etc. However, recent studies have shown that the TNM 
staging system does not perfectly predict the progno-
sis of gastric cancer (GC) patients [1]. Those who had 
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the same TNM stage and received similar treatment 
had widely varied clinical outcomes [2, 3]. As increas-
ing evidence has indicated the critical forecasting capa-
bility of immune infiltration in GC patients [3], having 
immune cell markers along with TNM staging may 
help.

There is reportedly an exact correlation between tumor 
and immunocyte infiltration of the tumor microenvi-
ronment (TME) [4], which might lead to different prog-
noses of GC patients. In addition, the evaluation of the 
immune microenvironment seems to be useful in pre-
dicting survival and chemotherapy response for patients 
[5]. Therefore, specific analysis of an individual’s tumor 
microenvironment and targeted selection of therapy regi-
mens based on the assessment will be considerably help-
ful for patients.

Because the importance of immunocyte infiltration of 
the TME has been recognized, ways in which to analyze 
the immune microenvironment have been developed. To 
analyze the types and composition of immunocytes in 
the TME, biopsies were initially analyzed using immu-
nohistochemistry (IHC) [3], which is quite accurate and 
realistic [6]. However, to a certain extent, the interpre-
tation of IHC results depends on the subjectivity of the 
observer. Another method of determining immunocyte 
infiltration of the TME uses indirect information about 
the composition of immunocytes that can be calculated 
by gene expression profiles [7], which was proven to be 
effective. Because the calculation process of the results is 
traceable and easy to repeat, the results might be more 
objective.

Although calculation by gene sequencing is already 
objective, it still has some limitations, including a high 
cost for patients and specialized gene sequencing equip-
ment for hospitals. Medical imaging may be a viable 
solution to this problem. Medical images are more than 
pictures, but data [8], such as radiomics, have been 
developed and successfully applied in many fields. Fur-
thermore, many scholars have found that some tumor 
imaging features are closely related to tumor gene expres-
sion, providing a new idea for survival prediction and 
clinical strategy adjustment by combining their analyses 
[9, 10]. For evaluating the tumor microenvironment of 
GC patients, radiomics enables the extraction of innu-
merable quantitative features from medical images with 
high-throughput computing [11] and the establishment 
of a model. Several studies have explored the association 
between imaging features and tumor-infiltrating lympho-
cytes, such as CD8 + cells [12].

Supervised machine learning (ML) is a type of artificial 
intelligence that is widely used and shows great poten-
tial in precision oncology [13, 14]. As a mature machine 
learning method, support vector machines (SVMs) have 

great potential in solving cancer prediction problems 
based on diverse and complex clinical data [1, 15].

In this study, we analyzed the relationship between the 
gene expression the and CT images of GC patients to 
assess immunocyte infiltration of the TME based on the 
SVM model and developed an excellent nomogram based 
on clinicopathological factors and the SVM model to pre-
dict survival and chemotherapy benefit in GC patients.

Methods and materials
Study design and patients
The design of the entire study is shown in Fig. 1. A total 
of 4 independent cohorts, which included 936 GC sam-
ples, were enrolled in this study. One cohort (n 1 = 44) 
was from The Cancer Genome Atlas (TCGA) data-
sets (https://​portal.​gdc.​cancer.​gov/) and 2 cohorts 
(GSE62254, n2 = 300, and GSE15459, n3 = 192) were 
from Gene Expression Omnibus (GEO) datasets (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/), and a cohort (n4 = 400) 
from Nanfang Hospital (Guangzhou, China), which 
were used to analyze the relationship between gene 
expression and immune microenvironment of tumors. 
We developed an SVM model to analyze the relation-
ship between gene expression and CT images based on 
a TCGA cohort, aiming to learn the immune microen-
vironment from CT images. CT images were obtained 
from The Cancer Imaging Archive (TCIA, https://​www.​
cance​rimag​ingar​chive.​net/). One cohort that comprised 
400 consecutive patients from Nanfang Hospital (Guang-
zhou, China) from October 2004 to September 2011 
was used to develop the nomogram to predict survival 
and chemotherapy benefit for GC patients. All of these 
patients underwent partial or total radical gastrectomy. 
The inclusion criteria were histologically confirmed GC 
and patients who underwent standard unenhanced and 
contrast-enhanced abdominal CT < 30 days before surgi-
cal resection. Those who received preoperative chemo-
therapy, had severe surgical complications, did not have 
complete follow-up data over 3 years, or had other coex-
isting cancers were excluded. The entire study design is 
shown in Fig. 1.

The TNM staging was reclassified, and the postop-
erative chemotherapy regimen was taken based on the 
guidelines of the National Comprehensive Cancer Net-
work (NCCN) [16]. In the Nanfang Hospital cohort, up 
to 223 patients were treated with adjuvant chemotherapy, 
including 114 (51.1%) patients treated with the XELOX 
(capecitabine-oxaliplatin, capecitabine 1000 mg/m2/days 
day1–day14, oxaliplatin 130  mg/m2 once) regimen, 90 
(40.4%) patients treated with the FOLFOX (fluorouracil-
folinic acid-oxaliplatin, fluorouracil 400  mg/m2 at day1 
and 2400–3600 mg/m2 for 46 h, folinic acid 400 mg/m2 
once, oxaliplatin 85 mg/m2 once) regimen and 19 (8.5%) 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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patients treated with 5-FU treatment alone or other 
regimens.

The follow-up duration was calculated from the day 
of surgery to the last follow-up. We defined the time to 
all-cause death as overall survival (OS) and defined the 
time to tumor recurrence at any site or death as disease-
free survival (DFS). Ethical approval was obtained for this 
retrospective study, and informed consent was obtained 
from the patients.

Assessment of immunocyte infiltration of the TME 
and calculation of the ImmunoScore (IS)
To predict the prognosis of patients using gene infor-
mation to assess immune infiltration, we included 44 
cases from TCGA as the training cohort, 300 cases from 
GSE62254 and 192 cases from GSE15459 as 2 validation 
groups to establish and evaluate the role of the Immu-
noScore (IS) in clinical prognosis.

To quantify the proportions of 22 types of infiltrating 
immunocytes of the TME, normalized RNA sequencing 

data were analyzed using the CIBERSORT algorithm 
[17]. The immunocyte type fractions of patients in the 
training cohort using the CIBERSORT algorithm could 
be downloaded directly from a comprehensive resource 
[18] (http://​timer.​cistr​ome.​org/). For each sample, the 
sum of all estimates of the immunocyte type component 
equaled 100%. The least absolute shrinkage and selection 
operator (LASSO) method was used to screen the most 
effective prognostic markers among 22 immune cell sub-
sets, and the optimal values of the penalty parameter λ 
were determined by 20-fold cross-validations.

The ImmunoScore (IS) was calculated by a Cox propor-
tional hazards model with the LASSO results. The output 
was expressed as coefficients for estimating the immuno-
cytes of the TME. The calculation string formula was as 
follows: 

IS = α0+
∑

βiXi,

Fig. 1  Flow chart of the whole study design, including data collection and analysis

http://timer.cistrome.org/
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where Xi represents the relative component of each 
immunocyte, βi is the regression coefficient for the pre-
dictor and α is often a constant. We divided GC patients 
into 2 groups (High-IS and Low-IS) based on the median 
IS in each cohort.

Exploration between ImmunoScore (IS) and immunocytes 
and immune checkpoint
Differential expression gene (DEG) analysis of the 
GSE15459 cohort was performed by applying the “limma” 
package at a corrected P < 0.05 and | logFC |≥ 1.5. The 
resulting data were used to generate volcano plots using 
R software (version 4.0.4). Data on the abundance of 22 
types of immune infiltrates from the TIMER website 
were obtained. Using the “ggplot 2” package, we identi-
fied immunocytes with significant differences between 
the High-IS and Low-IS groups while analyzing the cor-
relation between these cells and the IS using the “ggstat-
splot” package.

CT image processing, feature extraction and development 
of the radiomic ImmunoScore (RIS)
To use CT information to obtain radiomics features asso-
ciated with the IS of patients, we included 44 cases from 
TCGA as the training cohort and 400 cases from Nan-
fang Hospital as the validation cohort to establish a Radi-
omic ImmunoScore (RIS) to predict IS and estimate its 
connection with patient survival.

Using ITK-SNAP software (www.​itksn​ap.​org, version 
3.8), two radiologists manually delineated the primary 
tumor on the CT images. The CT number, represent-
ing the absorptivity of tissue to X-rays, was set ranging 
from − 150 to − 50 Hounsfield units to exclude bone, 
muscle, blood vessels, and other intra-abdominal organs 
[19, 20]. The region of interest (ROI) was delineated by 
hand along the gastric wall at a distance of 1  mm from 
the stomach wall around the tumor lesion.

Based on extracted image features and ImmunoScore, 
the RIS model was developed by SVM, aiming to pre-
dict the ImmunoScore by CT images. The common 
image features included color, texture, shape and spatial 
relation. The software version we used was MATLAB 
2018a, and the shape of the feature matrix extracted 
from a CT image was 1*9694. In the training cohort, 
the size of the original CT feature matrix was 44*9694, 
which made regression difficult. Therefore, the average 
weight of each feature was finally obtained after dimen-
sional reduction using the Relief algorithm. The top 100 
features were selected based on the feature weights. The 
AUC was regarded as the evaluation index. Six features 
were selected in the development of the Radiomic Immu-
noScore (RIS) model when the AUC reached its peak 
(more details of this process are described in Additional 

file 1). The RIS of each cohort was also divided into High-
RIS and Low-RIS groups according to the median.

Subsequently, the clinical significance of RIS was dis-
played intuitively by ROC, and the hazard ratios of each 
clinicopathological factor were analyzed between the 
High-RIS and Low-RIS groups.

Development and validation of the nomogram
We developed a comprehensive model, including RIS 
and other clinical features, and visualized it with a 
nomogram. To verify the accuracy and effectiveness of 
the nomogram, we randomly divided 400 patients from 
Nanfang Hospital into a training cohort and a validation 
cohort, with 200 cases in each group.

According to the influence degree of each factor on the 
outcome variable in the multifactor regression model, 
each value level of each variable was given a score, and 
the comprehensive nomogram obtained by adding was 
calculated by function to attain the prediction probabil-
ity. Patients were then divided into High-nomogram and 
low-nomogram groups according to the median nomo-
gram score.

Subsequently, the predictive ability of the nomogram 
for patients was demonstrated by a variety of evalua-
tion methods, including ROC, survival curve, calibration 
plot decision curve analysis (DCA), net reclassification 
improvement (NRI) and risk factor association diagrams.

Performance of the nomogram in the identification 
of chemotherapy benefit
The association between the nomogram and adjuvant 
chemotherapy response was assessed in patients with 
stage II and III gastric cancer (n = 280, Nanfang cohort). 
All patients were divided into a chemotherapy cohort 
(n = 182) and a no chemotherapy cohort (n = 98). Both 
the total survival time and disease-free survival time were 
observed. Survival curves were generated with Kaplan–
Meier analysis. Hazard ratios were generated with the 
Cox regression model.

Statistical analysis
All statistical tests were two-sided, and P < 0.050 was con-
sidered statistically significant. Statistical analysis was 
conducted with R software (version 4.0.4) and SPSS soft-
ware (version 25.0). The packages for downloading data 
from TCGA and GEO are TCGAbiolinks and GEOquery. 
Correlations between the immune cell immune check-
points and the Immunoscore were analyzed using Pear-
son’s correlation test. Survival curves were constructed 
by the Kaplan–Meier method and compared using the 
log rank test. The sensitivity and specificity of the sur-
vival prediction based on the 3 models were depicted 
by a time-dependent receiver operating characteristic 

http://www.itksnap.org
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(ROC) curve and a time-independent ROC curve, with 
quantification of the area under the ROC curve using 
the timeROC and pROC packages. The results of sub-
group analysis were represented by a forest graph using 
the forestplot package, and the points of HR value in 
the graph were processed by log2 normalization. We 
performed Cox multivariate modeling using the rms 
package. After constructing the nomogram with the 
nomogramFormula package, we drew decision curves 
with the rmda package and risk factor correlation dia-
grams with the ggrisk package to measure the clinical 
value of the nomogram.

Results
Clinical characteristics
Up to 936 GC patients from 4 cohorts (TCGA, 
GSE62254, GSE15459 and Nanfang Hospital) were 
enrolled in this study. We collected and analyzed their 
clinical characteristics, which were summarized in 
Table  1: 44 patients in the TCGA cohort [38 (86.4%) 
were male, 6 (13.6%) were female and the mean age was 
64.73 ± 9.33 years], 300 patients in the GSE62254 cohort 
[199 (66.3%) were male, 101 (33.7%) were female and the 
mean age was 61.94 ± 11.36  years], 192 patients in the 
GSE15459 cohort [123 (65.1%) were male, 69 (34.9%) 
were female and the mean age was 64.37 ± 13.24 years], 
400 patients in the Nanfang Hospital cohort [276 (69.0%) 
were male, 124 (31.0%) were female and the mean age 
was 56.04 ± 10.87  years]. More information on tumors 
was analyzed and is listed in Table 1, including the depth 
of invasion, lymph node metastasis, metastasis, TNM 
stage, pathological type, venous invasion, lymphovascu-
lar invasion and perineural invasion.

Derivation and validation of the ImmunoScore (IS)
The immunocyte composition of the TME was calcu-
lated with RNA sequencing data from the TCGA cohort 
(Fig. 2A),the GSE62254 cohort (Additional file 3: Figure 
S1) and the GSE15459 cohort (Additional file  4: Figure 
S2). As a training cohort, 6 types of immunocytes (plasma 
cells, CD8 + T cells, memory resting CD4 T cells, Tregs, 
M2 macrophages, and M0 macrophages) were selected 
by LASSO Cox regression analysis based on the TCGA 
cohort (Fig.  2B, C) and calculated the immunoScore by 
a Cox proportional hazards model (Additional file  2). 
The prognostic accuracy of the IS was assessed through 
time-dependent ROC analysis (2-year AUC = 0.798, and 
4-year AUC = 0.873, Fig. 2D). The same calculations were 
performed for GSE62254 and GSE15459 as the validation 
cohorts (the results are shown in Additional file 2, Addi-
tional file 10: Figure S3 and Additional file 11: Figure S4). 
The survival curves of High-IS and Low-IS groups were 
generated with Kaplan–Meier analysis [TCGA cohort: 

p < 0.001, HR = 4.55 (95% CI 1.92–10.82), GSE62254 
cohort: p = 0.004, HR = 1.60 (95% CI 1.17–2.21), 
GSE15459 cohort: p = 0.015, HR = 1.64 (95% CI 1.09–
2.47), Fig. 2E–G].

Relationship between the ImmunoScore (IS) and immune 
cells and immune checkpoint
Based on the gene expression data of the GSE62254 
cohort, we obtained differentially expressed cells from 
the immune microenvironment (Fig.  2H). Notably, the 
infiltration of plasma cells, CD8 + T cells, activated 
CD4 + memory T cells, follicular helper T cells, activated 
NK cells and M1 macrophages significantly decreased 
with the higher immune risk score, while the infiltra-
tion of resting CD4 + memory T cells and M2 mac-
rophages was significantly higher with the higher IS, 
which was likely related to the immunosuppressive reac-
tion of the TME. Furthermore, we analyzed the relation-
ship between IS and immune checkpoints, such as PD-1, 
PD-L1, and CTLA4 (more details are shown in Addi-
tional file 5: Table S1). In summary, IS has a strong rela-
tionship with immune cells and immune checkpoints.

Performance of the radiomic ImmunoScore (RIS) Model
As a training cohort from TCGA, radiomics signatures 
were compared with 44 cases based on the CT image 
data, which showed the best effect when 6 features were 
included (Fig.  3A, B). The ability of the RIS model to 
distinguish High-IS or Low-IS accurately and predict 
prognosis exhibited an AUC of 0.85 (Fig.  3D) and 0.81 
(Fig.  3E), respectively. The ability of RIS to predict sur-
vival had an AUC of 0.72 (Fig. 3F) in the validation cohort 
from Nanfang Hospital. In the training cohort, over-
all survival curves were generated with Kaplan–Meier 
analysis, comparing High-RIS with Low-RIS [p < 0.001, 
HR = 4.55 (95% CI 1.91–10.82), Fig.  3G], and the result 
was similar in the validation cohort [p < 0.001, HR = 2.72 
(95% CI 1.96–3.78), Fig. 3H]. Furthermore, in the forest 
plot of the Nanfang Hospital cohort, the significant Haz-
ard Ratios were found for RIS in each subgroup, more 
specifically, in each age stage (< 50, 50–65, > 65), each dif-
ferentiation stage (low, medium, high), and regardless of 
vascular invasion, nerve invasion and lymph node inva-
sion (Fig. 3C).

Development, comparison and validation 
of the nomogram
A nomogram was developed by Cox regression based 
on the RIS and clinical features (Fig.  4A), and the Cox 
regression coefficient and corresponding score are shown 
in Additional file 6: Table S2. From the results of univari-
ate survival analysis, RIS, tumor metastasis, lymph node 
positive detection rate, T stage and age were significant 
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Table 1  Clinicopathologic characteristics of patients

Data are expressed as mean ± standard deviation or number (%)
a  According to the 8th edition of the American Joint Committee on Cancer classification

Variables TCGA Cohort (n = 44) Nanfang Hospital 
Cohort (n = 400)

GSE62254 (n = 300) GSE15459 (n = 192)

Age (years) 64.73 ± 9.33 56.04 ± 10.87 61.94 ± 11.36 64.37 ± 13.24

Sex (male) 38 (86.4%) 276 (69.0%) 199 (66.3%) 125 (65.1%)

T stage

 T1 0 64 (16%) 0 0

 T2 1 (2.3%) 39 (9.8%) 188 (62.7%) 0

 T3 24 (54.5%) 43 (10.8%) 91 (30.3%) 0

 T4 19 (53.2%) 254 (63.5%) 21 (7%) 0

 Unknown 0 0 0 192 (100%)

N stage

 N0 8 (18.2%) 144 (36%) 38 (12.7%) 0

 N1 9 (20.5%) 76 (19%) 131 (41.7%) 0

 N2 12 (27.3%) 72 (18%) 80 (26.7%) 0

 N3 14 (31.8%) 108 (27%) 51 (17%) 0

 Unknowm 1 (2.3%) 0 0 192 (100%)

M stage

 M0 41 (93.2%) 391 (97.8%) 273 (91%) 0

 M1 2 (4.5%) 9 (2.2%) 27 (7%) 0

 Unknown 1 (2.3%) 0 0 192 (100%)

Stage

 I 1 (2.3%) 81 (20.3%) 30 (10%) 31 (16.1%)

 II 7 (15.9%) 92 (23%) 96 (32.3%) 29 (15.1%)

 III 31 (70.5%) 188 (47%) 96 (32%) 72 (37.5%)

 IV 4 (9.1%) 25 (12.5%) 77 (25.7%) 60 (31.3%)

 Unknown 1 (2.3%) 0 0 0

Pathological_type

 Adenocarcinoma 40 (90.9%) 305 (76.3%) 245 (81.7%) 0

 Signet ring cell carcinoma 4 (9.1%) 61 (15.3%) 42 (14%) 0

 Others 0 34 (8.5%) 13 (4.3%) 0

 Unknown 0 0 192 (100%)

Venous invasion

 Yes 0 326 (81.5%) 44 (14.7%) 0

 No 0 74 (18.5%) 129 (43%) 0

 Unknown 44 (100%) 0 127 (42.3%) 192 (100%)

Lymphovascular invasion

 Yes 0 340 (85%) 205 (68.3%) 0

 No 0 60 (15%) 73 (24.3%) 0

 Unknown 44 (100%) 0 22 (17.3%) 192 (100%)

Perineural invasion

 Yes 0 282 (70.5%) 88 (29.3%) 0

 No 0 118 (29.5%) 159 (53%) 0

 Unknown 44 (100%) 0 53 (17.7%) 192 (100%)

Postoperative chemotherapy

 Yes 0 223 (59.7%) 226 (75.3%) 0

 No 0 177 (40.3%) 73 (24.3%) 0

 Unknown 44 (100%) 0 1 (0.3%) 192 (100%)
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factors associated with OS and DFS (Additional file  7: 
Table S3, Additional file 8: Table S4). By calculating the 
total score and finding the corresponding prediction 
probability on the total point scale, the 1-year, 3-year and 
5-year estimated survival probability could be obtained. 
Based on calibration plots for predicting 1-year, 3-year 
and 5-year survival (Fig.  4B–D), the predicted calibra-
tion curve was near the standard curve, or the 45-degree 
line, demonstrating that the derived nomogram had 
considerable prediction capability. Likewise, the deci-
sion curve analysis (DCA) depicted in Fig.  4E indicated 
that the nomogram had a higher net income than tra-
ditional TNM among a series of risk thresholds. The 
results of comparing the nomogram with the TNM stag-
ing system by Net Reclassification Improvement (NRI) 
are as follows: 1-year (NRI = 0.27, 95% CI = 0.07–0.44), 
3-year (NRI = 0.03, 95% CI =  − 0.17–0.18), and 5-year 
(NRI = 0.05, 95% CI =  − 0.26–0.26), indicating that the 
nomogram had a relatively accurate prognosis. Simul-
taneously, the risk factor association diagram (Fig.  4F) 
showed the distribution difference of prognosis between 

High-nomogram and Low-nomogram groups distin-
guished by the nomogram. To predict the survival of GC 
patients, the performance of the nomogram was better 
than that of TNM staging (training cohort: nomogram 
AUC = 0.849 and TNM staging system AUC = 0.778, 
p = 0.007, Fig.  4G; validation cohort: nomogram 
AUC = 0.863 and TNM staging system AUC = 0.776, 
p = 0.001, Fig.  4J). The results of the time-dependent 
ROC curve analysis in the training cohort and validation 
cohort are shown in Fig.  4H, K. Comparing the High-
nomogram and Low-nomogram groups, the survival 
curves of the training cohort and validation cohort are 
shown in Fig.  4I, L, which indicated that the prognosis 
of the Low-nomogram group was better than that of the 
High-nomogram group.

Identification of chemotherapy beneficiaries 
with a nomogram
In addition, we analyzed differences in chemotherapy 
benefit among TNM stage II and III GC patients with dif-
ferent groups based on the nomogram. Chemotherapy 

Fig. 2  Construction and evaluation of the immunoscore (IS) model. A Summary of inferred immune cell subset proportions in the TCGA cohort; 
B Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 22 immunocytes fractions; C Twentyfold cross-validation for 
tuning parameter selection in the LASSO model; D Time-dependent receiver-operating characteristics (ROC) curves for overall survival prediction 
by the IS model in the TCGA cohort; E–G Kaplan–Meier curves for overall survival prediction by the IS model in the TCGA cohort, GSE62254 cohort 
and GSE15459 cohort, respectively; H The fraction of tumor microenvironment immune cells in high- and low-IS groups in the GSE62254 cohort
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dose leads to survival benefit for GC patients (OS: 
p = 0.023, and DFS: p = 0.005), but the degree of ben-
efit varied among patients in different nomogram groups 
(High-nomogram group and Low-nomogram group) 
(Fig. 5). In the High-nomogram group, GC patients could 
significantly benefit with chemotherapy regarding OS 
and DFS (OS: p = 0.004, and DFS: p < 0.001), while in the 
Low-nomogram group, chemotherapy did not provide 
a survival benefit to patients compared with no chemo-
therapy (OS: p = 0.21, and DFS: p = 0.47). Furthermore, 
we analyzed the interactions between chemotherapy and 
death or recurrence in the High-nomogram and Low-
nomogram groups with Cox proportional hazards regres-
sion, and High-nomogram patients benefited more from 
chemotherapy [OS: HR 0.41 (0.26–0.64), p < 0.001; DFS: 
HR 0.54 (0.34–0.84), p < 0.001] than Low-nomogram 
patients (Additional file 9: Table S5). In summary, High-
nomogram GC patients benefit more from chemotherapy 
than Low-nomogram GC patients.

Discussion
Accurate assessment of the prognosis and beneficial 
choices for treating GC patients are essential for cli-
nicians. Identifying an evidence-based and broadly 
utilized classification system for GC patients is chal-
lenging. Since its development, the AJCC TNM stag-
ing system has been widely used in the prognosis 

assessment of tumors and in guiding the selection of 
treatment regimens [21]. However, as we learn more 
about the tumor microenvironment, we realize this 
staging system has inevitable limitations, including that 
it is difficult to explain the complex biological behav-
ior of the tumor based on tumor invasion depth, lymph 
node metastasis, and distant organ metastasis only. In 
the same TNM stage, patients may have different out-
comes, while patients in different TNM stages may 
have similar outcomes [22–24]. An increasing number 
of studies have found that the infiltration of immuno-
cytes in the TME is closely related to the prognosis and 
treatment sensitivity of patients [25, 26]. Furthermore, 
immune checkpoint inhibitors have shown positive 
results in therapies for cancer, such as ipilimumab tar-
geting CTLA4 [27] and lambrolizumab targeting PD-1 
[28].

The individualized analysis of the TME is a major 
advance in the history of fighting against cancer, and it 
has also led to the development of many methods for 
analyzing the immune microenvironment, such as single-
cell sequencing (SNS) [29, 30] and immunohistochemis-
try (IHC) [1, 3]. The CIBERSORT algorithm is a method 
applied to calculate the proportion of immunocytes in 
the tumor microenvironment based on next-generation 
sequencing (NGS) data [17, 31]. In our study, we devel-
oped a method to calculate the immune score to assess 

Fig. 3  Construction and evaluation of the RIS model. A Feature weight based on the relief calculation; B Grid search comparing AUCs among 
various feature dimensions; C Hazard Ratios for RIS in each clinicopathological subgroup in the Nanfang hospital cohort; D, E The performance of 
RIS model to predict IS measured by ROC curves in the training and validation cohort; F The performance of RIS model to predict survival measured 
by ROC curves in the validation cohort; G–H Kaplan–Meier curves for patients with High- and Low-RIS in the training and validation cohort
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Fig. 4  Evaluation of nomogram integrated RIS and clinical pathological variables in the training cohort. A Nomogram for predicting the ratio of 
GC patients with a certain survival time in the training cohort; Calibration plots describing the calibration of nomogram based on the consistency 
between predicted and observed 1-year (B), 3-year (C) and 5-year (D) results; E Decision curves comparing the nomogram and TNM stage among a 
series of risk thresholds; F Risk factor association diagram showing the distribution of prognosis of each patient with high- or low-nomogram scores; 
G, J Time-independent ROC curves comparing the predictive accuracy of nomogram and TNM stage; H, K Time-dependent ROC curves comparing 
the predictive accuracy of nomogram and TNM stage; I, L Kaplan–Meier analysis of overall survival curves of High- and Low-nomogram in training 
group and validation group

Fig. 5  Survival impact of nomogram score among TNM stage II and III subsets. Kaplan–Meier curves for overall survival (A–C) and disease-free 
survival (D–F) of the chemotherapy group and non-chemotherapy group in the whole cohort (A, D), high nomogram score subset (B, E) and low 
nomogram score subset (C, F)
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the immunocyte infiltration of the TME based on NGS 
data from TCGA, and the method was validated in 2 
cohorts from GEO.

We developed a further model (RIS) by SVM to assess 
the immune score of the TME, which established a bridge 
between CT images and NGS. The RIS was also validated 
in GC patients from the Nanfang Hospital cohort. The 
AUC value was significantly higher than that of the TNM 
staging system in assessing the prognosis of GC patients.

Using SNS, IHC and NGS may be effective in assess-
ing immunocyte infiltration of the TME. However, these 
methods are costly for patients and complex for clini-
cians, especially in remote areas with underdeveloped 
medical resources, and the contradictions will become 
more obvious. Moreover, IHC staining of tissue slices to 
evaluate the immune environment might not be accurate 
due to the subjectivity of observers and the limitation of 
hysteresis.

Medical images are data [8], such as radiomics, which 
has been developed and widely used in learning more 
information about tumors [32, 33]. Because the charac-
teristics of radiomics are complex and diverse, we used 
machine learning to identify the radiomics character-
istics of patients with different immune scores rapidly 
and effectively. The SVM is a mature machine learning 
method that has demonstrated excellent performance in 
multifactor classification and survival prediction. Based 
on the RIS model, we can quickly obtain a patient’s indi-
vidual immune score from his/her CT images, which 
means that this RIS model can greatly improve the effi-
ciency of clinicians in evaluating patients’ TME and 
greatly reduce the high cost of sequencing for patients.

Prognosis is related not only to the TME of the tumor 
but also to the clinical characteristics of the patients. To 
improve the ability of the RIS model to evaluate the prog-
nosis of patients and maximize the prognostic value of 
clinical characteristics, we combined the RIS and clini-
cal characteristics by Cox regression and visualized it in a 
nomogram. Based on the nomogram, we can more easily 
and intuitively calculate the individual 1-year, 3-year and 
5-year survival rates of patients.

Adjuvant chemotherapy is now considered a common 
treatment for stage II and III GC patients, improving 
their survival in two large-scale trials [34, 35] (the ACTS-
GC trial and CLASSIC trial). However, some researchers 
noted that the OS benefit was moderate with adjuvant 
chemotherapy, meaning that not all GC patients could 
benefit from adjuvant chemotherapy [36]. The identifica-
tion of adjuvant chemotherapy benefits is still a challeng-
ing task for researchers [37]. In our study, based on the 
nomogram, High-nomogram GC patients could benefit 
significantly more from adjuvant chemotherapy.

Due to the universality of CT scanning and the avail-
ability of clinical features, we can quickly and effectively 
obtain TME assessment, prognosis and adjuvant chemo-
therapy benefit of GC patients based on our RIS model 
and nomogram. The strategy that we have developed for 
evaluating the TME of GC patients is useful and easy to 
implement, especially for clinicians of grassroots com-
munity hospitals, in the management and treatment of 
GC patients.

At the same time, we have also noticed that many 
researchers developed novel theranostics trying to use in 
cancer treatment, such as nanomaterials [38, 39]. For the 
potential of nanomaterials to deliver, enhance, and fine-
tune in treatment, it shows exciting effects in animal can-
cer models, which may be a kind of hopeful treatments 
in the future [40]. However, it’s difficult to identify who 
would benefit in novel theranostics and easily assess the 
effectiveness of novel theranostics. Maybe, AI could be 
the solution to these bottleneck problems. For example, 
Tang et.al developed a AI model to analyse the distribu-
tion of intratumoral nanoparticles to optimize the can-
cer treatment [41]. It’s worth noting that antioxidation 
therapy is an important mechanism of nanomaterials in 
treating with cancer [42]. It works by reducing tumor-
promoting oxidative stress and remodeling the TME. 
Perhaps, our AI model could reflect the antitumor effi-
cacy of nanomaterials by analyzing TME in real-time.

There were several limitations to this study. First, the 
number of GC patients enrolled in the TCGA cohort 
was small due to the limited number of cases with CT 
images. Second, due to the limitations of data acquisi-
tion, the data types contained in the different cohorts 
were not perfect, but this did not affect our RIS model 
and nomogram development. We hope that more data 
can be obtained to develop and validate our RIS model 
and nomogram. Third, the study was limited to collect-
ing retrospective data, and we need further prospective 
research to validate our strategy in assessing TME, prog-
nosis and adjuvant chemotherapy benefit.

In conclusion, the RIS model and the nomogram can be 
used to assess the TME, prognosis and adjuvant chemo-
therapy benefit of GC patients after radical gastrectomy 
and seems to be a valuable addition to the current TNM 
staging system. High-nomogram GC patients may benefit 
more from adjuvant chemotherapy than low-nomogram 
GC patients. By enrolling more GC patients for valida-
tion, we hope our strategy will provide more individual-
ized assistance to clinicians and patients.
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