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In vivo detection of dysregulated choline 
metabolism in paclitaxel‑resistant ovarian 
cancers with proton magnetic resonance 
spectroscopy
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Abstract 

Background:  Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic 
alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear.

Methods:  Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo 
proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo 
metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA 
expression to validate the key enzymes in the dysregulated metabolic pathway.

Results:  On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) 
((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in 
the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly 
different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like mol-
ecules. Spearman’s correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly 
consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). 
These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glyc-
erophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of 
key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 
1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). 
Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resist-
ant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS.

Conclusions:  These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in 
EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs.
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metabolism
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Background
Epithelial ovarian cancer (EOC) is the most lethal 
gynecological malignancy and is the seventh most com-
monly diagnosed cancer among women worldwide, with 
75% of patients diagnosed in the advanced stage and 46% 
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exhibiting a 5-year survival rate after diagnosis [1]. The 
current standard treatment approach comprises cytore-
ductive surgery followed by combined chemotherapy 
with platinum and paclitaxel (PTX) [2]. The majority of 
the patients have an initial response to chemotherapy, 
e.g., cisplatin and PTX [3]. However, PTX resistance 
gradually develops during treatment, leading to thera-
peutic failure [4]. More than 75% of patients are likely to 
suffer tumor recurrence due to chemoresistance [2].

Metabolomics analysis can provide a real-world assess-
ment of cancer cell physiology [5, 6]. A close relationship 
between deregulated metabolic reprogramming and drug 
resistance in cancer therapy has been reported [7–10]. 
Targeting metabolism might represent a potential option 
to overcome drug resistance [11]. Therefore, a better 
understanding of the adaptive tumor phenotype fol-
lowing treatment resistance and exploring the clinically 
applicable biomarkers of chemoresistance, are required 
to retrieve the chemosensitivity in EOC patients [3, 11]. 
However, metabolic alterations, especially easily detect-
able metabolites, in PTX-resistant EOC remain unclear.

Metabolic changes have most commonly been stud-
ied using magnetic resonance spectroscopy (MRS) [12], 
which is a non-invasive functional imaging method on 
magnetic resonance imaging (MRI). A great advantage of 
MRS is the ability to detect intrinsic metabolic changes 
without the administration of an extrinsic marker [13]. 
Compared to benign ovarian tumors, an increased total 
choline (tCho) on proton (1H)-MRS has been considered 
to be a characteristic manifestation of EOC [14–17]. 1H-
MRS studies report alterations in the spectral profile in 
the region of 3.20 to 3.24  ppm, which are indicative of 
tCho levels including glycerophosphocholine (GPC), 
phosphocholine (PC), and free Cho [12]. Moreover, met-
abolic changes have been reported after chemotherapy 
in malignant tumors, such as breast cancer and glioma, 
suggesting that these metabolic changes can be used as 
indicators of therapeutic response [18–22]. However, 1H-
MRS studies concerning chemoresistance in EOC have 
not been performed.

In this study, we used a combination of in vivo 1H-MRS, 
metabolomics and proteomics to perform an unbiased 
characterisation of tumors from PTX-resistant xenograft 
models (Fig. 1). We show that abnormal choline metab-
olism leads to PTX resistance in EOC and this can be 
accurately demonstrated by in vivo 1H-MRS. In addition, 
we identify glycerophosphocholine phosphodiesterase 1 
(GPCPD1) and glycerophosphodiester phosphodiester-
ase 1 (GDE1) as key enzymes associated with PTX resist-
ance, representing a potential therapeutic target.

Methods
Cell culture
All cells were cultured in RPMI 1640 medium (Sigma 
Aldrich, St Louis, MI, USA) with 10% fetal bovine serum 
(FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, 
USA) and maintained at 37  °C under 5% CO2. PTX-
resistant OVCAR-3 (OV_PTX) cells were generated in 
the laboratory and kindly provided by Dr. GX Xu (Fudan 
University, China) [23]. OV_PTX cells were derived from 
parental OVCAR-3 (OV) cells by treating cells with the 
PTX (Sichuan Taiji Pharm, China) regimen through a 
gradually increasing PTX dose in RPMI 1640 medium 
with 10% FBS.

Proliferation assay
Cell proliferation was measured by Cell Counting Kit-8 
(CCK-8, Dojindo Molecular Technologies Inc., Shang-
hai, China). OV and OV_PTX cells were plated in 96-well 
plates with a density of 5 × 103 cells per well and incu-
bated for 24 h. PTX was added with increasing concen-
trations from 0.001–10  μmol/mL to cells, which were 
then incubated for 48  h. The cells were then incubated 
with 10 μL of CCK-8 per well for 1 h at 37  °C. Absorb-
ance was measured at a wavelength of 450  nm using a 
Bio-Tek ELX808IU absorbance microplate reader (Bio-
Tek Instruments Inc., USA).

Xenograft models
Female BALB/c nude mice (Jiesijie Laboratory Animal 
Company, Shanghai, China; age, 4–5  weeks; weight, 
12–15 g) were used under approved animal care. In vivo 
experiments were performed in accordance with the 
guidelines formulated by the Ethics Review Committee of 
China Animal Experimental System and were approved 
by the ethics committee of Shanghai Municipal Public 
Health Clinical Center (No. 2020-A019-01). Twenty nude 
mice were randomly divided into the OV group and OV_
PTX group (n = 10 in each group). Briefly, 5 × 106 OV 
or OV_PTX cells/mouse were suspended in serum-free 
medium, and 0.1 mL of the cell suspension was injected 
subcutaneously in the right anterior limb. Mice were 
monitored daily and weighted every two days. Tumor size 
was measured with a caliper every two days for the great-
est longitudinal diameter (length) and greatest transverse 
diameter (width). Volume was calculated using the modi-
fied elliptical formula (length × width2)/2 [24]. Tumors 
were allowed to grow for 19  days after injection until a 
diameter of approximately 1.0 cm was measured, which 
were suitable for in vivo 1H-MRS. One mouse in the OV_
PTX group died before imaging.
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In vivo 1H‑MRS
Mice with OV or OV_PTX tumors were anesthetized 
with isoflurane (1.5–2%) in oxygen (1 L/min) and 
imaged in the prone position in a 7.0 T Biospec small-
animal MRI scanner (Bruker Corporation, Billerica, 
MA, USA). The imaging protocol included the follow-
ing sequences:

1.	 T2-weighted rapid acquisition relaxation enhance: 
time of echo, 35 ms; time of repetition, 2500 ms; slice 
thickness, 0.4 mm; field of view, 20 × 20 mm; matrix, 
256 × 256; and number of averaged scans, 8.

2.	 Single voxel point-resolved spectroscopy 1H-MRS: 
time of echo, 16  ms; time of repetition, 2500  ms; 
voxel size, 1.5 × 1.5 × 1.5  mm; number of averaged 
scans, 128; and scan time, 5 min 20 s.

The tumors were scanned on the transverse, coro-
nal and sagittal planes using the T2 rapid acquisition 
relaxation enhance sequence for the three-dimensional 
positioning of 1H-MRS. Metabolite spectral fitting was 
performed using LCModel Version 6.3-0I, with a basis 
set provided by the LCModel software for a 7.0 T Bruker 
MRI scanner with time of echo = 16  ms [25]. Relative 

Fig. 1  The flow chart of the research process. (1H-MRS: proton-magnetic resonance spectroscopy)
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metabolite concentrations and their uncertainties were 
estimated by fitting the spectrum to a linear combination 
of basis spectra of each individual metabolite. The unsup-
pressed water spectrum was used to normalize the initial 
fit to generate a first estimate of metabolite concentra-
tion by scaling the relative areas and chemical shifts 
across the two sets of spectra. The spectral range for the 
analysis was set to 0.2–4.0  ppm to contain most peaks 
of interest: alanine (Ala), aspartate (Asp), creatine (Cr), 
phosphocreatine (PCr), glycerophosphocholine (GPC), 
phosphocholine (PC), inositol (Ins), lactate (Lac), taurine 
(Tau), N-acetylaspartate (NAA), N-acetylaspartylglu-
tamate (NAAG), macromolecules (MM) 09, lipid (Lip) 
09, Lip 13a, Lip 13b, MM12, MM14, MM20, Lip 20. The 
numbers after MM and Lip indicated the approximate 
chemical shift in ppm of the peaks; e.g., MM 14 for the 
macromolecule peak near 1.4 ppm. Only metabolite con-
centrations quantified with Cramèr-Rao lower bounds 
below 20% on average were included in further analysis 
[26]. With software (Fire Voxel, CAI2R, New York Uni-
versity, NY, USA), the region of interest was manually 
delineated slice-by-slice along the contour of the tumor 
on the transverse T2-weighted images (T2WIs) (M.X.L. 
and L.J., with 5 and 7 years of experience in gynecologi-
cal imaging, respectively). Then, the volume of interest 
was postprocessed automatically for tumor anatomic 
measurement.

Sample collection and histopathology
In order to acquire a true map of in  vivo metabolism, 
tumors were collected as soon as possible after MRI 
scanning with mice euthanized by excess CO2 expo-
sure. Tumor samples were divided into multiple parts. 
One part was fixed with 4% paraformaldehyde and then 
embedded in paraffin and stained using hematoxylin and 
eosin for histological feature analysis. The other parts of 
tumor samples were flash-frozen in liquid nitrogen and 
were used for metabolomics analysis, proteomics analysis 
and quantitative RT-PCR, respectively.

Metabolomics analysis
Tumor samples (100  mg) were extracted for analysis 
using by liquid chromatography-mass spectrometry 
(LC–MS). Pooled quality control samples were also pre-
pared by combining the same volume of each sample and 
repeatedly injected during the assay to monitor instru-
mental stability and avoid systematic bias. The acquired 
LC–MS data was pretreated using XCMS software. Fea-
tures with < 50% of quality control samples or 80% of test 
samples were removed, and values for missing peaks were 
extrapolated with the k‐nearest neighbor algorithm to 
further improve the data quality. The group datasets were 
normalized before analysis. The detailed parameters were 

described in Additional file 1: Supplementary of metab-
olomics analysis method. Statistical analysis included 
principal component analysis (PCA), orthogonal partial 
least squares discriminant analysis (OPLS-DA), Student’s 
t-test and fold change analysis. The P value obtained by 
Student’s t‐test was then adjusted for multiple tests using 
a false discovery rate-reducing process (Benjamini-Hoch-
berg) and was used to determine differential metabolites. 
The following criteria were used to screen the differen-
tial metabolites: variable importance in projection (VIP) 
sores ≥ 1, P value < 0.05, and fold change ≥ 2 or ≤ 0.5. 
Pathway enrichment analysis of differential metabolites 
was performed using the Kyoto Encyclopedia of Genes 
and Genomes and MetaboAnalyst 3.0 (Montre al, QC, 
Canada) databases. Bioinformatic analysis was per-
formed using the OmicStudio tools at https://​www.​omics​
tudio.​cn/​tool.

Proteomics analysis
Samples were lysed in sodium dodecyl sulfate buffer 
and homogenized. Proteins were digested overnight by 
trypsin (Promega, Madison, WI, USA), and the resulted 
peptides were collected as a filtrate. Pooled peptides from 
all samples were fractionated by reversed-phase chroma-
tography using an Agilent 1260 infinity II HPLC (SCIEX, 
Framingham, MA, USA). The detailed parameters were 
described in Additional file  2:  Supplementary of prot-
eomics analysis method. Raw data of data-independent 
acquisition were processed and analyzed by Spectronaut 
14.6 (Biognosys AG, Switzerland) with default settings. 
Data extraction was determined by Spectronaut X based 
on extensive mass calibration. Precursors which passed 
the filters were used for quantification.The average top 3 
filtered peptides that passed the 1% Q- value cutoff (false 
discovery rate) were used to calculate the major group 
quantities. Significantly enriched proteins were selected 
using Student’s t-test.

Quantitative RT‑PCR
Total RNA was extracted from tumors using Trizol rea-
gent and reverse-transcribed into cDNA with 500 ng of 
total RNA using the PrimeScript RT reagent kit (Thermo 
Fisher Scientific, Waltham, MA, USA) according to the 
manufacturer’s instructions. Gene expression assays 
were performed on an ABI StepOnePlus Real-Time PCR 
instrument (Thermo Fisher Scientific, Waltham, MA, 
USA). The following custom designed primers were pur-
chased from GENEWIZ Inc. (Suzhou, China): GPCPD1, 
GTT​TTT​GCG​ATA​TGT​GGA​AGCTG (forward) and 
AGC​GAT​ACT​GAA​CTG​ATA​CTCCT (reverse); GDE1, 
GAC​TGG​GCG​ATT​GTG​TGA​TTT (forward) and AGG​
GTA​GGG​ATC​TTT​TCA​TCAGG (reverse); and β-Actin, 

https://www.omicstudio.cn/tool
https://www.omicstudio.cn/tool
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GCC​GTG​GTG​GTG​AAG​CTG​T (forward) and ACC​
CAC​ACT​GTG​CCC​ATC​TA (reverse).

Statistical analysis
Continuous variables with normal distribution were 
presented as the mean ± standard deviation; non-
normally distributed variables were presented as the 
median (interquartile range). All statistical analyses 
were performed with SPSS (version 23.0, SPSS, Inc., 
Chicago, IL, USA). The data were analyzed using Stu-
dent’s t-test or Mann–Whitney U test. Receiver oper-
ating characteristic curve analysis (MedCalc Software, 
Mariakerke, Belgium) was used to assess the diagnos-
tic performance and determine a cutoff value for the 
significant metabolites from 1H-MRS to differentiate 
the PTX-sensitive and PTX-resistant tumors. The cor-
relation of metabolites between in  vivo 1H-MRS and 
ex  vivo metabolomics analysis and the correlations 
between protein expressions and metabolite levels were 

analyzed using Spearman correlation tests. Differences 
with a P < 0.05 were considered statistically significant.

Results
In vivo metabolic profile of PTX‑resistant ovarian cancer
We performed the cell proliferation assay to confirm the 
PTX resistance, with a resistance index of 484.3 ± 166.8 
(Fig. 2A). Cell atypia was more obvious in the OV_PTX 
tumor than that in OV tumor (Fig. 2B). Xenograft tumors 
were significantly larger in the OV group (1028.5 ± 370.5 
mm3) than in the OV_PTX group (337.2 ± 224.0 mm3) 
(P < 0.001).

Eight mice from each group were successfully 
imaged. A total of 13 metabolites (Cramèr-Rao lower 
bounds < 20%) were analysed, but no significant differ-
ences in frequencies of metabolite peaks were observed 
between the OV and OV_PTX tumors (Table 1; Fig. 2C). 
Thereinto, PC was very difficult to resolve from GPC, as 
was PCr from Cr. The sum of GPC + PC was much more 

Fig. 2  In vivo metabolic profile of the PTX-sensitive and PTX-resistant tumors. Cell proliferation of OV and OV_PTX cells treated for 48 h with 
increasing concentrations of PTX (A). Hematoxylin and eosin staining of subcutaneous tumors showing the more obvious cell atypia and nuclear 
mitosis in the OV_PTX tumor cells (400 × magnification, scale bars = 20 μm) (B). The frequencies and relative concentrations of metabolite peaks in 
the OV and OV_PTX groups on in vivo 1H-MRS (C, D). *, P < 0.05. PTX paclitaxel, OV: OVCAR-3
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accurate than the individual concentrations. Usually, 
the units of the absolute concentrations are unknown, 
and only concentration ratios are meaningful. LCModel 
metabolite ratios relative to Cr + PCr were used for our 
analysis (as outlined in detail in the LCModel manual). 
The metabolite ratios and their differential levels in 
the OV and OV_PTX tumors are shown in Table 1 and 
Fig. 2D. The ratio of (GPC + PC) to (Cr + PCr) (i.e. Cho/
Cr) in the OV_PTX group (1.64 [0.69, 4.18]) was sig-
nificantly higher than that in the OV group (0.33 [0.10, 
1.13]) (P = 0.04). The metabolites of interest are displayed 
in Fig.  3A and B. For differentiating the two groups of 
tumors, the optimal cutoff value of the (GPC + PC)/
(Cr + PCr) ratio was 1.216, which yielded the sensitivity, 

specificity, and area under the curve (AUC) values of 
100%, 80%, and 0.85 (95% confidence interval, 0.550–
0.982), respectively (Fig. 3C). No significant differences in 
other 4 metabolite ratios were found between the OV and 
OV_PTX tumors, although higher ratios were detected 
in the OV_PTX tumors.

Ex vivo metabolic profile of PTX‑resistant ovarian cancer
To decipher the mechanisms of in vivo metabolic imag-
ing alterations associated with treatment resistance, we 
characterized the metabolome of the OV and OV_PTX 
tumors from xenograft models. As shown in the PCA 
plot, the metabolites of the OV group and the OV_PTX 
group were well separated (Fig.  4A; Additional file  3: 

Table 1  Metabolites detected in the OV and OV_PTX groups using 1H-MRS

1 H-MRS proton-magnetic resonance spectroscopy, OV ovarian cancer, OV_PTX paclitaxel-resistant ovarian cancer, Ala alanine, Asp aspartate, Ins inositol, Lac lactate, 
Tau taurine, GPC + PC glycerophosphocholine + phosphocholine, NAA + NAAG​ N-acetylaspartate + N-acetylaspartatglutamate, Cr + PCr creatine + phosphocreatine, 
Lip lipids, MM macromolecules, the numbers after MM and Lip indicate the approximate chemical shift in ppm of the peaks: e.g., MM17: macromolecule peak near 
1.7 ppm
a Chi-square test
b Mann–Whitney U test

Metabolites and ratios OV (n = 8) OV_PTX (n = 8) P value

Metabolite peaksa

 Ala 1 1 –

 Asp 1 0 –

 Ins 1 0 –

 Lac 1 2 –

 Tau 4 2 0.61

 GPC + PC 8 5 0.20

 NAA + NAAG​ 1 0 –

 Cr + PCr 8 6 0.47

 MM17 3 0 –

 Lip13a + Lip13b 5 7 0.57

 MM14 + Lip13a + Lip13b + MM12 5 7 0.57

 MM09 + Lip09 7 5 0.57

 MM20 + Lip20 3 5 0.62

Metabolite concentration ratios (/Cr + PCr)b

 GPC + PC 0.33 (0.10, 1.13) 1.64 (0.69, 4.18) 0.04

 Lip13a + Lip13b 11.48 (5.88, 18.28) 15.15 (9.96, 31.86) 0.43

 MM14 + Lip13a + Lip13b + MM12 12.95 (6.22, 20.42) 17.14 (12.15, 32.56) 0.43

 MM09 + Lip09 3.10 (0.84, 3.58) 4.65 (3.40, 9.92) 0.09

 MM20 + Lip20 3.28 (3.13, 5.56) 4.19 (2.75, 15.25) 0.46

(See figure on next page.)
Fig. 3  Samples of MR spectra and the diagnostic efficiency of in vivo 1H-MRS. 1H-MRS localization of the volume of interest and spectra acquired 
from the OV tumor (A) and OV_PTX tumor (B), along with fits and residuals of the fits resulting from LCModel quantification: Cr + PCr (3.03 ppm), 
GPC + PC (3.21 ppm), MM14 + Lip 13a + Lip 13b + MM12 (1.2–1.4 ppm), MM 09 + Lip 09 (0.9 ppm), MM 20 + Lip 20 (2.0 ppm). The (GPC + PC)/
(Cr + PCr) ratio was 1.18 for the OV tumor and 5.45 for the OV_PTX tumor. Receiver operating characteristic curve analysis of in vivo differential 
metabolite (GPC + PC) for differentiating the OV from OV_PTX groups (C). GPC glycerophosphocholine, PC phosphocholine, Cr creatine, PCr 
phosphocreatine, Lip lipids, MM macromolecules
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Fig. 3  (See legend on previous page.)
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Fig. S1A). Next, the OPLS-DA model was used to further 
analyze the compounds responsible for the differences 
between the two groups. Goodness of fit values and pre-
dictive ability values indicated that the model possessed 
a satisfactory fit with a good predictive power (Fig.  4B, 
C; Additional file 3: Fig. S1B, C). Differential metabolites 
were screened using VIP and fold change as thresholds. 
Metabolites that met VIP ≥ 1, fold change ≥ 2 or ≤ 0.5, 
and P < 0.05 were considered to be differential metabo-
lites (Fig. 4D, E). Forty-five ex vivo metabolites were iden-
tified to be significantly different between the OV tumors 
and the OV_PTX tumors, with the majority involving of 
lipids and lipid-like molecules (66.67%, Fig.  5A, Addi-
tional file  4: Table  S1). Compared to those in the OV 
tumors, the levels of 14 metabolites increased while 31 
ones decreased in the OV_PTX tumors. Metabolomics 
analysis showed the top ten differential metabolites 
according to VIP values: spermine, taurocholate, spermi-
dine, vitamin C, 1-methyl-6-phenyl-1H-imidazo[4,5-b]
pyridin-2-amine, acylcarnitine 19:0, glycerophosphocho-
line, acylcarnitine 14:0, acylcarnitine 17:0, and palmitoyl-
carnitine (Fig. 5B). Those may be potential biomarkers to 
identify the PTX-resistant EOC. 

Pathway enrichment analysis was performed to iden-
tify dysregulated pathways in PTX-resistant tumors. 
It showed that the commonly dysregulated pathways 

included lipid metabolism, glycometabolism, amino acid 
metabolism, nucleotide metabolism, and energy metab-
olism (Fig.  5C). The top 3 related metabolism pathways 
were taurine and hypotaurine metabolism, glutathione 
metabolism and glycerophospholipid metabolism.

The correlation between in vivo differential metabolite 
(GPC + PC) and every ex vivo differential metabolite was 
investigated by calculating the Spearman’s correlation 
coefficient. There were 30 ex  vivo differential metabo-
lites that correlated significantly with the differential 
metabolite GPC + PC (|r|> 0.5, P < 0.05) observed on 
in vivo 1H-MRS, exhibiting the highest positive correla-
tion with GPC (r = 0.885, P < 0.001) (Fig.  5D). Overall, 
these data indicated that abnormal Cho concentrations 
were detected in the PTX-resistant EOCs because of the 
dysregulated glycerophospholipid metabolism, especially 
Cho metabolism.

Metabolic enzyme modulation in PTX‑resistant ovarian 
cancer
According to the major metabolic reprogramming 
observed in the PTX-resistant EOCs, some essential 
enzymes might have modulated. Thus we analyzed the 
proteomics data to identify potential target proteins. 
A total of 233 differentially expressed proteins, which 
met fold change ≥ 2 or ≤ 0.5, and P < 0.05, were detected 

Fig. 4  Ex vivo metabolic differences between the PTX-sensitive and PTX-resistant tumors. PCA scatter plot of the metabolite profile of positive 
ionization mode showing the separation between the OV and OV_PTX groups (A). OPLS-DA analysis showing a good discrimination between 
the OV and OV_PTX groups, with R2 = 0.97, Q2 = -0.46 (B, C). Data was screened using VIP ≥ 1, fold change ≥ 2 or ≤ 0.5, and P < 0.05. Volcano plot 
showing differential metabolites between the OV and OV_PTX groups (D). Hierarchical clustering heat map analysis of differential metabolites 
between the OV and OV_PTX groups (E). Each column depicts a sample and each row represents a metabolite. The colour of each section 
corresponds to a normalized concentration value of each metabolite. PCA principal component analysis, OPLS-DA orthogonal partial least squares 
discriminant analysis
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between the OV and OV_PTX tumors, without any 
enzyme of the Cho metabolism (Fig.  6A). GPCPD1 and 
GDE1 which are responsible for the cleavage of GPC [27] 
(Fig.  6B) were detectable in the OV tumors, but not in 
the OV_PTX tumors. Undetectable data in the OV_PTX 
tumors represented the proteins undetected in over half 
of the tumors under this experimental methods and 

conditions. In view of this, we tried to identify GPCP-
D1and GDE1 since little is known about them in the PTX-
resistant EOCs. The expressions of GPCPD1 and GDE1 
mRNA were significantly lower in the PTX_OV tumors 
compared to the OV tumors (both P < 0.01) (Fig. 6C).

Next, to address the question that whether gene 
expression levels of GPCPD1 and GDE1 were related 

Fig. 5  Ex vivo differential metabolites pathway analysis between the PTX-sensitive and PTX-resistant tumors and the correlation between in vivo 
and ex vivo differential metabolites. Composition of ex vivo differential metabolites (A). Linear discriminant analysis effect size of ex vivo differential 
metabolites (B). Pathway enrichment analysis of differential metabolites between the OV and OV_PTX groups (C). Metabolic alterations of the most 
relevant pathways affected by drug resistance were analyzed by MetaboAnalyst 3.0 databases. Correlation heat map of differential metabolites 
between in vivo and ex vivo metabolite profiles (D). Each square represents a metabolite and the colour corresponds to its correlation coefficient 
value compared with other metabolites
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to metabolic outcome, Spearman correlation coeffi-
cients were calculated between protein expressions and 
differential metabolite levels. GPC + PC, the differen-
tial metabolite observed on in vivo 1H-MRS, correlated 
negatively with the mRNA levels of GPCPD1 and GDE1, 
with r = -0.698 (P = 0.01) and -0.775 (P = 0.003). There 
were 18 and 26 ex vivo differential metabolites correlated 
significantly with mRNA levels of GPCPD1 and GDE1 
(|r|> 0.8, P < 0.05), with a closely negative correlation 

with GPC (r = -0.841 and -0.912, both P < 0.001, respec-
tively) (Fig. 6D). Expressions of enzymes responsible for 
GPC decomposition reduced in the OV_PTX tumors, 
leading to the accumulation of GPC.

Discussion
Our study introduced the application of in vivo 1H-MRS 
in monitoring the PTX resistance of EOC and indicated 
that glycerophospholipid metabolism might reprogram 

Fig. 6  Regulation of GPCPD1 and GDE1 on PTX-resistance in ovarian cancers. Volcano plot showing differential expressed proteins between the OV 
and OV_PTX groups (A). Schematic description of Cho metabolism (B). The qRT-PCR showing the expression of GPCPD1 and GDE1 in the OV and 
OV_PTX groups (C). **, P < 0.01. Correlation heat map of differential metabolites between GPCPD1 and GDE1 mRNA, in vivo and ex vivo differential 
metabolites (D). GPCPD1 glycerophosphocholine phosphodiesterase 1, GDE1 glycerophosphodiester phosphodiesterase 1
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in the PTX-resistant ovarian cancers. The increased 
metabolite GPC + PC, namely, Cho, could be detected by 
in vivo 1H-MRS. Major contributions to GPC accumula-
tion may derive from changes in the activities of enzymes 
(GPCPD1 and GDE1) involved in Cho metabolism, 
which is part of glycerophospholipid metabolism.

Metabolic regulation does occur in the PTX-resist-
ant tumors. However, few metabolic studies about drug 
resistance have been reported. Changes in glycerophos-
pholipid metabolism, sphingolipid metabolism and citric 
acid metabolism have been found in multidrug-resistant 
colorectal cancer cell lines using metabolomics analysis 
[28]. In this study, 45 differential metabolites between 
the OV and OV-PTX tumors were identified by metabo-
lomics analysis, indicating that glucose metabolism, lipid 
metabolism, amino acid metabolism, energy metabolism, 
and nucleotide metabolism (purine, pyrimidine metabo-
lism) had been altered. Pathway enrichment analysis fur-
ther revealed that lipids and lipid-like molecules of lipid 
metabolism were predominant ex  vivo metabolites. Our 
results were consistent with those reported by Braun et al. 
In their study, upregulated aerobic glycolysis and activa-
tion of pyrimidine synthesis were found in nab-PTX-
resistant pancreatic ductal adenocarcinoma cell lines [29].

The PTX-resistant tumors have the altered Cho metab-
olism. Cho is a major component of glycerophospholipid, 
and Cho metabolism is an indispensable component of 
lipid synthesis [5, 30]. Abnormal Cho metabolism has 
emerged as a hallmark indicator of cancer [31]. Metabo-
lome has revealed that GPC, PC, Cho and Cho complexes 
are significantly increased in ovarian cancer tissues [32–
34]. The tCho level detected by 1H-MRS has been evalu-
ated as a diagnostic and prognostic biomarker in cancers 
[13]. In the differential diagnosis of benign and malig-
nant ovarian tumors, a markedly increased Cho level on 
1H-MRS is considered to be a characteristic of ovarian 
cancers [14–17]. Our study showed that there was a sig-
nificant correlation between ex vivo differential metabo-
lites and GPC + PC on in  vivo 1H-MRS. GPC was the 
most significantly upregulated ex vivo metabolite, which 
indicated that in  vivo and ex  vivo metabolic character-
istics were highly consistent. This observation further 
suggested that the glycerophospholipids metabolism, 
especially the Cho metabolism, had changed in the PTX-
resistant ovarian cancers. Thus, increased GPC + PC lev-
els observed on 1H-MRS in our study which represented 
tCho, might be the result of Cho metabolism reprogram-
ming in the PTX-resistant ovarian cancers.

The tCho on 1H-MRS can monitor PTX resistance 
of tumors. According to the “Response Evaluation 
Criteria in Solid Tumors” (RECIST), the tumor size 
change measured by imaging may require three cycles 
of chemotherapy to determine therapeutic efficacy 

[35]. It is reported that patients who showed a greater 
reduction in tCho than in tumor size are more likely 
to achieve pathologic complete response [18]. Our 1H-
MRS findings are accorded with results reported by 
other researchers that changes of the tCho peak area 
or height could be used as a biomarker for the thera-
peutic effect of breast cancer, glioma and liver cancer 
[18, 22, 36]. A study by Kuo et al. showed that the mean 
ratios of Cho/lipid were significantly decreased after 
transcatheter arterial chemoembolization in patients 
with liver cancer [36]. Another study showed that after 
treatment with temozolomide for 12 months in patients 
with low-grade glioma, the tCho was significantly lower 
than before treatment and after 3 months of treatment 
[22]. In addition, the Cho/water ratios decreased in 
accordance with the changes in tumor volume, which 
suggested that the ratios could reflect the therapeutic 
effect of temozolomide for glioma [22]. Our in  vivo 
1H-MRS study revealed that GPC + PC (Cho) was sig-
nificantly higher in the OV_PTX tumors than in OV 
tumors. Thus, our findings supported that 1H-MRS 
could be used for monitoring PTX-resistant EOCs to 
allow for early or timely treatment modification.

In addition, our proteomics analysis revealed choline-
metabolizing enzymes were low expression in the PTX-
resistant EOCs. It is known that GPCPD1 and GDE1 
work in a complex enzyme network that regulates Cho 
metabolism. GPCPD1 cleaves GPC to form glycerol-
3-phosphate and Cho [27]. GDE1 catalyzes the hydrolysis 
of various glycerophosphodiesters (including GPC) and 
releases sn-glycerol 3-phosphate and the corresponding 
alcohol [37]. Silencing or upregulating these two enzymes 
can alter GPC, PC and Cho levels [27]. Homozygous 
deletion of GDE1 results in a buildup of intracellular 
GPC that is restored to wild-type levels by reintegrat-
ing GDE1 into the genome [38]. In Shen’s transcriptom-
ics analysis of colon adenocarcinoma, the expression of 
GDE1 is significantly lower than that of normal tissues, 
indicating abnormal Cho metabolism in malignant tis-
sues [39]. GPCPD1 has been identified as a key enzyme 
in the Cho and phospholipid metabolism, which is 
involved in cell proliferation, migration, invasion, adhe-
sion and spreading [27, 40, 41]. It was reported that doxo-
rubicin decreased the expression of GPCPD1, leading to 
an ex vivo GPC increase in breast cancer cells [42]. Our 
correlation analysis indicated that the in  vivo metabo-
lites and most of the ex vivo metabolites were related to 
the expressions of GPCPD1 and GDE1. The proteomics 
analysis showed GPCPD1 and GDE1 expressions were 
downregulated in the PTX-resistant EOC and confirmed 
by a qRT-PCR, resulting in a GPC accumulation and an 
elevated GPC + PC (Cho) peak on 1H-MRS. The different 
expressions of Cho-metabolizing enzymes between the 
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PTX-sensitive and PTX-resistant tumors led to differ-
ent changes in the GPC, PC and tCho levels, which made 
GPCPD1 and GDE1 as the potential therapeutic targets.

Our study has some limitations. First, subcutaneous xen-
ograft ovarian cancer models were used in our study, which 
might differ from orthotopic implantation models due 
to different biological microenvironments. However, 1H-
MRS might be difficult to perform in orthotopic ovarian 
tumors of nude mice due to small tumor sizes and respira-
tory movements. Second, compared with metabolomics, 
lipidomics might cover and detect more lipid and lipid-
like metabolites, despite the metabolomics results fully 
explained the 1H-MRS findings. Third, Western blot assays 
were not performed to confirm the protein expression of 
key enzymes because of limited tumor tissue samples.

In conclusion, our study indicated that the choline 
metabolic adaptations were associated with the PTX 
resistance of EOCs. Decreased expressions of GPCPD1 
and GDE1 led to increased GPC levels in the PTX-
resistant EOCs, which could be observed as the tCho on 
in vivo 1H-MRS. These findings suggested that the tCho 
on in vivo 1H-MRS could be used as an indicator for PTX 
resistance in EOCs.
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