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Macitentan attenuates cardiovascular 
remodelling in infant rats with chronic lung 
disease
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Abstract 

Background:  Cardiovascular impairment contributes to increased mortality in preterm infants with chronic lung 
disease. Macitentan, an endothelin-1 receptor antagonist, has the potential to attenuate pulmonary and cardiovascu-
lar remodelling.

Methods:  In a prospective randomized placebo-controlled intervention trial, Sprague–Dawley rats were exposed 
to 0.21 or 1.0 fraction of inspired oxygen (FiO2) for 19 postnatal days. Rats were treated via gavage with placebo or 
macitentan from days of life 5 to 19. Alveoli, pulmonary vessels, α-smooth muscle actin content in pulmonary arteri-
oles, size of cardiomyocytes, right to left ventricular wall diameter ratio, and endothelin-1 plasma concentrations were 
assessed.

Results:  FiO2 1.0 induced typical features of chronic lung disease with significant alveolar enlargement (p = 0.012), 
alveolar (p = 0.048) and pulmonary vessel rarefaction (p = 0.024), higher α-smooth muscle actin content in pulmonary 
arterioles (p = 0.009), higher right to left ventricular wall diameter ratio (p = 0.02), and larger cardiomyocyte cross-sec-
tional area (p < 0.001). Macitentan treatment significantly increased pulmonary vessel count (p = 0.004) and decreased 
right to left ventricular wall diameter ratios (p = 0.002). Endothelin-1 plasma concentrations were higher compared 
to placebo (p = 0.015). Alveolar number and size, α-smooth muscle actin, and the cardiomyocyte cross-sectional area 
remained unchanged (all p > 0.05).

Conclusion:  The endothelin-1 receptor antagonist macitentan attenuated cardiovascular remodelling in an infant rat 
model for preterm chronic lung disease. This study underscores the potential of macitentan to reduce cardiovascular 
morbidity in preterm infants with chronic lung disease.
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Background
Preterm birth interrupts physiological lung develop-
ment in the saccular phase with immature alveolarisation 
and compromised vasculogenesis leading to impaired 
gas exchange [1]. Thus, extremely preterm babies suffer 

respiratory distress with the necessity of oxygen supple-
mentation and mechanical respiratory support [2]. Over 
the last decades, prenatal prevention and postnatal treat-
ment of respiratory distress have seen many data-driven 
improvements including antenatal steroids, surfactant 
application, non-invasive continuous positive airway 
pressure, and caffeine citrate treatment [2–5]. However, 
the incidence of long term sequelae affecting alveolar 
and pulmonary vascular structures is rising. Thus, the 
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chronic lung disease bronchopulmonary dysplasia (BPD) 
develops in 32 to 59% of children born before 29 weeks 
of gestational age [6, 7]. BPD is responsible for longer 
postnatal hospitalisations, higher frequency of readmis-
sions, and long-term lung function impairment [8, 9]. 
Additionally, cardiovascular remodelling with decreased 
pulmonary capillary density and increased arterial wall 
thickness contributes to poor outcomes [10]. Between 
23 and 39 percent of patients with a combination of 
BPD and pulmonary hypertension (BPD-PH) die already 
within the first year of life [11–13]. Moreover, BPD-PH is 
associated with prolonged time on the respirator, longer 
oxygen dependency, higher tracheostomy rates, and 
higher frequency of readmissions to the intensive care 
setting compared to BPD alone [14]. Recently, it has been 
shown that echocardiographic right ventricular perfor-
mance markers significantly worsen already on the 7th 
day of life (DOL) in very preterm infants who will later be 
diagnosed with BPD [15].

Endothelin-1 (ET-1) receptor antagonists offer a prom-
ising field of research in preterm chronic lung disease 
[16, 17]. ET-1 is thought to be related to major features 
of preterm chronic lung disease such as lung fibrosis, 
impaired alveolarization, and diminished angiogenesis 
[18, 19]. Further, ET-1 increases pulmonary vascular 
resistance and right ventricular afterload with consecu-
tive right ventricular hypertrophy (RVH) [20, 21]. There-
fore, an intervention at the ET-1 receptor level might 
have a positive effect on pulmonary vascular resistance 
and right ventricular remodelling. In 2021, ET-1 receptor 
antagonists found their way into BPD-PH treatment rec-
ommendations for children [22]. However, the influence 
of pharmacological ET-1 receptor blockade on cardio-
vascular remodelling in the context of BPD has neither 
been examined in human patients nor in animal mod-
els. The aim of this study was to prospectively evaluate 
the potential of the dual ET-1 receptor antagonist (ETA 
and ETB receptor) macitentan to mitigate alveolar and 
cardiovascular remodelling using the established in-vivo 
hyperoxia BPD infant rat model [23–25]. We hypoth-
esised that oral administration of macitentan attenuates 
hyperoxia-induced alveolar rarefaction and enlargement, 
vascular fibrosis, vascular rarefaction, and right ventricu-
lar hypertrophy.

Methods
Animals
The research protocol, approved by the Cantonal Vet-
erinary Office of Zurich (licence number 95/2014), was 
conducted according to the Ethical Principles and Guide-
lines for Experiments on Animals of the Swiss Academy 
of Medical Sciences and the Swiss Academy of Sciences. 
Pregnant Sprague Dawley (SD) dams were delivered by 

Charles Rivers Laboratories International, Inc. (Sulzfeld, 
Germany) on day 14 of pregnancy.

Newborn rats were randomized to the following 
study groups: (1) FiO20.21–placebo (0.9% saline solu-
tion), (2) FiO20.21-macitentan (Actelion, Allschwil, 
Switzerland; 30  mg/kg), (3) FiO21.0–placebo, and (4) 
FiO21.0-macitentan (FiO2: fraction of inspired oxygen). 
Inhaled oxygen concentrations (FiO2 0.21 and FiO2 1.0) 
were chosen based on our previous dose-finding experi-
ments [24]. Placebo and macitentan were administered 
daily via oral gavage from DOL 5–19. Macitentan was 
reconstituted with a gel containing 7.5% of methyl cellu-
lose (Sigma-Aldrich, St. Louis, USA) according to manu-
facturer’s advice for oral gavage.

From DOL 1 to 19, rats in the FiO21.0 groups were per-
manently exposed within their individual ventilated cages 
(T1500 IVC) to FiO2 of 1.0, while control animals were 
held at FiO2 0.21. Oxygen (O2) concentrations in cages 
were monitored with a computer-controlled O2-system 
based on the software IOX (EMKA Technologies, Paris, 
France). Carbon dioxide (CO2) concentrations were kept 
below 0.4% and controlled via adjusting gas in- and out-
flow (3–5 L per Minute). O2 and CO2 concentrations 
were monitored three times per day using the O2 and 
CO2 Datex-Ohmeda sensor (Anandic Medical System, 
Switzerland). The pups were assessed for health and dis-
comfort checks (i.e. hunched posture, piloerection, eye 
discharge, and reduced social interaction) three times 
daily and all findings were recorded on standardised 
score sheets. On DOL 5 each pup was tattooed by fin-
ger skin pricking using the universal rodent numbering 
system (Aramis Laboratory Animal Microtattoo System, 
Ketchum Manufacturing, Brockville, Canada).

On DOL 19 infant rats underwent brief inhalational 
anaesthesia with isoflurane followed by an intraperito-
neal injection of 75 μg/g body weight (BW) of ketamine 
and 10  μg/g BW of xylazine. Once sufficient depth of 
anaesthesia was confirmed by absence of pedal with-
drawal reflex, sternotomy was performed for complete 
blood evacuation via direct cardiac puncture, the cause 
of death for infant rats. Dams were culled via CO2. 
Blood was collected in EDTA plastic tubes and kept on 
ice before centrifugation at 3000 rpm for 10 min. Plasma 
was frozen at − 80 °C for further analysis of ET-1 via fluo-
rescence immunoassays. Details on tissue processing on 
DOL 19 were published in detail previously [24].

Histomorphometry for alveolar remodelling
For each animal, 10 representative pictures of lung 
regions without large bronchi were taken at × 40 magnifi-
cation from haematoxylin–eosin (H&E) stained lung sec-
tions. Alveolar diameters, equal to the mean interalveolar 
distance, were calculated via the mean linear intercept 
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(chord) length (Lm) [26]. A grid with 11 parallel lines was 
fitted to each picture, and the length of each chord was 
defined by the intercept with the alveolar walls. Mean 
Lm was calculated by dividing the total length of the line 
drawn across the lung section by the number of inter-
cepts encountered.

For alveolar counts, in each animal 15 regions of inter-
est (ROIs) with a size of 0.298 mm2 were randomly 
selected from the lung parenchyma to be analysed at × 40 
magnification with Visiopharm™ software. The num-
ber of alveoli per field in the H&E-stained sections was 
counted. A threshold classification allowed to distinguish 
between alveolar lumina and alveolar wall, and to calcu-
late the alveolar count in each ROI.

Pulmonary artery medial wall thickness and count 
of pulmonary vessels
We assessed pulmonary arterial medial wall hypertrophy 
at × 40 magnification in lung sections with anti-α smooth 
muscle actin (SMA) immunostaining. Fifteen ROIs (2.605 
mm2), containing vessels with a diameter of < 100  µm, 
were randomly selected from lungs, avoiding areas with 
terminal bronchioles. A threshold classification allowed 
to distinguish between α-SMA–positive and negative tis-
sue. The results were expressed as α-SMA–positive area 
per cross sectional vessel. Von Willebrand Factor immu-
nostaining allowed the count of pulmonary vessels within 
the outlined ROIs. A threshold classification allowed to 
select pulmonary vessels with a diameter between 30 and 
100 µm.

Right ventricular hypertrophy
In H&E-stained heart sections the dimension of the 
right and left ventricular free wall was measured with 
the NDP view software (Hamamatsu Photonics), and the 
right ventricular/left ventricular (RV/LV) ratio was calcu-
lated. In addition, in heart sections stained for anti-WGA 
(wheat germ agglutinin) the cross-sectional area of car-
diomyocytes was assessed at × 40 magnification to obtain 
a second marker of ventricular hypertrophy. A threshold 
classification allowed the recognition of WGA-stained 
membrane and empty sarcoplasm in at least 40 repre-
sentative right ventricular cardiomyocytes with a central 
4′,6-diamidino-2-phenylindole (DAPI)-stained nucleus.

Statistical analysis
For group comparisons two-way ANOVA and t-test were 
used. Results are expressed as means ± standard devia-
tion for body weight, and as means ± standard error of 
means for all others results. Statistically significant data 
are expressed as vertical box plots with median, 10th, 
25th, 75th, and 90th percentiles, statistical significance 
was set at p < 0.05.

Results
Well‑being and postnatal growth
All animals survived the study protocol showing no signs 
of stress. FiO2 1.0 led to significantly lower body weight 
on DOL 19 in both, placebo (p = 0.005) and macitentan 
(p < 0.001) groups. In contrast, body weight on DOL 19 
was not influenced by macitentan neither in FiO2 0.21 
(p = 0.724) nor in FiO2 1.0 (p = 0.544) (Fig. 1).

Histology
Lung morphometric analysis
In comparison with FiO2 0.21, FiO2 1.0 led to a signifi-
cantly lower alveolar count (p = 0.048) and higher mean 
alveolar intercept in placebo animals (p = 0.012). How-
ever, administration of macitentan to infant rats exposed 
to FiO2 1.0 did not determine significant changes in alve-
olar count (p = 0.165) or diameter (p = 0.923) in compari-
son to FiO21.0-placebo (Fig. 2).

Count of pulmonary vessels
FiO2 1.0 led to significantly lower counts of pulmonary 
vessels compared to FiO2 0.21 in placebo treated animals 
(p = 0.024). Administration of macitentan in FiO2 1.0 
resulted in a significantly higher number of pulmonary 
vessels when compared with FiO21.0-placebo (p = 0.004; 
Fig. 3).

α‑SMA content in the medial wall of the pulmonary 
arterioles
The FiO21.0-placebo group showed significantly higher 
α-SMA levels in the medial wall of pulmonary arteri-
oles compared to FiO2 0.21 (p = 0.009). Treatment with 

Fig. 1  Body weight gain from DOL 5 to 19. White circles: 
FiO20.21-placebo n = 9, light blue circles: FiO20.21-macitentan 
n = 10, grey circles: FiO21.0-placebo n = 6, and dark blue circles 
FiO21.0-macitentan n = 8. *displays significant difference on DOL 19 
compared to the corresponding group in FiO20.21, p < 0.05



Page 4 of 10Baumann et al. Journal of Translational Medicine           (2022) 20:77 

macitentan had no effect on α-SMA content in pul-
monary arterioles in FiO2 0.21 (p = 0.365) and FiO2 1.0 
(p = 0.064) (Fig.  3). Representative microscopic photo-
graphs of anti-α-SMA immunostained lung sections: 
Fig. 4.

Right to left ventricle diameter ratio
FiO2  1.0-placebo led to a higher RV/LV ratio compared 
to FiO2 0.21-placebo (p < 0.001), whereas RV/LV ratios 
in the FiO2 1.0-macitentan group were lower than in the 
FiO2 1.0-placebo group (p = 0.002). Study groups in FiO2 

0.21 did not show significant differences regarding the 
RV/LV ratio (p = 0.789; Fig. 5).

Cardiomyocyte cross‑sectional area
FiO2 1.0 induced larger cardiomyocyte cross-sectional 
areas compared to FiO2 0.21 in placebo treated animals 
(p < 0.001). Administration of macitentan in infant rats 
exposed to FiO2 1.0 did not reduce the cross-sectional 
area of cardiomyocyte compared to the FiO2 1.0-placebo 
group (p = 0.651; Fig.  5). Representative H&E micro-
scopic photographs of heart sections: Fig. 6.

Fig. 2  Alveolar count (A) and mean linear intercept (B) in N-P: normoxia (FiO20.21)-placebo (A n = 7, B n = 6); N-M: normoxia (FiO20.21)-macitentan 
(A n = 8, B n = 9); H-P: hyperoxia (FiO21.0)-placebo (A n = 7, B = 6); and H-M: hyperoxia (FiO21.0)-macitentan (A n = 7, B n = 7). Data are expressed as 
vertical box plots with median, 10th, 25th, 75th, and 90th percentiles. * displays significant difference to FiO20.21-placebo group, p < 0.05

Fig. 3  Count of pulmonary vessels (A) and α-SMA content in the medial wall of the pulmonary arterioles (B) and in N-P: normoxia (FiO2 
0.21)-placebo (A n = 6, B n = 6); N-M: normoxia (FiO2 0.21)-macitentan (A n = 9, B n = 8); H-P: hyperoxia (FiO2 1.0)-placebo (A n = 5, B n = 6); and 
H-M: hyperoxia (FiO2 1.0)-macitentan (A n = 5, B n = 7). Data are expressed as vertical box plots with median, 10th, 25th, 75th, and 90th percentiles. 
* and # indicate significant difference to FiO2 0.21-placebo and FiO2 1.0-placebo, respectively (p < 0.05)



Page 5 of 10Baumann et al. Journal of Translational Medicine           (2022) 20:77 	

Fig. 4  Representative microscopic photographs of anti-α-SMA immunostained lung sections of (A) FiO2 0.21-placebo, (B) FiO2 0.21-macitentan, (C) 
FiO2 1.0-placebo, and (D) FiO2 1.0-macitentan groups, respectively. Black arrows indicate cross sections of pulmonary vessels. Scale bar = 50 µm

Fig. 5  Right-to-left ventricle diameter ratio (A) and cardiomyocyte cross-sectional area (B) in N-P: normoxia (FiO2 0.21)-placebo (A n = 7, B 
n = 5); N-M: normoxia (FiO2 0.21)-macitentan (A n = 9, B n = 5); H-P: hyperoxia (FiO2 1.0)-placebo (A n = 7, B n = 5); and H-M: hyperoxia (FiO2 
1.0)-macitentan (A n = 7, B n = 5). Data are expressed as vertical box plots with median, 10th, 25th, 75th, and 90th percentiles. * and # indicate 
significant difference to FiO2 0.21-placebo and FiO2 1.0-placebo, respectively, p < 0.05
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ET‑1 plasma concentration
The FiO2 1.0-placebo group showed significantly lower 
ET-1 plasma levels compared with the FiO2 0.21-placebo 
group (p = 0.019). Administration of macitentan in FiO2 
1.0 led to a significantly higher ET-1 concentration com-
pared to FiO2 1.0-placebo (p = 0.015) (Fig. 7).

Discussion
In this randomized placebo-controlled intervention trial 
using the hyperoxia rat model for BPD, we were able to 
demonstrate for the first time that endothelin-1 receptor 
blockage with the dual ET-1 receptor antagonist maci-
tentan prevented pulmonary vasculature rarefaction and 
right ventricular hypertrophy. Our hypothesis, that maci-
tentan has the potential to attenuate both alveolar and 
cardiovascular remodelling was only partly confirmed, 
as macitentan failed to influence alveolar enlargement 
and rarefaction, key features of BPD. Since BPD and 
BPD-PH are results of a number of contributing patho-
genicity factors [27], it is unlikely that one single pharma-
cological intervention changes the whole picture of the 
disease. However, as treatment options are still sparse, 

Fig. 6  Representative microscopic photographs of heart sections of A FiO2 0.21-placebo, (mean RV/LV ratio 0.36; standard deviation 0.02), B FiO2 
0.21-macitentan (0.35; 0.01), C FiO2 1.0-placebo (0.53; 0.03), and D FiO2 1.0-macitentan (0.41; 0.03), respectively. RV: right ventricle; LV: left ventricle. 
Magnification × 1.25

Fig. 7  ET-1 plasma concentration in N-P: normoxia (FiO2 
0.21)-placebo (n = 6), N-M: normoxia (FiO2 0.21)-macitentan (n = 8); 
H-P: hyperoxia (FiO2 1.0)-placebo (n = 6); and H-M: hyperoxia (FiO2 
1.0)-macitentan (n = 6). Data are expressed as vertical box plots 
with median, 10th, 25th, 75th, and 90th percentiles. * and # indicate 
significant difference to FiO2 0.21-placebo, and FiO2 1.0-placebo, 
respectively, p < 0.05
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all potential candidates must be carefully evaluated and 
tested for improvement of outcome.

Induction of chronic lung disease
We were able to validate our established hyperoxia BPD 
model [24] through the occurrence of typical histologic 
features, namely alveolar enlargement and rarefaction, 
reduction of absolute number of pulmonary vessels, and 
right ventricular hypertrophy. Further, FiO2 1.0 induced 
significant elevation of pulmonary arteriole α-SMA con-
tent, a marker of smooth muscle cell proliferation.

Effect of ET‑1 receptor antagonism on alveolar remodelling
In this study, administration of the ET-1 receptor 
blocker macitentan did not result in an improvement of 
structural alveolar remodelling in rat lungs exposed to 
high fractions of oxygen. This finding was unexpected, 
because elevated ET-1 protein concentrations, as found 
in several clinical and translational BPD studies [28–33], 
seem to contribute to interstitial lung fibrosis via the 
ET-1 receptor`s central role in pneumocyte collagen 
deposition [19]. Further, ET-1 stimulates dysregulated 
angiogenesis, additionally contributing to alveolar simpli-
fication [25, 34, 35]. Thus, ET-1 receptor blockage with 
macitentan should facilitate regular lung development, 
especially after Gien et  al. were able to reverse bleomy-
cin-induced increases in alveolar mean linear intercept 
by 52% with macitentan`s predecessor bosentan [33].

We speculate that the ongoing pulmonary inflam-
mation driven by long-term high dose oxygen expo-
sure might have outweighed the more specific 
macitentan effects. It is also possible that the macitentan 
doses applied in this study were insufficient to counter-
act all pathophysiologic mechanisms leading to alveolar 
remodelling.

Effect of ET‑1 receptor antagonism on pulmonary 
vasculature and right ventricle
Blockage of ET-1 receptors with macitentan in pups 
exposed to FiO2 1.0 resulted in higher pulmonary arte-
riole count and in significantly lower α-SMA concen-
trations in the medial wall of pulmonary arterioles in 
comparison with FiO21.0-placebo. This finding is in 
agreement with previous experimental studies demon-
strating that ET-1 receptor blockage with macitentan 
promotes pulmonary angiogenesis in rats with pulmo-
nary hypertension [36].

Further, infant rats in the FiO21.0-macitentan group 
presented significantly lower right to left ventricle diam-
eter ratios compared to FiO21.0-placebo animals. It is 
likely that macitentan reduced ET-1 receptor-mediated 
pulmonary vasoconstriction and facilitated regular angi-
ogenesis. Moreover, it is conceivable that macitentan 

prevented pathologic alterations of pulmonary vascular 
resistance with increased afterload and right ventricular 
hypertrophy. This is in line with the study of Iglarz et al. 
which showed that macitentan treatment of adult rats 
with bleomycin-induced PH reduced pulmonary artery 
pressure and prevented right ventricular hypertrophy 
[37]. Similarly, Valero-Monoz et  al. demonstrated that 
macitentan reversed aldosterone-induced left ventricular 
hypertrophy in adult C57BL/6J mice [38].

One interesting observation in our study relates to the 
impact of FiO21.0 on cardiomyocyte cross-sectional area 
which was not reversed by macitentan although the right 
ventricular free wall diameter was reduced. There might 
be two different causal stimuli acting at the same time: 
First, ET-1, being a potent fibrogenic agent, might have 
induced proliferation and collagen deposition predomi-
nantly in cardiac myofibroblasts [39]. This is especially 
important when taking into account the change in cardi-
omyocyte/fibroblast ratio in the developing rat heart dur-
ing infant and adolescent age where cardiac fibroblasts 
make up 30% and cardiomyocytes 60% of all heart mus-
cle cells on DOL 1. On DOL 15 this ratio will be reversed 
with 60% fibroblasts and 30% cardiomyocytes in healthy 
rats [40]. ET-1 receptor binding could have enhanced this 
development with an overstimulation of fibroblasts and 
increased collagen deposition in extracellular matrix. 
Second, as de Raaf et al. concluded from fetal lamb mod-
els and other animal studies, ET-1 receptor binding could 
be directly involved on cellular level in right ventricu-
lar cardiomyocyte hypertrophy, irrespective of pressure 
overload [41]. The ET-1 system seems to induce a fetal 
gene programme for right ventricular cardiomyocyte 
hypertrophy specifically in prenatal cardiac hypertrophy 
in utero and also in adult cardiac hypertrophy in pul-
monary hypertension. In this study this effect on car-
diomyocytes might still have been present even under 
macitentan treatment as exposure to FiO2 1.0 began on 
DOL 1 whereas treatment with macitentan was initiated 
on DOL 5.

Therefore, afterload reduction and blockage of RV 
fibrosis were the two possible reasons for anti-hyper-
trophic cardiac effects of macitentan. Further, cardiomy-
octe growth might have been initiated early during the 
hyperoxic exposure and persisted until DOL 19 without 
being influenced by macitentan. However, we did not 
evaluate collagen deposition in fibroblasts or in extracel-
lular matrix.

Endothelin‑1 concentrations
ET-1 concentrations were significantly lower in FiO2 
1.0-placebo compared to FiO2 0.21-placebo. This could 
be a result of hyperoxia-induced enhancement of ET-1 
receptor expression [42], resulting in increased peptide 
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binding and a more extensive clearance of ET-1 from 
plasma. In FiO2  1.0-macitentan, ET-1 concentrations 
were significantly higher than in FiO21.0-placebo. This 
finding can be explained by the pharmacological block-
age of a sufficient number of ET-1 receptors hampering 
ET-1 receptor binding and finally leading to an accumu-
lation of ET-1 peptides in the blood stream.

Macitentan dose
Since the optimal macitentan dosage required for the 
paediatric population was unknown, we decided to 
administer 30  mg/kg macitentan by extrapolation from 
comparable adult rat studies [43] and on the advice of 
the drug manufacturer (Actelion Pharmaceuticals Ltd, 
Allschwil, Switzerland). Administration of this medica-
ment by gavage was well tolerated by all infant rats. They 
showed regular weight gain and no health issues. From 
our findings with reversal of pulmonary microvascu-
lature rarefaction, reduction of RVH, and increases of 
ET-1 in plasma, we can conclude, that the dose chosen 
for this experiment exerted at least some relevant effects. 
However, absence of side effects with the current dose 
might allow for even higher macitentan doses potentially 
enhancing the treatment success.

Limitations
This study has some limitations. First, we did not perform 
echocardiographic pulmonary arterial pressure measure-
ment or assessment of right ventricular function to con-
firm the presence of hyperoxia-induced PH and elevated 
right ventricular work load. As infant rats are small and 
echocardiographic evaluations are difficult to perform for 
reproducible results, we decided to dispense with that. 
Second, we did not assess ET-1-receptors and receptor-
ligand kinetics, which would have been helpful to under-
stand how the concentration of ET-1-receptors and their 
interaction with ET-1 change in hyperoxia. Third, we did 
not investigate fibrogenic processes in fibroblasts and 
myocardial extracellular matrix.

Conclusions
This was the first study using an in  vivo hyperoxia rat 
model demonstrating the efficacy of the ET-1 receptor 
antagonist macitentan to counteract hyperoxia-induced 
BPD-typical pulmonary vascular and right ventricular 
remodelling with an increase of absolute pulmonary ves-
sel count and reduction of RV/LV ratio. As BPD and its 
vascular sequelae are very important complications of 
preterm birth with relevant impact on morbidity, mortal-
ity, and health care costs, the results of this study need to 

be confirmed in further animal studies to pave the way 
for clinical research in human infants. Furthermore, effi-
cacy and safety of higher macitentan doses have to be 
examined in future translational dose finding studies.
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