
Li et al. Journal of Translational Medicine           (2022) 20:48  
https://doi.org/10.1186/s12967-022-03248-3

RESEARCH

Subtyping of sarcomas based on pathway 
enrichment scores in bulk and single cell 
transcriptomes
Shengwei Li1,2,3, Qian Liu1,2,3, Haiying Zhou4,5, Hui Lu4,5* and Xiaosheng Wang1,2,3*   

Abstract 

Background:  Sarcomas are highly heterogeneous in molecular, pathologic, and clinical features. However, a classifi-
cation of sarcomas by integrating different types of pathways remains mostly unexplored.

Methods:  We performed hierarchical clustering analysis of sarcomas based on the enrichment scores of 14 pathways 
involved in immune, stromal, DNA damage repair (DDR), and oncogenic signatures in three bulk tumor transcriptome 
datasets.

Results:  Consistently in the three datasets, sarcomas were classified into three subtypes: Immune Class (Imm-C), 
Stromal Class (Str-C), and DDR Class (DDR-C). Imm-C had the strongest anti-tumor immune signatures and the lowest 
intratumor heterogeneity (ITH); Str-C showed the strongest stromal signatures, the highest genomic stability and 
global methylation levels, and the lowest proliferation potential; DDR-C had the highest DDR activity, expression of 
the cell cycle pathway, tumor purity, stemness scores, proliferation potential, and ITH, the most frequent TP53 muta-
tions, and the worst survival. We further validated the stability and reliability of our classification method by analyzing 
a single cell RNA-Seq (scRNA-seq) dataset. Based on the expression levels of five genes in the pathways of T cell recep-
tor signaling, cell cycle, mismatch repair, focal adhesion, and calcium signaling, we built a linear risk scoring model 
(ICMScore) for sarcomas. We demonstrated that ICMScore was an adverse prognostic factor for sarcomas and many 
other cancers.

Conclusions:  Our classification method provides novel insights into tumor biology and clinical implications for 
sarcomas.
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Background
Sarcomas, a type of cancer that develops in the bones and 
soft tissues, are highly heterogeneous in pathologic and 
clinical features [1]. Usually, bone sarcomas develop more 

frequently in children while soft tissue sarcomas occur 
more frequently in adults. Soft tissue sarcomas harbor 
at least tens of malignant histological types and subtypes 
[2]. However, even though the lesions of sarcomas are 
broadly distributed throughout the body, the molecu-
lar characterization of sarcomas has potential for their 
diagnosis and management [2]. By multi-omics analysis 
of somatic mutations, copy number alterations (CNAs), 
methylation levels, and RNA and protein expression, The 
Cancer Genome Atlas (TCGA) Research Network [1] 
comprehensively characterized the molecular landscape 
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of six types of soft tissue sarcomas, including dediffer-
entiated liposarcoma (DDLPS), leiomyosarcoma (LMS), 
undifferentiated pleomorphic sarcoma (UPS), myxofi-
brosarcoma (MFS), malignant peripheral nerve sheath 
tumor (MPNST), and synovial sarcoma (SS). This study 
demonstrated two key findings for these adult soft tissue 
sarcomas: (1) CNAs are predominant over somatic muta-
tions; and (2) molecular subtypes and the tumor immune 
microenvironment are highly associated with clinical 
outcomes. Besides, many studies have performed molec-
ular classification of sarcomas based on genomic profil-
ing. For example, Kim et al. classified complex karyotype 
sarcomas into three subtypes based on their CDK4 and 
RB1-associated CNAs [3]. Lee et  al. classified SS, LMS, 
and malignant fibrous histiocytoma (MFH) into four 
classes based on expression profiling of 833 genes [4]. 
Koelsche et  al. developed an algorithm to classify sar-
comas based on DNA methylation profiling [5]. Gibault 
et al. identified five subtypes of soft tissue sarcomas with 
complex genomics by clustering analysis of transcrip-
tome data [6].

Despite these previous molecular classification stud-
ies for sarcomas [1, 3–5], a classification of sarcomas by 
integrating different types of pathways remains mostly 
unexplored. Abundant evidence has shown that sarco-
mas are highly heterogenous in the immune and stromal 
microenvironment [1, 7], genomic instability [1, 8], and 
oncogenic pathways [9]. Thus, a classification of sarco-
mas based on these features of pathways has the poten-
tial to provide new insights into the heterogeneity of 
sarcomas. To this end, we implemented unsupervised 
clustering of sarcomas based on the enrichment scores 
of 14 pathways. These pathways were associated with 
immune regulation (natural killer cell-mediated cytotox-
icity, antigen processing and presentation, T cell recep-
tor signaling, B cell receptor signaling, and JAK-STAT 
signaling), stromal signatures (ECM-receptor interac-
tion, focal adhesion, adherens junction, and calcium 
signaling), DNA damage repair (DDR) (mismatch repair 
and homologous recombination), and oncogenic signa-
tures (TGF-β signaling, Wnt signaling, and cell cycle). 
Because the pathway enrichment score integrates the 
expression levels of a set of genes into a single value, the 
pathway enrichment-based clustering is likely to exhibit 
higher stability and robustness than the gene expres-
sion profiles-based clustering. In addition, the pathway 
enrichment-based clustering may result in more straight-
forward and explainable results relevant to the subtyp-
ing of cancers than the gene expression profiles-based 
clustering. In fact, the pathway (or gene set) enrichment-
based clustering method has been employed in many 
recent studies and shown its advantages over the gene 

expression profiles-based clustering method [10–13]. 
By the pathway-based clustering analyses, we identified 
three subtypes of sarcomas, consistently in three differ-
ent datasets. We further provided a comprehensive por-
trait of the molecular and clinical characteristics of these 
sarcoma subtypes. Finally, we validated our methods and 
results in a single cell RNA-Seq (scRNA-seq) dataset. 
Our classification method may furnish new insights into 
the cancer biology of sarcomas and clinical implications 
for the management of this disease.

Methods
Datasets
We obtained transcriptomic and clinical data for TCGA-
SARC from the genomic data commons (GDC) data 
portal (https://​portal.​gdc.​cancer.​gov/) and GSE30929 
and GSE71121 from the NCBI gene expression omnibus 
(GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). From the 
GDC data portal, we also obtained the profiles of somatic 
mutations (“maf” files), SCNAs (“SNP6” files), protein 
expression (level 3), and DNA methylation (HM450) 
for TCGA-SARC and transcriptomic (level 3 and RSEM 
normalized) and clinical data for other 29 cancer types. 
In addition, we downloaded a single-cell RNA sequenc-
ing (scRNA-seq) dataset (GSE131309) for sarcomas from 
the GEO. All gene expression values (RSEM normalized) 
were added 1 and then log2-transformed before further 
analyses. A summary of these datasets is shown in Addi-
tional file 1: Table S1.

Gene‑set enrichment analysis
We calculated the enrichment scores of pathways, 
immune signatures, or biological processes in a tumor 
sample by single-sample gene-set enrichment analy-
sis (ssGSEA) [14] based on the expression levels of its 
related genes (pathway genes or marker genes). The 
ssGSEA is an extension of the GSEA method, which out-
puts the enrichment scores of the input gene sets in dif-
ferent samples by inputting an expression matrix and a 
list of gene sets. We presented the pathways, immune sig-
natures, and biological processes and their related genes 
in Additional file  2: Table  S2. In addition, we identified 
KEGG pathways significantly associated with a gene set 
using the GSEA tool [15].

Clustering analysis
We used a clustering method to identify sarcoma sub-
types based on the enrichment scores of 14 pathways. 
The clustering method we used is hierarchical cluster-
ing algorithm, which is an unsupervised machine learn-
ing algorithm that determines the similarity between 
data points in each category by calculating the distance 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


Page 3 of 18Li et al. Journal of Translational Medicine           (2022) 20:48 	

between them and all data points; the smaller the dis-
tance, the higher the similarity, and combining the two 
data points or categories with the closest distance to gen-
erate a clustering tree. The 14 pathways were involved 
in immune regulation, stromal signatures, DDR, and 
oncogenic signatures. We performed the hierarchical 
clustering in TCGA-SARC, GSE30929, and GSE71121, 
respectively, by using the R package “hclust”.

Calculation of immune score, stromal score, tumor purity, 
TMB, HRD, ITH, and SCNA
We calculated the immune score, stromal score, and 
tumor purity for each tumor sample by the ESTIMATE 
algorithm [16]. The immune score quantifies the immune 
infiltration level in the tumor microenvironment (TME), 
while the stromal score quantifies the stromal content 
in the TME. Tumor purity represents the proportion 
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Fig. 1  Identification of sarcoma subtypes based on pathway enrichment scores. Hierarchical clustering identifying three sarcoma subtypes: 
Immune Class (Imm-C), Stromal Class (Str-C), and DDR Class (DDR-C), based on the enrichment scores of 14 pathways in three different datasets 
(TCGA-SARC, GSE30929, and GSE71121). The pathway enrichment scores were calculated by ssGSEA [28]. The 14 pathways are involved in immune, 
stromal, DNA damage repair, or oncogenic signatures. DDR, DNA damage repair
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of tumor cells in the bulk tumor. We defined TMB as 
the total number of non-synonymous somatic muta-
tions in the tumor. The Homologous recombination 
deficiency (HRD) scores of TCGA-SARC tumors were 
obtained from the publication by Knijnenburg et al. [17]. 
We scored intratumor heterogeneity (ITH) scores by 
the DEPTH algorithm [18], which evaluates ITH at the 
mRNA level. The R package “DEPTH” was used to calcu-
late ITH scores with the input of gene expression profiles 
in tumor and/or normal tissues. We used GISTIC2 [19] 
to calculate arm- and focal-level SCNAs and G-scores 
with the input of “SNP6” files.

Construction of the prognostic risk scoring model
To build the gene expression-based linear risk scoring 
model (ICMScore) for evaluating the prognostic risk of 
sarcomas, we first identified seven of the 14 pathways 
using the Cox proportional hazards model by Lasso based 
on their enrichment scores in TCGA-SARC. The seven 
pathways included T cell receptor signaling, focal adhe-
sion, adherens junction, Wnt signaling, calcium signal-
ing, cell cycle, and mismatch repair. In each of the seven 
pathways, we identified the genes having strong expres-
sion correlations with the ssGSEA scores of the path-
way (Spearman correlation ρ > 0.5). A total of 26 genes 
were identified, from which we selected 18 genes using 
the Cox  proportional hazards model by Lasso based on 
their expression levels. The 18 genes were included in 
five pathways: T cell receptor signaling (CD40LG), focal 
adhesion (FLT4 and ITGA1), calcium signaling (ATP2B4, 
ADCY2, and FGF7), cell cycle (BUB1B, MCM4, CDC25A, 
CDK2, MCM6, RBL1, and TFDP1), and mismatch repair 
(EXO1, RFC5, MSH2, RPA3, and POLD2). Finally, we 
selected five genes (CD40LG, CDC25A, MSH2, FLT4, 
and ADCY2) from the 18 genes, which were included in 
five different pathways and had the smallest P-values in 
the univariate Cox proportional hazards model based on 
gene expression levels among all genes in the same path-
way. Using the five genes as independent variables, we 
built the linear risk scoring model (ICMScore) as follows:

where Gi represents one of the five genes and exp(Gi) the 
expression level of Gi in the tumor; βi is the regression β 

ICMScore =

5∑

i=1

βi × exp(Gi),

coefficient for Gi in its univariate Cox proportional haz-
ards model. The function “cv.glmnet” in the R package 
“glmnet” was utilized for the variable selection by Lasso 
in the Cox proportional hazards model, and the function 
“coxph” in the R package “survival” was used for the uni-
variate and multivariable Cox regression analyses.

Analysis of scRNA‑seq data
The scRNA-seq (SMART-seq2 [20]) dataset (GSE131309) 
for sarcomas was gene expression profiles in 6951 sin-
gle cells from 12 human SyS tumors, which contained 
4371 malignant cells and 2580 non-malignant cells. We 
used the tSNE algorithm [21] to cluster malignant cells 
and non-malignant cells, respectively. t-SNE produces a 
single map to demonstrate structure at many different 
scales, particularly useful for high-dimensional data [21].

Statistical analysis
In comparisons of two classes of normally distributed 
data, including gene expression levels, protein expression 
levels, and the ratios of immune-stimulatory to immune-
inhibitory signatures, we used two-tailed Student’s t test. 
In comparisons of two classes of data that were not nor-
mally distributed, we used the one-tailed Mann–Whit-
ney U test. In comparisons of three classes of data, if they 
were normally distributed, we used the one-way ANOVA 
test, otherwise, we used the Kruskal–Wallis (K–W) test. 
When analyzing contingency tables, we utilized the Fish-
er’s exact test. We used the Benjamini–Hochberg method 
[22] to calculate FDR for adjusting for multiple tests. We 
used Kaplan–Meier curves to compare the survival (OS, 
DFS, and MFS) time between different groups and the 
log-rank test to evaluate the significance of survival time 
differences.

Results
Identification of sarcoma subtypes based on pathway 
scores
We quantified the activity of a pathway in a tumor sam-
ple by the single-sample gene set enrichment analysis 
(ssGSEA) [14]. Based on the ssGSEA scores of the 14 
pathways involved in immune, stromal, DNA dam-
age repair, or oncogenic signatures, we hierarchically 
clustered sarcomas in three different datasets, respec-
tively. The three datasets included TCGA-SARC [1], 
GSE30929 [23], and GSE71121 [24], which encom-
passed 259, 140, and 312 tumor samples, respectively. 

Fig. 2  Comparisons of immune, stromal and DDR signatures among the sarcoma subtypes. Comparisons of immune signature scores (A), the ratios 
of immune-stimulatory to immune-inhibitory signatures (CD8 + /CD4 + regulatory T cells) (B), stromal scores (C), EMT scores (D), the expression 
levels of seven DDR genes (E), and tumor purity (F) among the sarcoma subtypes. The immune scores, stomal scores, and tumor purity were 
evaluated by ESTIMATE [16]. The EMT scores are the ssGSEA scores [28] of its marker genes. The one-tailed Mann–Whitney U test or two-tailed 
Student’s t test P-values are shown. EMT: epithelial-to-mesenchymal transition. *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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(See figure on next page.)
Fig. 3  Comparisons of clinical and phenotypic features among the sarcoma subtypes. A Kaplan–Meier curves showing that DDR-C is likely to 
have the worst survival among the sarcoma subtypes. The log-rank test P-values are shown. B Comparisons of patients’ age among the sarcoma 
subtypes. C Association between gender and distribution of the sarcoma subtypes. Comparisons of proliferation potential scores (D), stemness 
scores (E), and intratumor heterogeneity (ITH) scores (F) among the sarcoma subtypes. The one-tailed Mann–Whitney U test P-values are shown 
in B, D, E, F. The Fisher’s exact test P-value and odds ratio (OR) are shown in C. G Cox proportional hazards regression analysis showing that 
the subtype DDR-C is a risk factor for disease-free survival prognosis in sarcomas after correcting for age, immune score, tumor purity, tumor 
proliferation potential, stemness, and ITH. HR, hazard ratio; CI, confidence interval

Consistently in the three datasets, sarcomas were 
clearly classified into three subtypes: Immune Class 
(Imm-C), Stromal Class (Str-C), and DDR Class (DDR-
C) (Fig.  1). Among the three subtypes, Imm-C dis-
played the strongest immune signatures, Str-C showed 
the strongest stromal signatures, and DDR-C had the 
highest DDR activity. Meanwhile, Str-C exhibited 
the highest activity of the TGF-β and Wnt signaling 
pathways (Fig.  1). This is consistent with the promi-
nent roles of both pathways in the activation of stromal 
cells [25]. DDR-C most highly expressed the cell cycle 
pathway. It is justified since elevated cell cycle activity 
must promote the DDR activity in tumors [26].

Comparisons of immune, stromal, and DDR signatures 
among the sarcoma subtypes
We compared the enrichment scores of CD8 + T cells, 
NK cells, and immune cytolytic activity, which were 
ssGSEA scores of their marker gene sets, among the sar-
coma subtypes. All these immune signatures exhibited 
consistent expression patterns among these subtypes: 
Imm-C > Str-C > DDR-C, in all three datasets (one-tailed 
Mann–Whitney U test, P < 0.01) (Fig.  2A). In addition, 
we compared immune scores, which were evaluated by 
the ESTIMATE algorithm [16], among the sarcoma sub-
types. Likewise, the immune scores followed the pattern: 
Imm-C > Str-C > DDR-C, in all three datasets (one-tailed 
Mann–Whitney U test, P < 0.01) (Fig.  2A). Moreover, 
most human leukocyte antigen  (HLA) genes showed 
a similar expression pattern: Imm-C > Str-C > DDR-C 
(one-way ANOVA test, P < 0.001) (Additional file 3: Fig. 
S1). Furthermore, we compared the ratios of immune-
stimulatory to immune-inhibitory signatures (CD8 + /
CD4 + regulatory T cells) among the sarcoma subtypes. 
The ratios of CD8 + /CD4 + regulatory T cells were the 
base-2 log-transformed values of the geometric mean 
expression levels of all marker genes of CD8 + T cells 
divided by those of CD4 + regulatory T cells. Notably, the 
ratios exhibited similar pattern: Imm-C > Str-C > DDR-C 
(two-tailed Student’s t test, P < 0.05) (Fig.  2B). Taken 
together, these results confirmed that Imm-C had the 
strongest anti-tumor immune response among the three 
subtypes; they also demonstrated that DDR-C had the 
weakest anti-tumor immune response.

We also compared stromal signatures among the 
sarcoma subtypes. The stromal scores by ESTI-
MATE [16] followed the pattern: Str-C > DDR-C and 
Imm-C > DDR-C (one-tailed Mann–Whitney U test, 
P < 0.001) (Fig. 2C). Epithelial-to-mesenchymal transition 
(EMT) is a representative signature for assessing tumor 
stromal content [27]. The TCGA-SARC data showed that 
EMT scores were significantly higher in Str-C than in 
Imm-C and DDR-C (P < 0.05) (Fig. 2D). These data con-
firmed that Str-C had the strongest stromal signature. 
Besides, we compared the expression levels of seven DDR 
genes among the sarcoma subtypes. These genes included 
MSH2, MSH3, MSH6, MLH1, PMS1, POLD1, and POLE. 
Notably, these genes showed significantly higher expres-
sion levels in DDR-C than in Imm-C and Str-C (P < 0.05) 
(Fig.  2E). It supported that DDR-C had the strongest 
DDR signature.

We further compared tumor purity among the sarcoma 
subtypes. We evaluated tumor purity by ESTIMATE 
[16], which uses a cosine function of the sum of immune 
and stromal scores to calculate tumor purity. Interest-
ingly, tumor purity consistently followed the pattern: 
Imm-C < Str-C < DDR-C, in the three datasets (one-tailed 
Mann–Whitney U test, P < 0.001) (Fig. 2F). These results 
indicated that DDR-C was most enriched with tumor 
cells while Imm-C harbored the highest proportion of 
non-tumor cells.

Clinical and phenotypic characteristics of the sarcoma 
subtypes
We compared survival [overall survival (OS), disease-free 
survival (DFS), and metastasis-free survival (MFS)] prog-
nosis among the sarcoma subtypes. Notably, DDR-C was 
likely to have the worst survival consistently in the three 
datasets (log-rank test, P < 0.05), while Imm-C and Str-C 
showed no significant difference in survival (Fig.  3A). 
Interestingly, Imm-C patients were significantly older 
than Str-C and DDR-C patients (one-tailed Mann–Whit-
ney U test, P < 0.05) (Fig.  3B), while Str-C and DDR-C 
patients had no significant difference in ages. In addi-
tion, in male patients, Str-C had the highest proportion 
(40.68%) and DDR-C had the lowest proportion (26.27%). 
In contrast, in female patients, DDR-C had the highest 
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proportion (47.52%) and Imm-C had the lowest propor-
tion (23.40%) (Fig. 3C).

We compared several tumor progression phenotypes 
among the sarcoma subtypes, including proliferation 
potential, stemness, and intratumor heterogeneity (ITH). 
These phenotypes are associated with tumor progres-
sion, immune evasion, drug resistance, and unfavorable 
prognosis [28, 29]. Notably, proliferation potential scores 
followed the pattern: Str-C < Imm-C < DDR-C, consist-
ently in the three datasets (one-tailed Mann–Whitney 
U test, P < 0.001) (Fig. 3D). Stemness scores followed the 
pattern: Str-C < DDR-C and Imm-C < DDR-C (one-tailed 
Mann–Whitney U test, P < 0.001) (Fig.  3E). In addition, 
we used the DEPTH algorithm [18] to score the ITH of 
the sarcomas in TCGA-SARC. The ITH scores were the 
highest in DDR-C and the lowest in Imm-C (one-tailed 
Mann–Whitney U test, P < 0.05) (Fig.  3F). Altogether, 
these results confirmed that DDR-C had the worst prog-
nosis among the three sarcoma subtypes.

Because age, immune score, tumor purity, tumor pro-
liferation potential, stemness, and ITH are potentially 
associated with clinical outcomes in cancer and were 
significantly different among the sarcoma subtypes, the 
worse survival prognosis in DDR-C versus the other sub-
types could have an association with these confound-
ing variables. To explore the possibility, we performed 
multivariate (age, immune score, tumor purity, tumor 
proliferation potential, stemness, ITH, and DDR-C sub-
type) survival analysis by the multivariate Cox  propor-
tional hazards model. We found that the subtype DDR-C 
remained a significant risk factor for DFS (P = 0.047; haz-
ard ratio (HR) = 1.72 and its 95% confidence interval (CI) 
[1.01, 2.94] (Fig. 3G) after correcting for these variables. 
It suggests that DDR-C is an independent risk factor for 
sarcomas.

Molecular characteristics of the sarcoma subtypes
We compared various molecular characteristics among 
the sarcoma subtypes, including genomics, transcriptom-
ics, methylation profiles, and proteomics. In comparisons 
of genomic, methylation profiles, and proteomic charac-
teristics, we merely used the TCGA-SARC dataset since 
related data were not available in the other two datasets.

Genomic characteristics
Genomic instability often leads to a high tumor mutation 
burden (TMB) and/or increased CNAs [30]. We found 
that TMB was significantly lower in Str-C than in Imm-C 
and DDR-C (one-tailed Mann–Whitney U test, P < 0.05), 
while it showed no significant difference between Imm-C 
and DDR-C (Fig.  4A). Homologous recombination defi-
ciency (HRD) may promote tumor aneuploidy levels, 
namely CNAs [17]. We found that HRD scores were 

significantly lower in Str-C than in Imm-C and DDR-C 
(P < 0.001), while they were not significantly differ-
ent between Imm-C and DDR-C (Fig.  4B). In addition, 
we used GISTIC2 [19] to calculate arm- and focal-level 
somatic copy number alterations (SCNAs) and G-scores. 
The G-score reflects the amplitude of the SCNA and 
the frequency of its occurrence across a group of sam-
ples [19]. Notably, the frequencies of arm-level copy 
number amplifications and deletions followed the ten-
dency: Str-C < Imm-C < DDR-C (Fig.  4C). The G-scores 
of copy number amplifications were significantly higher 
in Imm-C than in DDR-C and Str-C, while the G-scores 
of copy number deletions were significantly higher in 
DDR-C than in Imm-C and Str-C (Fig. 4D). Overall, these 
results indicated that Str-C was more genomically stable 
than Imm-C and DDR-C.

Somatic mutations
We observed that TP53 had a significantly higher muta-
tion frequency in DDR-C than in Imm-C and Str-C (Fish-
er’s exact test, P = 0.01, odds ratio (OR) = 2.0) (Fig. 5A). 
It could partially explain why DDR-C had the worst 
prognosis among the three subtypes since TP53 muta-
tions have been associated with unfavorable outcomes 
in various cancers [31]. Indeed, we found that TP53-
mutated tumors had a significant worse OS and DFS 
than TP53-wildtype tumors in DDR-C (P < 0.02). On the 
other hand, TP53 mutations were less frequent in Str-C 
than in DDR-C and Imm-C (P = 0.009, OR = 0.46). This 
result could explain why Str-C was more genomically sta-
ble than the other subtypes because p53 plays an impor-
tant role in the maintenance of genomic stability [32]. In 
addition, DYNC2H1 and MDN1 were more frequently 
mutated in DDR-C than in Imm-C and Str-C (P = 0.04, 
OR = 4.14) (Fig.  5A). There were 14 genes showing sig-
nificantly higher mutation frequencies in Imm-C than 
in DDR-C and Str-C (P < 0.05, OR > 4.0) (Fig. 5B). These 
genes included BEST3, CACNA1C, CEP170, DST, 
FRMPD3, KMT2D, PEG3, SFMBT2, SOGA2, TCHHL1, 
TENM2, THSD7A, TRPM6, and WNK2. Notably, the 
mutations in many of these genes were positively corre-
lated with the enrichment scores of CD8 + T cells and/
or immune cytolytic activity, including CACNA1C, 
THSD7A, PEG3, TENM2, KMT2D, TRPM6, FRMPD3, 
DST, and TCHHL1 (P < 0.05) (Fig.  5C). It is consist-
ent with the strongest immune signatures presented in 
Imm-C.

DNA methylation
We found 1716 genes showing significantly higher meth-
ylation levels in Imm-C compared to both Str-C and 
DDR-C [one-tailed Mann–Whitney U test, false discov-
ery rate (FDR) < 0.05]. In contrast, 124 and 180 genes 
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had significantly higher methylation levels in Str-C and 
DDR-C, respectively, compared to other subtypes. Nota-
bly, most of these genes showed significant inverse cor-
relations of their expression levels with methylation 
levels (Pearson correlation, P < 0.05) (Additional file  4: 
Table  S3). The top 30 genes with the most significant 
upregulation of methylation levels in each of the three 
subtypes are presented Additional file  5: Fig. S2. The 
KEGG pathways significantly associated with the 1716 
hypermethylated genes in Imm-C mainly included focal 
adhesion, regulation of actin cytoskeleton, MAPK sign-
aling, adherens junction, ECM-receptor interaction, 

TGF-β, ErbB signaling, calcium signaling, Notch signal-
ing, gap junction, tight junction, cell cycle, and Hedgehog 
signaling (Fig. 6A). These results supported that Imm-C 
had lower activities of stromal signatures and oncogenic 
pathways. In contrast, the pathways associated with the 
180 hypermethylated genes in DDR-C mainly included 
cytokine-cytokine receptor interaction, Jak-STAT sign-
aling, antigen processing and presentation, the intesti-
nal immune network for IgA production, natural killer 
cell-mediated cytotoxicity, cell adhesion molecules, and 
p53 signaling. These results confirmed that DDR-C had 
a lower anti-tumor immune response and p53 function 
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(Fig.  6B). It has been shown that low methylation lev-
els correlate with increased TMB and CNAs in can-
cer [33]. We compared global methylation levels [33] 
among the sarcoma subtypes and observed the pattern: 
Str-C > Imm-C > DDR-C (P < 0.05) (Fig.  6C). This con-
forms with our previous results showing that Str-C had 
the lowest TMB and CNAs among the sarcoma subtypes.

Protein expression profiles
We compared the expression levels of 192 proteins 
among the sarcoma subtypes using the TCGA protein 
expression profiling data. We found 19 proteins hav-
ing significantly higher expression levels in Imm-C than 
in both Str-C and DDR-C (two-tailed Student’s t test, 
FDR < 0.05). These proteins included Syk, PREX1, Lck, 
14-3-3_epsilon, PI3K-p85, Caspase-7_cleavedD198, 
PRDX1, Annexin-1, G6PD, Bax, ATM, p38, STAT5-
alpha, Annexin_VII, Claudin-7, p90RSK, TIGAR, CD31, 
and GATA3 (Fig.  7). As expected, these proteins dis-
played significant positive correlations of expression lev-
els with anti-tumor immune signature scores (Additional 
file 6: Fig. S3). In fact, many of these proteins are involved 
in immune regulation. For example, Syk plays a cru-
cial role in adaptive and innate immune regulation [34]. 

PREX1 is a key regulator of neutrophil function [35]. Lck 
has a crucial role in T-cell development and activation 
[36]. Annexin-1 is an anti-inflammatory protein that can 
drive hyperactivation of T cells during pathological con-
ditions [37]. CD31 is an adhesion molecule expressed in 
various immune cells [38]. GATA3 is a transcription fac-
tor essential for regulating the function of human type 
2 innate lymphoid cells [39]. STAT5 is important in the 
maintenance of immune function [40].

16 proteins displayed significantly higher expres-
sion levels in DDR-C than in both Str-C and Imm-C 
(FDR < 0.05) (Fig.  7). These proteins included MSH6, 
Chk1, Smad4, Cyclin_E2, Cyclin_B1, Cyclin_E1, PCNA, 
Bap1-c-4, MSH2, RBM15, 53BP1, FoxM1, Paxillin, Chk2, 
TFRC, and ACC_pS79. Among these proteins, MSH2, 
MSH6, PCNA, 53BP1, and RBM15 are involved in DNA 
damage repair, consistent with the strongest DDR activity 
in DDR-C. Besides, many of these proteins are involved 
in cell cycle regulation, including Chk1, Chk2, Cyclin_B1, 
Cyclin_E1, Cyclin_E2, FoxM1, Bap1-c-4. Again, it is con-
sistent with the strongest cell cycle activity presented in 
DDR-C. In addition, four proteins showed significantly 
higher expression levels in Str-C than in both DDR-C and 
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Imm-C (FDR < 0.05), including PR, Rictor_pT1135, Cyc-
lin_D1, and C-Raf_pS338 (Fig. 7).

A risk scoring model based on the expression levels of five 
genes in the pathways
Using the TCGA-SARC dataset, we developed a linear 
risk scoring model (ICMScore) to evaluate the prognos-
tic risk of sarcomas based on the expression levels of five 
genes, including CD40LG, CDC25A, MSH2, FLT4, and 
ADCY2. The five genes were involved in five of the 14 
pathways for clustering analysis, including T cell recep-
tor signaling (CD40LG), cell cycle (CDC25A), mismatch 
repair (MSH2), focal adhesion (FLT4), and calcium 
signaling (ADCY2). ICMScore calculates risk score in a 
tumor as follows: ICMScore =​ 0.76 ​×​ ex​p(​CD4​0​LG) +​ ​
0.7​3 ×​ ex​p(FLT​4​)  ​−  0​.20 ​× exp(​​ADC​Y2​) +​ ​1.97 ×​ ​exp​(C​
DC25A) + 1.50 × exp(MSH2), w​her​e e​xp(X) denotes the 
expression level of gene X in the tumor sample. To prove 
that ICMScore is an authentic risk factor in sarcomas, we 
compared ICMScores among the three sarcoma subtypes 
and analyzed their correlation with survival prognosis in 
sarcomas. In the three sarcoma datasets, As expected, 
ICMScores was significantly higher in DDR-C than in 
Imm-C and Str-C (two-tailed Student’s t test, P < 0.05) 
(Fig.  8A). Survival analyses showed that higher-ICM-
Score (> median) tumors had significantly worse survival 
(OS, DFS, and MFS) prognosis than lower-ICMScore 
(< median) tumors in the sarcoma datasets (log-rank test, 
P < 0.05) (Fig. 8B). These results supported that ICMScore 
was a prognostic risk factor in sarcomas. Interestingly, we 
found that ICMScore was also a prognostic risk factor in 
many other cancer types, including adrenocortical carci-
noma (ACC), kidney chromophobe (KICH), kidney renal 
clear cell carcinoma (KIRC), brain lower grade glioma 
(LGG), prostate adenocarcinoma (PRAD), and skin cuta-
neous melanoma (SKCM), as evidenced by that elevated 
ICMScores were associated with worse OS and/or DFS in 
these TCGA cancer types (Fig. 8C).

Validation by analyzing scRNA‑seq data
Using the pathway-based clustering method, we ana-
lyzed a scRNA-seq dataset (GSE131309), which 
involved gene expression profiles in 6951 single cells 

from 12 sarcoma [advanced synovial sarcoma (SyS)] 
patients. The 6951 single cells included 4371 tumor 
cells, 90 B cells, 943 macrophages, 185 mastocytes, 102 
NK cells, 235 CD4 + T cells, 659 CD8 + T cells, 206 T 
cells, 79 endothelial cells, and 81 cancer-associated 
fibroblasts (CAFs). Using the t-distributed stochas-
tic neighbor embedding (tSNE) algorithm [21], we 
clustered 4371 malignant (tumor) cells and 2580 non-
malignant cells, respectively (Fig.  9A). The malignant 
cells from 12 different patients were clearly separated. 
Meanwhile, the non-malignant cells were clustered into 
nine different groups, namely B cells, macrophages, 
mastocytes, NK cells, CD4 + T cells, CD8 + T cells, T 
cells, endothelial cells, and CAFs.

We performed hierarchical clustering of the 6951 
single cells based on the enrichment scores of the 
14 pathways identified three subtypes of these cells 
(Fig.  9B). Notably, almost all immune cells (B cells, 
macrophages, mastocytes, NK cells, CD4 + T cells, 
CD8 + T cells, and T cells) were included in Imm-C, 
and all stromal cells (endothelial cells and CAFs) were 
included in Str-C (Fig. 9C). The 4371 tumor cells were 
classified into Str-C (n = 3147) and DDR-C (n = 1224). 
These results support the stability and reliability of our 
method.

In the scRNA-seq dataset, the enrichment scores 
of anti-tumor immune signatures (CD8 + T cells, NK 
cells, and immune cytolytic activity) were significantly 
higher in Imm-C than in Str-C and DDR-C (Fig.  9D). 
The ratios of CD8 + /CD4 + regulatory T cells were 
also significantly higher in Imm-C than in Str-C and 
DDR-C (Fig. 9D). Interestingly, PD-L1 expression lev-
els were significantly higher in Imm-C than in Str-C 
and DDR-C (Fig. 9D). It indicates that PD-L1 is more 
abundant in immune cells than in stromal and tumor 
cells. The seven DDR genes (MSH2, MSH3, MSH6, 
MLH1, PMS1, POLD1, and POLE) exhibited the con-
sistent expression pattern: Imm-C < Str-C < DDR-C 
(two-tailed Student’s t test, P < 0.001) (Fig.  9E), sup-
porting that DDR-C has the strongest DDR activ-
ity. Likewise, stemness scores exhibited the pattern: 
Imm-C < Str-C < DDR-C (one-tailed Mann–Whitney 
U test, P < 0.001) (Fig.  9F). It is consistent with our 

(See figure on next page.)
Fig. 9  Validation of the pathway-based clustering method in a single cell RNA-Seq (scRNA-seq) dataset. A Clustering of 4371 malignant cells and 
2580 non-malignant cells by the tSNE algorithm [21]. B Hierarchical clustering based on the enrichment scores of the 14 pathways identifies three 
subtypes of 6951 single cells from 12 sarcoma patients. C Distribution of the 6951 single cells in the three subtypes. Comparisons of immune 
signature scores (D), expression levels of DDR genes (E), and stemness scores (F) among the three subtypes
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previous results of the highest stemness scores shown 
in DDR-C in bulk tumors. Overall, the results in the 
scRNA-seq dataset are in line with the results in the 
bulk tumors.

Discussion
In this study, we proposed a novel classification method for 
sarcomas based on the enrichment scores of 14 pathways, 
which were involved in immune, stromal, DDR, and onco-
genic signatures. In three datasets for bulk tumors and a 
scRNA-seq dataset, we reproducibly identified three sar-
coma subtypes: Imm-C, Str-C, and DDR-C. Imm-C had 
the strongest anti-tumor immune signatures and the low-
est ITH; Str-C showed the strongest stromal signatures, the 
highest genomic stability and global methylation levels, and 
the lowest proliferation potential; DDR-C had the highest 
DDR activity, expression of the cell cycle pathway, tumor 
purity, stemness scores, proliferation potential, and ITH, 
the most frequent TP53 mutations, and the worst survival. 
It is interesting to observe that there was no significantly 
different TMB between DDR-C and Imm-C, while their 
immune infiltration levels were significantly different. Two 
possible reasons could explain this observation: (1) DDR-C 
had more frequent arm-level copy number amplifications 
and deletions than Imm-C; and (2) DDR-C had higher ITH 
than Imm-C, since both CNAs [41] and ITH [18] are nega-
tively correlated with anti-tumor immune response. DDR-C 
displayed worse clinical outcomes than Imm-C and Str-C. 
It could be attributed to the high proliferation potential, 
stemness, ITH, and genomic instability in DDR-C. Mean-
while, the lowest ratios of immune-stimulatory/immune-
inhibitory signatures in DDR-C indicate the least activation 
of anti-tumor immune response in this subtype. It could 
also be a factor that leads to the worst prognosis in DDR.

The TCGA Research Network analyzed six types of adult 
soft tissue sarcomas: DDLPS, LMS, UPS, MFS, MPNST, 
and SS [1]. We found that 52%, 38%, and 10% of DDLPS 
tumors belonged to Str-C, Imm-C, and DDR-C, respec-
tively (Additional file  7: Fig. S4A). It indicates that most 
DDLPS tumors are Str-C or Imm-C. In contrast, 80% of 
SS and 67% of ULMS tumors are DDR-C, indicating that 
SS and ULMS are dominated by DDR-C. In addition, 0%, 
7%, and 8% of SS, ULMS, and STLMS tumors belonged to 
Imm-C, compared to 55% of UPS tumors being Imm-C; 5% 
of UPS tumors were Str-C, compared to 52% of DDLPS and 
53% of STLMS tumors belonging to Str-C. Taken together, 
these data suggest that the different types of adult soft tis-
sue sarcomas are dominated by different subtypes we iden-
tified. In another study [42], Thorsson et al. identified six 
immune subtypes of TCGA pan-cancer, including wound 
healing, IFN-γ dominant, inflammatory, lymphocyte 
depleted, immunologically quiet, and TGF-β dominant. 
We found that the wound healing sarcomas were mainly 

Str-C and DDR-C, and only 11% were Imm-C; the IFN-γ 
dominant sarcomas were mainly Imm-C and DDR-C, and 
only 16% were Str-C; the inflammatory sarcomas were 
dominated by Str-C (71%), compared to 10% of the lym-
phocyte depleted tumors were Str-C (Additional file 7: Fig. 
S4B). This study revealed that the inflammatory subtype 
and lymphocyte depleted subtype had the best and worst 
prognosis, respectively. It is in accord with our results of 
the worst survival in DDR-C in that 10% of the inflamma-
tory sarcomas and 61% of the lymphocyte depleted sarco-
mas belonged to DDR-C, respectively. In addition, Gibault 
et al. identified five subtypes (Clusters A–E) of soft tissue 
sarcomas based on gene expression profiles [6]. Cluster B 
was a subgroup of sarcomas with a favorable metastasis 
outcome in multivariate analysis [6], which constituted the 
least proportion (9%) of DDR-C among the five clusters 
(Additional file 7: Fig. S4C). It is consistent with the worst 
prognosis of DDR-C among the three subtypes we identi-
fied. Clusters C–E harbored poorly differentiated LMS, 
UPS, MFS, and pleiomorphic sarcomas of the limbs and 
displayed combinations of expression of genes involved in 
invasion, extracellular matrix, or inflammatory processes, 
which were predominant in DDR-C, Str-C, and Imm-C, 
respectively. Hence, our subtyping method demonstrated 
a clearer separation of sarcomas with respect to pathways 
and biological processes compared to previous subtyping 
methods.

Conclusions
Based on the enrichment scores of 14 pathways associated 
with immune, stromal, and DDR signatures, we classified 
sarcomas into three subtypes. The three sarcoma subtypes 
were characterized by different immune infiltration levels, 
stromal signatures, DDR activity, genome features, tumor 
progression phenotypes, and clinical outcomes. Our new 
classification method for sarcomas provides novel insights 
into tumor biology and clinical implications for this disease.
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