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Abstract 

Background: The prevalence of diffuse-type gastric cancer (GC), especially signet ring cell carcinoma (SRCC), has 
shown an upward trend in the past decades. This study aimed to develop computed tomography (CT) based radiom-
ics nomograms to distinguish diffuse-type and SRCC GC preoperatively.

Methods: A total of 693 GC patients from two centers were retrospectively analyzed and divided into training, 
internal validation and external validation cohorts. Radiomics features were extracted from CT images, and the Lauren 
radiomics model was established with a support vector machine (SVM) classifier to identify diffuse-type GC. The Lau-
ren radiomics nomogram integrating radiomics features score (Rad-score) and clinicopathological characteristics were 
developed and evaluated regarding prediction ability. Further, the SRCC radiomics nomogram designed to identify 
SRCC from diffuse-type GC was developed and evaluated following the same procedures.

Results: Multivariate analysis revealed that Rad-scores was significantly associated with diffuse-type GC and SRCC 
(p < 0.001). The Lauren radiomics nomogram showed promising prediction performance with an area under the curve 
(AUC) of 0.895 (95%CI, 0.957–0.932), 0.841 (95%CI, 0.781–0.901) and 0.893 (95%CI, 0.831–0.955) in each cohort. The 
SRCC radiomics nomogram also showed good discrimination, with AUC of 0.905 (95%CI,0.866–0.944), 0.845 (95%CI, 
0.775–0.915) and 0.918 (95%CI, 0.842–0.994) in each cohort. The radiomics nomograms showed great model fitness 
and clinical usefulness by calibration curve and decision curve analysis.

Conclusion: Our CT-based radiomics nomograms had the ability to identify the diffuse-type and SRCC GC, provid-
ing a non-invasive, efficient and preoperative diagnosis method. They may help guide preoperative clinical decision-
making and benefit GC patients in the future.
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Introduction
Gastric cancer (GC) is the fifth most common cancer 
and the third leading cause of cancer-related death 
worldwide [1]. Although the overall incidence of GC 
has significantly decreased over recent decades, the 
incidence of Lauren diffuse-type GC is constantly ris-
ing, and the predominant increase occurred in the 
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signet ring cell carcinoma (SRCC) [2]. From 1973 to 
2000, the incidence of SRCC increased from 0.1 to 1.4 
cases per 100,000 persons as recorded in the Surveil-
lance, Epidemiology, and End Results (SEER) database 
[3].

The Lauren classification and the World Health Organ-
ization (WHO) classification systems are the mainstream 
histological classification methods for GC [4]. The Lau-
ren classification divides GC into intestinal-type, dif-
fuse-type and mixed-type according to the histological 
morphology and cell characteristics of GC [5]. Accord-
ing to the WHO classification system, GC with at least 
50% signet-ring cells (SRC) in the pathological specimen 
is defined as SRCC [6]. Although all SRCCs are classified 
as Lauren diffuse type [7–9], they have distinct etiology, 
pathogenesis, prognosis and tumor biological behavior, 
such as lymph node metastasis rate, chemosensitivity 
[10–15]. If diffuse-type and SRCC GC can be diagnosed 
and distinguished in an early stage, it will be of great help 
to the choice of treatment schemes and the prognosis 
evaluation.

In clinical practice, endoscopic biopsies are gener-
ally used to provide doctors with a reliable pathologi-
cal diagnosis of GC. However, studies revealed that the 
Lauren classification’s consistent rate between biopsy 
and surgical samples was only 64.7% [16], and there was 
often a high false-negative rate when dealing with diffuse 
infiltrating-type GC [17]. Computed tomography (CT) 
is the most commonly used imaging modality for diag-
nosing and assessing the staging of gastric malignancies. 
However, traditional CT based on lesion distribution, 
wall thickness and enhancement pattern has limitations 
in diagnosing the diffuse type of gastric carcinoma [18]. 
Meanwhile, 18F-FDG PET/CT has low sensitivity in 
detecting SRCC [19].

Recently, radiomics, as a typical case of medical appli-
cation of machine learning that extracts quantitative 
features from radiological images and builds a signature 
for the complete characterization of tumors, has exhib-
ited great potential in improving diagnostic, prognostic, 
and predictive accuracy [20, 21]. Research has shown that 
radiomics could be a useful tool for identifying occult 
peritoneal metastasis in patients with advanced GC [22] 
and differentiating Borrmann type IV GC from primary 
gastric lymphoma [23]. However, there are limited stud-
ies to explore the possibility of radiomics in identifying 
diffuse-type and SRCC gastric cancer [24].

Thus, we conducted this study to develop a CT-based 
radiomics nomogram, providing a noninvasive and effi-
cient preoperative diagnosis method to identify diffuse-
type and SRCC GC. In the future, it may help guide 
preoperative clinical decision-making and benefit GC 
patients.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board of two medical centers, and the need 
for informed patient consent was waived. All procedures 
performed involving human participants were follow-
ing the 1964 Helsinki Declaration and its later amend-
ments. Patients who underwent total or partial radical 
gastrectomy and histologically confirmed GC between 
December 2007 and March 2016 were enrolled. The 
detailed inclusion criteria were as follows: (1) patients 
who underwent surgery for GC; (2) patients who under-
went standard contrast-enhanced CT less than 15  days 
before surgery; (3) patients with complete clinicopatho-
logic data. Patients who received neoadjuvant chemo-
therapy (NAC) therapy or radiotherapy before surgery 
were excluded to avoid the influence of these factors on 
the tumor size and degree of invasion. The demographic 
and clinicopathologic data of patients, including age, 
sex, tumor site, tumor size (maximum diameter), CEA, 
CA199, Lauren classification, Borrmann classification, 
differentiation and tumor stage, were obtained from 
medical records. Tumor staging was performed based on 
the American Joint Committee on Cancer tumor-node-
metastasis (TNM) Staging Manual, 8th Edition.

Flow diagrams for eligible patients were shown in Addi-
tional file 1: Figure S1. Finally, a total of 693 patients (453 
males and 240 females; mean age, 56.38 ± 11.85  years; 
age range, 22–87  years) from 2 medical centers were 
enrolled in the study, including 587 patients from center 
1 (Nanfang Hospital of Southern Medical University, 
Guangzhou, China) and 106 patients from center 2 (Zhu-
jiang Hospital, Guangzhou, China). To develop a Lauren 
radiomics model to identify diffuse-type GC, we divided 
all patients into three cohorts: one training cohort 
(n = 300 from center 1), one internal validation cohort 
(n = 287 from center 1) and one external validation 
cohort (n = 106 from center 2) (Additional file 1: Figure 
S1a). Moreover, the SRCC radiomics model was designed 
to identify SRCC from diffuse-type GC. A total of 443 
diffuse-type GC patients were included and divided into 
three cohorts: one training cohort (n = 280 from center 
1), one internal validation cohort (n = 114 from center 1) 
and one external validation cohort (n = 49 from center 2) 
(Additional file 1: Figure S1b). The sample size considera-
tion was shown in Additional file 1: S1.

CT image acquisition and radiomics feature extraction
The procedures of CT image acquisition and retrieval 
were described in detail in Additional file 1: S2. Then CT 
images were exported to the ITK-SNAP 3.6 (ITK-SNAP 
3.X TEAM) software, and three-dimensional (3D) seg-
mentation of the region of interest (ROI) was performed 
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(Additional file  1: Figure S2). The algorithms for tumor 
ROIs delineation and reproducibility evaluation of intra-
observer (reader 1 twice) and interobserver (reader 1 vs. 
reader 2) were described in Additional file 1: S3. The pre-
processing was applied to the ROI images with different 
parameters (Additional file 1: Table S1) to enrich features 
before extracting the texture features (Additional file  1: 
S4). Then we applied the feature extraction method to the 
ROI in MATLAB 2016b (Mathworks), and series of tex-
ture features were generated from the images (Additional 
file  1: Table  S2). Then the feature values were preproc-
essed with a filtering feature selection method (Addi-
tional file 1: S5).

Feature selection, construction and evaluation 
of the radiomics SVM models
We used the Relief forward selection (RFS) algorithm 
[25] and an exhaustive test based on the performance of 
the SVM classifier (Additional file  1: S6) to find feature 
subset with the best distinguishing characteristics for the 
radiomics model [25]. The SVM model was based on the 
LIBSVM software package developed by Professor Lin 
et al. in 2001 (https:// www. csie. ntu. edu. tw/ ~cjlin). A high 
penalty parameter c could effectively improve the model’s 
accuracy, but an excessive high penalty parameter would 
cause over-fitting status. The range of c was limited to 
prevent this situation, and the tenfold cross-validation 
and grid search method was applied to find the best com-
bination of SVM model parameters (c and g) (Additional 
file 1: Figure S3). Then all extracted features were ranked 
from the most important to the least important, and dif-
ferent feature sets were obtained using the exhaustive test 
from the ordered sequence 1 ≤ m ≤ M. The set of first m 
features was fed into the SVM classifier. Its performance 
for differentiating different GC types was evaluated by 
receiver operating characteristic (ROC) curves and the 
area under the curve (AUC). The detailed steps of fea-
ture selection were shown in Additional file 1: S7 in the 
Supplement. Differences in the AUC values between 
the three cohorts were assessed using the Delong test. 
The pathological classification radiomics feature score 
obtained in SVM models of each patient was seen as 
Rad-score. Kaplan–Meier survival analyses were used 
to estimate the difference in 5-year disease-free survival 
(DFS) and 5-year overall survival (OS) between the high 
Rad-score and low Rad-score groups.

Development and evaluation of radiomics nomograms
Multivariate logistic regression was applied to select 
independent predictors of diffuse-type and SRCC GC 
from the clinical characteristics. The significant pre-
dictors among the clinical characteristics and the Rad-
score were entered into the logistic regression analysis to 

develop the radiomics nomogram. The diagnostic perfor-
mance and calibration of the radiomics nomogram were 
evaluated based on ROC and calibration curves. Decision 
curve analysis was applied to assess the clinical useful-
ness of the radiomics nomograms by quantifying the net 
benefit at different threshold probabilities.

Statistical analysis
Analyses were performed using SPSS version 26.0 (SPSS 
Inc., Chicago, IL, USA). Continuous variables were pre-
sented as the mean ± standard deviation and compared 
with the t-test. Categorical variables were expressed as 
frequency (percentage) and compared with Chi-squared 
tests or Fisher’s exact test as appropriate. Nomograms 
and calibration curves were generated with the rms pack-
age of R software (version 4.0.3; R Foundation for Statisti-
cal Computing, Vienna, Austria). A p-value of < 0.05 was 
set as the threshold for statistical significance.

Results
Clinical characteristics of all patients
A total of 693 patients (453 males and 240 females; mean 
age, 56.38 ± 11.85  years; age range, 22–87  years) were 
included in the study. The clinicopathologic characteris-
tics of the assessed patients were listed in Table 1. Clinical 
characteristics, including tumor location, differentiation 
status, Borrmann type, levels of CEA and CA199, and 
TNM stages were significantly different between intesti-
nal-type and diffuse-type GC patients.

Feature selection and construction of the Lauren radiomics 
SVM model
A total of 9691 features were extracted from the tumor 
ROI with satisfactory interobserver and intraobserver 
reproducibility assessments (Additional file 1: S8). The 
weight ordering of radiomics features was obtained by 
the Relief algorithm (Fig.  1a). The feature subset with 
the best discrimination ability for the radiomics model 
was obtained using the exhaustive test based on the 
performance of the support vector machine (SVM) 
classifier. Finally, the optimal feature subset with 13 
features achieved excellent performance in distinguish-
ing Lauren diffuse-type and intestinal-type GC (Fig. 1b 
and Additional file  1: Table  S3), yielding AUC values 
of 0.895 (95% confidence interval (CI) 0.957–0.932), 
0.791 (95%CI0.728–0.853) and 0.857 (95%CI0.78–
0.935) in the training, internal validation and external 
validation cohort, respectively (Fig.  1c). Multivariate 
analysis revealed that Rad-score was the significant 
predictor between intestinal-type and diffuse-type 
GC (OR, 4.164; 95%CI, (3.121,5.557); p < 0.001) (Addi-
tional file  1: Table  S4). Further, statistical difference 
was found in terms of 5-year DFS and OS between the 
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high Rad-score group (diffuse-type) and low Rad-score 
group (intestinal-type) (Additional file 1: S9).

Construction and evaluation of the Lauren radiomics 
nomograms
Univariate logistic regression analyses showed that 
age, tumor size, tumor location, and elevated CEA and 
CA199 had statistically significant p-values between the 
diffuse-type and intestinal-type GC patients. Multivari-
ate logistic analysis revealed that age (OR, 0.979 [0.958, 
1.000], p = 0.049), tumor location (OR, 1.347 [1.035, 
1.753], p = 0.027) and elevated CEA (OR, 2.302 [1.417, 
3.740], p = 0.001) were independent predictors (Table 2). 
The Rad-score and clinical characteristics were incorpo-
rated to build the Lauren radiomics nomogram (Fig. 2).

The diagnostic performance comparison of the Lauren 
radiomics model and radiomics nomogram was shown in 
Fig. 3. No difference was observed in the training cohort 
(Fig.  3a), while the radiomics nomogram achieved a 
higher AUC than the radiomics model in the internal val-
idation cohort (AUC, 0.841 [95%CI0.781–0.901] vs 0.791 
[95%CI 0.728–0.853]) and external validation cohort 
(AUC, 0.893 [95%CI 0.831–0.955] vs 0.857 [95%CI 0.78–
0.935]) (Fig. 3b and 3c). The Lauren radiomics nomogram 
model had higher specificity, sensitivity and accuracy 
than the SVM model (Additional file  1: Table  S5). The 
Delong test was applied on the ROC curves of the radi-
omics nomogram to assess possible overfitting and the 
result revealed that the differences were not statistically 
significant among the AUCs of the training cohort and 
the two validation cohorts, with P values of 0.138 and 
0.969, respectively. The calibration curves demonstrated 
good agreement between prediction and observation 
in all three cohorts (Hosmer–Lemeshow test, p > 0.05) 

(Fig. 3d–f). The decision curve analysis (Additional file 1: 
Figure S6) indicated that the patients would benefit more 
from using the radiomics nomograms than using the 
SVM model or treat-all-patients scheme or the treat-
none scheme if the threshold probability in the clinical 
decision was between 10 and 90%.

Clinical characteristics of patients with diffuse‑type GC
To further develop the SRCC radiomics model to distin-
guish SRCC and non-SRCC in diffuse-type GC patients, 
394 diffuse-type GC patients from center 1 and 49 
patients from center 2 were enrolled. The clinicopatho-
logic characteristics of these patients were listed in 
Table  3. Clinical characteristics, including tumor loca-
tion, differentiation status, Borrmann type, levels of CEA 
and CA199, and TNM stages were significantly different 
between non-SRCC and SRCC GC patients.

Feature selection and construction of the SRCC radiomics 
SVM model
Following the same feature selection and SVM model 
building procedure, we searched the feature subset with 
the best distinguishing characteristics for the SRCC 
radiomics model. Finally, the optimal feature subset 
with 10 features achieved excellent performance in dis-
tinguishing SRCC and non-SRCC patients (Fig.  4a and 
Additional file 1: Table S6), yielding AUC values of 0.904 
(95%CI0.865–0.942), 0.824 (95%CI 0.748–0.9) and 0.835 
(95%CI 0.709–0.962) in the training, internal and exter-
nal validation cohort, respectively (Fig.  4b). Multivari-
ate analysis revealed that Rad-score was the significant 
predictor of SRCC (OR, 6.193; 95%CI, (4.123, 9.303); 
p < 0.001) (Additional file  1: Table  S4). Further, statisti-
cal difference was found in terms of 5-year DFS and OS 

Fig. 1 Construction of the Lauren radiomics SVM model. a The weight ordering of 9691 radiomics features. b The optimal feature subset of the 
Lauren radiomics SVM model included 13 features. c ROC curves of Lauren radiomics SVM model in the training, internal validation and external 
validation cohorts. ROC receiver operator characteristic, SVM Support vector machine
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Table 2 Clinicopathologic characteristics of patients with diffuse-type GC

Clinical 
characteristics

SRCC radiomics model

Training cohort (n = 280) Validation cohort (n = 114) External validation cohort (n = 49)

Non‑SRCC 
(n = 180)

SRCC (n = 100) p value Non‑SRCC 
(n = 59)

SRCC (n = 55) p value Non‑SRCC 
(n = 34)

SRCC (n = 15) p value

Gender, n 0.004 0.098 0.109

  Male 125 (69.4) 52 (52.0) 43 (72.9) 32 (58.2) 24 (70.6) 7 (46.7)

  Female 55 (30.6) 48 (48.0) 16 (27.1) 23 (41.8) 10 (29.4) 8 (53.3)

Age, mean ± SD, 
years

55.32 ± 10.61 53.36 ± 11.93 0.198 56.39 ± 11.70 51.36 ± 11.87 0.914 63.38 ± 15.39 57.93 ± 13.71 0.574

Age, n 0.220 0.241 0.004

  < 60 111 (61.7) 69 (69.0) 38 (64.4) 41 (74.5) 12 (35.3) 12 (80.0)

  ≥ 60 69 (38.3) 31 (31.0) 21 ( (35.6) 14 (25.5) 22 (64.7) 3 (20.0)

Tumor size, cm 3.29 ± 1.87 3.15 ± 2.29 0.032 3.74 ± 2.24 3.27 ± 2.10 0.839 – –

Tumor size, n 0.433 0.231 –

  < 4 cm 114 (63.3) 68 (68.0) 31 (52.5) 35 (63.6) – –

  ≥ 4 cm 66 (36.7) 32 (32.0) 28 (47.5) 20 (36.4) – –

Tumor loca-
tion, n

0.099 0.046 0.008

 Upper 27 (15.0) 7 (7.0) 14 (23.7) 4 (7.3) 13 (38.2) 1 (6.7)

 Middle 34 (18.9) 14 (14.0) 10 (16.9) 10 (18.2) 10 (29.4) 2 (13.3)

 Lower 98 (54.4) 62 (62.0) 29 (49.2) 28 (50.9) 11 (32.4) 12 (80.0)

 Whole 21 (11.7) 17 (17.0) 6 (10.2) 13 (23.6) 0 (0) 0 (0)

Differentiation 
status, n

0.162 0.049 0.079

 Well 2 (1.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

 Moderate 11 (6.1) 2 (2.0) 4 (6.8) 0 (0) 10 (29.4) 1 (6.7)

 Poor and 
undifferenti-
ated

167 (92.8) 98 (98.0) 55 (93.2) 55 (100) 24 (70.6) 14 (93.3)

Bormann 
type, n

0.001  < 0.001 0.506

 1 11 (6.1) 7 (7.0) 5 (8.5) 4 (7.3) 10 (29.4) 4 (26.7)

 2 28 (15.6) 15 (15.0) 16 (27.1) 8 (14.5) 13 (38.2) 3 (20.0)

 3 120 (66.7) 48 (48.0) 37 (62.7) 25 (45.5) 10 (29.4) 7 (46.7)

 4 21 (11.7) 30 (30.0) 1 (1.7) 18 (32.7) 1 (2.9) 1 (6.7)

CEA, n 0.775 0.995 0.404

 Elevated 86 (47.8) 46 (46.0) 30 (50.8) 28 (50.9) 18 (52.9) 6 (40.0)

 Normal 94 (52.2) 54 (54.0) 29 (49.2) 27 (49.1) 16 (47.1) 9 (60.0)

CA199, n 0.655 0.851 0.094

 Elevated 86 (47.8) 45 (45.0) 30 (50.8) 27 (49.1) 6 (17.6) 6 (40.0)

 Normal 94 (52.2) 55 (55.0) 29 (49.2) 28 (50.9) 28 (82.4) 9 (60.0)

Depth of inva-
sion, n

0.295 0.282 0.200

 T1 21 (11.7) 19 (19.0) 7 (11.9) 8 (14.5) 1 (2.9) 2 (13.3)

 T2 15 (8.3) 6 (6.0) 5 (8.5) 4 (7.3) 2 (5.9) 3 (20.0)

 T3 23 (12.8) 9 (9.0) 2 (3.4) 7 (12.7) 7 (20.6) 2 (13.3)

 T4 121 (67.2) 66 (66.0) 45 (76.3) 36 (65.5) 24 (70.6) 8 (53.3)

Lymph node 
metastasis, n

0.043 0.395 0.878

 N0 50 (27.8) 32 (32.0) 16 (27.1) 18 (32.7) 7 (20.6) 2 (13.3)

 N1 42 (23.3) 13 (13.0) 15 (25.4) 13 (23.6) 5 (14.7) 2 (13.3)

 N2 38 (21.1) 15 (15.0) 13 (22.0) 6 (10.9) 10 (29.4) 6 (40.0)
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between the high-Rad-score (SRCC) and low-Rad-score 
(non-SRCC) groups (Additional file 1: S9).

Construction and evaluation of the SRCC radiomics 
nomogram
Multivariate logistic regression analyses revealed that sex 
(OR, 2.044 [1.228, 3.404], p = 0.006) and tumor location 
(OR, 1.449 [1.058, 1.984], p = 0.021) were independent 
predictors between the SRCC and non-SRCC patients 
(Table 3). The Rad-score and clinical characteristics were 
incorporated to build the SRCC radiomics nomograms 
(Fig. 5).

The diagnostic performance comparison of the SRCC 
radiomics model and radiomics nomogram was shown 

in Fig.  6. No obvious differences were observed in the 
training cohort (Fig. 6a), while the radiomics nomogram 
achieved higher AUC than the radiomics model in the 
internal validation cohort (AUC, 0.845 [95%CI 0.775–
0.915] vs 0.824 [95%CI 0.748–0.900]) (Fig. 6b) and exter-
nal validation cohort (AUC, 0.918 [95%CI 0.842–0.994] 
vs 0.835 [95%CI 0.709–0.962]) (Fig. 6c). The SRCC radi-
omics nomogram model had higher specificity, sensitiv-
ity and accuracy than the SVM model (Additional file 1: 
Table  S7). The Delong test revealed that the differences 
were not statistically significant among the AUCs of the 
training cohort and the two validation cohorts, with P 
values of 0.138 and 0.969, indicating no overfitting was 
assessed. The calibration curves of the radiomics nomo-
gram demonstrated good agreement between prediction 
and observation in all three cohorts (Hosmer–Lemeshow 
test, p > 0.05) (Fig.  6d–f). The decision curve analysis 
indicated that the patients would benefit more from using 
the radiomics nomograms than using the SVM model or 
treat-all-patients scheme or the treat-none scheme if the 
threshold probability in the clinical decision was between 
10 and 90% (Additional file 1: S9).

Discussion
In this retrospective multicenter study, we established a 
CT-based Lauren radiomics nomogram to identify the 
diffuse-type GC from all GC patients and further devel-
oped a SRCC radiomics nomogram to identify SRCC 
from diffuse-type GC. The nomograms provided a non-
invasive and efficient preoperative diagnosis method to 
identify diffuse-type and SRCC GC.

Lauren classification is one of the most widely 
used histopathological classification systems for gas-
tric adenocarcinoma [5, 26]. In addition to reflecting 

Table 2 (continued)

Clinical 
characteristics

SRCC radiomics model

Training cohort (n = 280) Validation cohort (n = 114) External validation cohort (n = 49)

Non‑SRCC 
(n = 180)

SRCC (n = 100) p value Non‑SRCC 
(n = 59)

SRCC (n = 55) p value Non‑SRCC 
(n = 34)

SRCC (n = 15) p value

 N3 50 (27.8) 40 (40.0) 15 (25.4) 18 (32.7) 12 (35.3) 5 (33.3)

Distant metas-
tasis, n

0.337 0.518 0.707

 M0 175 (97.2) 95 (95.0) 58 (98.3) 53 (96.4) 28 (92.4) 13 (86.7)

 M1 5 (2.8) 5 (5.0) 1 (1.7) 2 (3.6) 6 (17.6) 2 (13.3)

TNM stage, n  < 0.001 0.043 0.653

 I 25 (13.9) 22 (22.0) 8 (13.6) 10 (18.2) 2 (5.9) 2 (13.3)

 II 37 (20.6) 14 (14.0) 12 (20.3) 9 (16.4) 6 (17.6) 2 (13.3)

 III 103 (57.2) 40 (40.0) 36 (61.0) 26 (47.3) 20 (58.9) 9 (60.0)

 IV 15 (8.3) 24 (24.0) 3 (5.1) 10 (18.2) 6 (17.6) 2 (13.3)

Fig. 2 Development of the Lauren radiomics nomograms
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Fig. 3 Evaluation of the Lauren radiomics nomograms. ROC curves comparing Lauren radiomics nomogram with Lauren radiomics SVM model in 
the training (a), internal validation (b) and external validation (c) cohorts. Calibration curves of the Lauren radiomics nomogram in the training (d), 
internal validation (e) and external validation (f) cohorts. ROC receiver operator characteristic, SVM support vector machine

Table 3 Univariate and multivariate regression analysis of clinical characteristics in the training cohort of Lauren radiomics model and 
SRCC radiomics model

CEA carcinoembryonic antigen, CA19-9 carbohydrate antigen 19-9, SRCC  signet ring cell carcinoma

Lauren radiomics model 
Characteristics

Univariate analysis Multivariate analysis

Odds ratio 95%CI p value Odds ratio 95%CI p value

Age 0.977 (0.957, 0.997) 0.025 0.979 (0.958, 1.000) 0.049

Sex 1.425 (0.884, 2.299) 0.146 – – –

Tumor size 1.015 (1.001, 1.029) 0.033 – – –

Tumor location 1.417 (1.098, 1.827) 0.007 1.347 (1.035, 1.753) 0.027

CEA 2.359 (1.464, 3.802)  < 0.001 2.302 (1.417, 3.740) 0.001

CA199 2.224 (1.382, 3.578) 0.001 – – –

SRCC radiomics
model Characteristics

Univariate analysis Multivariate analysis

Odds ratio 95%CI p value Odds ratio 95%CI p value

Age 0.984 (0.963, 1.006) 0.159 – – –

Sex 2.098 (1.267, 3.474) 0.004 2.044 (1.228, 3.404) 0.006

Tumor size 0.996 (0.986, 1.006) 0.387 – – –

Tumor location 1.472 (1.081, 2.004) 0.014 1.449 (1.058, 1.984) 0.021

CEA 0.931 (0.570, 1.520) 0.775 – – –

CA199 0.894 (0.548, 1.461) 0.655 – – –
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tumor biological behavior, it can also reflect the etiol-
ogy, pathogenesis and epidemic characteristics of GC. 
Diffuse-type GC, which originates from the gastric 
mucosa and exhibits a diffuse growth pattern, is poorly 
differentiated and shows more chemotherapy resistance 
[27]. It is more prone to lymph node metastasis and dis-
tant metastasis than intestinal-type, resulting in a poor 
prognosis [28]. Studies have found that germline muta-
tions in some genes (such as CDH1, BRCA2, STK11, 
ATM and PALB2) may be the cause of diffuse-type GC 

[14, 29, 30]. According to epidemiological data, there 
has been an increasing trend in the incidence of dif-
fuse-type GC [3]. As a result, the early diagnosis and 
treatment of diffuse-type GC have attracted widespread 
attention worldwide. Gastroscopy and tissue biopsy are 
the most commonly used methods for the pathological 
diagnosis of GC. However, they are invasive operations, 
and the consistent rate of the Lauren classification was 
only 64.7% between biopsy and surgical samples [16]. 
The recent emergence of radiomics undoubtedly pro-
vides an excellent solution to this problem.

In this study, 693 GC patients from 2 centers were ret-
rospectively analyzed, and 9691 radiomics features were 
extracted from their CT image. Radiomics feature subset 
with the best distinguishing characteristics was searched 
by SVM classifier to develop the Lauren radiomics model. 
SVM is a mature machine learning method with relatively 
stable performance and gradually replaces the previous 
lasso regression method. Multivariate analyses revealed 
that radiomics feature score could be the independent 
predictor of diffuse-type GC. Then, the Lauren radiomics 
nomogram integrating Rad-score and clinicopathological 
characteristics was developed, which was proved a prom-
ising AUC value and satisfactory calibration. Age, tumor 
size and CEA levels were found significantly associated 
with diffuse-type GC in this study, consistent with our pre-
vious literature review [16, 31].

SRCC, as a particular type of diffuse-type GC, is char-
acterized by a higher incidence in females and a lower 

Fig. 4 Construction of the SRCC radiomics SVM model. a The optimal feature subset of the SRCC radiomics SVM model included 10 features. b 
ROC curves of SRCC radiomics SVM model in the training, internal validation and external validation cohorts. SRCC  signet ring cell carcinoma, ROC 
receiver operator characteristic, SVM support vector machine

Fig. 5 Development of the SRCC radiomics nomograms



Page 11 of 13Chen et al. Journal of Translational Medicine           (2022) 20:38  

average age at diagnosis than non-SRCC [32]. Mean-
while, it has a higher rate of peritoneal carcinomatosis, 
lymph node invasion and chemotherapy resistance and 
a lower curative resection rate than non-SRCC tumors 
in advanced stages [2, 9, 14, 33]. Moreover, SRCCs often 
manifest as Borrmann IV type with a high false-negative 
rate during biopsy [17]. Considering the importance of 
early diagnosis, we further develop another radiomics 
SVM model (SRCC radiomics model) to identifying SRCC 
from diffuse-type GC. Multivariate analyses revealed that 
the model’s Rad-score could be the independent predictor 
of SRCC. Further, the SRCC nomogram integrating Rad-
score and clinicopathological characteristics including sex 
and tumor location was developed. The results showed 
that the SRCC radiomics nomogram had higher AUC val-
ues and accuracy than the radiomics SVM model and the 
decision curve analysis demonstrated that the radiomics 
nomogram was clinically valuable.

In addition, nomograms in this study may also help 
future clinical decision making. Different pathological 

types of GC have different benefits from the same treat-
ment, so it is necessary to choose appropriate treatment 
measures according to pathological types. For example, 
as for surgical management, diffuse-type GC usually 
need wider surgical margins to achieve an R0 resection, 
and a super-extended lymphadenectomy might be the 
best surgical approach [34]. A survival benefit with D3 
lymphadenectomy, compared with D2 lymphadenec-
tomy, can be obtained in diffuse-type and mixed-type GC 
[35]. In addition, diffuse-type GC may benefit from pre-
vention and/or treatment of peritoneal metastases using 
hyperthermic intraperitoneal chemotherapy (HIPEC) 
[34, 36]. Therefore, if diffuse-type GC can be diagnosed 
and distinguished in an early stage, it will be of great help 
to the choice of treatment schemes and the prognosis 
evaluation.

There are some limitations to our study. First, as it was a 
retrospective study involving only two centers, further pro-
spective research in more centers is needed to verify the radi-
omics nomograms. Second, SRCC is a special histological 
type with different clinical outcomes, depending on whether 

Fig. 6 Evaluation of the SRCC radiomics nomograms. ROC curves comparing SRCC radiomics nomogram with SRCC radiomics SVM model in 
the training (a), internal validation (b) and external validation (c) cohorts. Calibration curves of the SRCC radiomics nomogram in the training (d), 
internal validation (e) and external validation (f) cohorts. SRCC  signet ring cell carcinoma, ROC receiver operator characteristic, SVM support vector 
machine
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it is in an early or advanced stage [12, 18]. However, in this 
study, we did not perform analysis on this issue, only focused 
on the diagnosis of SRCC. Further radiomics research with 
subgroup analysis should be performed to reveal more bio-
logical characteristics of SRCC.

Conclusion
In summary, we established two CT-based radiomics nomo-
grams to identify the diffuse-type and SRCC GC, providing 
a noninvasive, efficient and preoperative diagnosis method. 
They may help guide preoperative clinical decision-making 
and benefit GC patients in the future.
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