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Abstract 

Epithelial–mesenchymal transition (EMT) is a dynamic and complex cellular process that is known to be hijacked by 
cancer cells to facilitate invasion, metastasis and therapeutic resistance. Several quantitative measures to assess the 
interplay between EMT and cancer progression are available, based on large scale genome and transcriptome data. 
However, these large scale multi-omics studies have repeatedly illustrated a lack of correlation in mRNA and protein 
abundances that may be influenced by diverse post-translational regulation. Hence, it is imperative to understand 
how changes in the EMT proteome are associated with the process of oncogenic transformation. To this effect, we 
developed a parallel reaction monitoring-based targeted proteomics method for quantifying abundances of EMT-
associated proteins across cancer cell lines. Our study revealed that quantitative measurement of EMT proteome 
which enabled a more accurate assessment than transcriptomics data and revealed specific discrepancies against a 
backdrop of generally strong concordance between proteomic and transcriptomic data. We further demonstrated 
that changes in our EMT proteome panel might play a role in tumor transformation across cancer types. In future, 
this EMT panel assay has the potential to be used for clinical samples to guide treatment choices and to congregate 
functional information for the development and advancing novel therapeutics.
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Introduction
Epithelial-mesenchymal transition (EMT) is a cellu-
lar process that allows transdifferentiation of cells with 
a polarized epithelial phenotype to gain mesenchymal 
characteristics. It is a highly coordinated process that 
is regulated at genetic, epigenetic and protein levels by 
different regulators [1–3]. Epithelial cells show inher-
ent plasticity that covers a range of changes in cellular 
behaviour and differentiation characteristics with epi-
thelial integrity at one end and a complete mesenchy-
mal transition on the other end [4]. Epithelial cells may 
simultaneously express varying levels of both epithelial 
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and mesenchymal characteristics depending on the tissue 
and signalling context, exhibiting a partial EMT pheno-
type and exist in an intermediate cell state [5, 6]. In our 
previous study, we employed an EMT scoring method 
to compute the generic EMT scores from transcriptome 
datasets. Our study revealed intermediate EMT pheno-
type in circulating tumor cells (CTCs) across cancers 
[7]. In our recent work, we have identified 5 categories 
of CTCs ranging from E (exclusively) to E > M, E = M, 
M > E and M (exclusively) suggesting dynamic changes in 
epithelial and mesenchymal composition supported by 
other published work in the field [8, 9]. Thus, it is of para-
mount importance to understand the EMT spectrum in 
cancers.

Several signalling cascades and downstream transcrip-
tional regulators such as SNAIL, TWIST and ZEB are 
known to be associated with EMT [10, 11]. Advanced 
technology and cell biology-based approaches have 
immensely improved our understanding of molecular 
mechanisms of EMT over the past decades [12]. Nev-
ertheless, such approaches are usually restricted in the 
number of targets that can be simultaneously monitored. 
High throughput technologies such as transcriptomics 
dominated the investigation of EMT models in numer-
ous studies [13–16]. However, mRNA levels estimation 
may not correlate with protein expression due to a range 
of post-translational regulations [17–19]. Thus, inves-
tigating protein expression changes that are associated 
with changes in cellular phenotype would provide us an 
exceptional understanding of mechanisms and function-
alities related to EMT.

Mass spectrometry and antibody arrays have been used 
to assess protein expression dynamics. Although mass 
spectrometry-based proteomics studies offered us to esti-
mate quantative differential expression of many proteins 
associated with EMT process under different biologi-
cal contexts [20, 21], these platforms are limited in their 
range and sensitivity as well as their ability to consistently 
detect the absolute protein quantification [22–24]. Thus, 
establishing a robust method to effectively monitor prot-
eomic changes associated with EMT is essential for fur-
ther understanding of the complex regulation involved in 
EMT.

In previous studies most of the approaches employed 
either the transcriptomics analysis or the mathematical 
modeling and were focused on classifying the dynamic 
state of the cellular phenotypes [25, 26]. However in 
this study we intended to identify the global changes 
at the protein levels using parallel reaction monitoring 
(PRM)-based targeted proteomics assay as a tool for the 
absolute quantification of the proteins involved in these 
dynamic changes. A mass spectrometry-based, tar-
geted proteomics strategy would be relatively fast and 

highly reproducible [27, 28]. This method allows quan-
tification down to attomole range in a straightforward 
way without any prior enrichment or fractionation 
approaches [27, 29]. We observed the relative expres-
sion of the established panel of EMT-related proteins 
that distinguishes between epithelial and mesenchymal 
cellular phenotypes. Most of the cell lines showed syn-
ergism between protein expression and gene expres-
sion. However, some cell lines exhibited distinguished 
protein expression compared to gene expression. Fur-
ther, our study also showed that this method can be 
applied to tumor tissues as well for the characterization 
of tumor phenotype.

Results
Expression of epithelial and mesenchymal genes 
across pan‑cancer cell lines
EMT is known to play an important role in oncogenic 
transformation. To examine EMT in the context of 
the oncogenic transformation of different organ types, 
we analyzed transcriptome data across different can-
cer types from Cancer Cell Line Encyclopedia (CCLE) 
using t-Distributed Stochastic Neighbor Embedding 
(t-SNE) method [30, 31]. We observed that cancer cell 
lines generally clustered primarily based on tissue of 
origin (Fig. 1a, left panel). Tight clusters were observed 
for renal, breast, fibroblast, skin, and hematopoietic cell 
lines, whereas lung cancer cell lines showed a scattered 
cluster. We curated a list of 37 genes from the litera-
ture belonging to multiple cellular processes associated 
with EMT phenotype (Additional file 1: Fig. S1). To test 
whether this panel of genes can distinguish epithelial 
and mesenchymal cell lines, we coloured the points on 
the t-SNE plot using the median z-score of epithelial 
and mesenchymal marker expression (Fig.  1a, middle, 
right panels). From the t-SNE analysis, we observed 
divergent organization of cells based on the expression 
of this curated set of epithelial and mesenchymal genes. 
Breast and gastric cancer cell line clusters showed high 
expression of epithelial markers, whereas cell lines from 
renal cancers and fibroblasts showed high expression of 
mesenchymal markers. Many cancers showed evidence 
of both. We also plotted t-SNE maps based on selected 
epithelial and mesenchymal gene expression values 
across these cell lines and coloured the points using 
median z-score. t-SNE analysis showed distinct cluster-
ing of cell lines based on the expression of the curated 
genes (Fig. 1b, c). These results indicate that the expres-
sion of EMT-related genes plays an essential role in 
governing the cellular plasticity across different cancer 
types. However, protein expression data of these EMT 
related genes across different cancer types are lacking.
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Development of PRM‑assay panel for EMT‑associated 
proteins
Compared to RNA, proteins are more closely related to 
cellular phenotype and hence it is important to quan-
tify protein levels of EMT-related markers. Currently, 
most of the studies focus on quantation of RNA expres-
sion and there is no high throughput protein level data 
to monitor changes related to EMT. The overarching 
objective of this study was to develop a multiplex PRM 
method to quantify EMT-associated proteins across a 
panel of cancer cell lines including lung, head and neck 
squamous cell carcinoma, urinary bladder, gall bladder, 
gastric and ovarian cancer. A panel of 37 well estab-
lished EMT-associated proteins were curated from 
previously published studies [25]. Selection of suit-
able peptides for PRM analysis is one of the most criti-
cal parameters for the development of a PRM-based 

proteomics assay. We followed the current standards 
in targeted proteomics for the selection of proteo-
typic peptides for PRM analysis [29, 32–35]. Following 
these selection criteria, we finalized 116 peptides cor-
responding to 37 proteins for the development of the 
PRM assay. The list is provided in Additional file  2: 
Table  S1. For these selected peptides corresponding 
heavy amino acid labelled peptides (C-terminal 15  N 
and 13C-labeled arginine or lysine residues) were syn-
thesized to generate a robust PRM method (Fig. 2).

The PRM assay was optimized for the detection of 
these stable isotope labelled (SIL) peptides in a complex 
mixture of the cell line peptides. Only peptides that 
were consistently detected were regarded as detectable 
targets and used for further analysis. Using the pep-
tide retention time (RT), we generated a time-sched-
uled PRM method that analyzes 31 target proteins 
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Fig. 1  Pan-cancer cell lines organized based on transcriptomics data from CCLE database. a t-SNE plots of cancer cell lines based on global 
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of mesenchymal genes (3). b t-SNE plots of cancer cell lines based on expression of epithelial genes. c t-SNE plots of cancer cell lines based on 
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(96 endogenous peptides + 96 SIL peptides), allowing 
10  min time windows for monitoring across cell lines. 
Performance of the assay was assessed by evaluating 
linearity, LOQ-, and LOD using a reverse calibration 
curve strategy. A set of 31 best peptides corresponding 
to 31 proteins were selected based on quality control 
criteria specified in the methods section, and consist-
ent detection across all the cell lines with 3 or more 
PRM transitions per peptide for quantitation during 
data analysis using skyline software (Additional file  1: 
Fig. S2). The limit of detection for all the peptides was 
found to be in the range of 100 attomoles to 1 femto-
moles. The lower limit of quantitation for most pep-
tides was found to be in the range of 0.2–20 femtomoles 
(Additional file 1: Fig. S3, Additional file 3: Table S2).

Comparison of transcriptomic and PRM‑based proteomics 
profile for EMT‑associated proteins
Data for all the 31 proteins were analyzed across 18 cell 
lines from 8 tumor types in technical triplicates using 
Skyline software. Some proteins were below the detect-
able limit of 100 attomole in many cell lines due to low 
stoichiometry; hence further analysis was restricted to a 
total of 20 proteins (Additional file 1: Fig. S3a, Additional 
file 4: Table S3). Epithelial cell lines such as Cal27, FaDu 

and MCF7 showed high expression of epithelial pro-
teins and low expression of mesenchymal proteins. Simi-
larly, we observed that mesenchymal cell lines such as 
MDAMB231, UMUC3 and J82 showed low expression of 
epithelial proteins and high expression of mesenchymal 
proteins.

Further, we carried out Principal Component Analy-
sis (PCA) using CCLE mRNA gene count data as well as 
PRM-based proteomic data for the EMT-related markers. 
PCA results showed consistent clustering of epithelial 
and mesenchymal cell lines in both the data sets (Fig. 3b). 
The epithelial and mesenchymal nature of these cell lines 
were inferred from the EMT score derived using tran-
scriptomic EMT signatures of ovarian, breast, bladder, 
lung, colorectal and gastric cancers and the two-sample 
Kolmogorov–Smirnov-based method by Tan et  al. [25]. 
Degree of EMT score ranges from − 1.0 to + 1.0 and cell 
lines with a positive EMT score exhibits a more mes-
enchymal phenotype, whereas a negative EMT score 
reflects a more epithelial phenotype. Proteomic analyses 
of EMT-related proteins also included three mesenchy-
mal gall bladder cancer cell lines (viz. G-415, NoZ, and 
OCUG1) for which transcriptomics data is not avail-
able in the CCLE database. We observed clustering of 
these gall bladder cancer cell lines along with other cells 
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showing mesenchymal phenotype in the proteomics data. 
This indicates that proteomics analysis can be useful in 
assigning the cellular phenotypes. However, certain outli-
ers such as lung cancer cell line A549, and bladder cancer 
cell lines SW780 and VMCUB1 were also observed in the 
proteomics data, indicating proteomic heterogeneity.

Discordances between protein and transcript profile of 
cancer cell lines and tumors have been reported in multi-
ple studies [36–38]. We compared the protein and mRNA 
expression of these cell lines using RPPA and transcrip-
tomics data from CCLE database. We observed a low 
correlation score for the 3 outlier cell lines viz. A549, 
VMCUB1 and SW780, compared to epithelial cell lines 
such as RT112 and MCF7 and mesenchymal cell lines 
such as UMUC3 and MDAMB231 (Additional file 1: Fig. 
S4). Thus, understanding these exceptions in the context 
of EMT may be of importance and PRM-based proteom-
ics assays can be a sensitive and versatile tool to assess 
the EMT proteome as this method permits an edge over 
the transcriptomics. In PRM-based proteomics assays 

we identify the absolute quantification of the proteins in 
each state (either epithelial or mesnchymal). However, 
the transcriptomics represent the relative changes of the 
expression of the gene in the cellular states.

Comparative assessment of EMT by transcriptome 
and proteome analysis
Multiple studies have reported the EMT signature across 
different cancer types using platforms such as genom-
ics and transcriptomics [39, 40]. A benchmark study by 
Tan et al. computed the EMT score across cell lines and 
tumor samples based on transcriptomics data available 
in CCLE and TCGA [25]. We compared our PRM-based 
proteomics data with transcriptome-based EMT scores 
available for the cell lines that are common between the 
two studies. We observed higher protein levels of epithe-
lial markers such as Keratin 8 and Keratin 18 in known 
epithelial cell lines such as MCF7, RT112 and AGS cor-
related with low EMT score (Fig.  4a, b). Similarly, we 
observed comparatively lower levels of these proteins in 
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known mesenchymal cell lines such as MDAMB231, J82 
and UMUC3 with higher EMT scores (Fig. 4a, b). On the 
contrary, we observed low expression of epithelial pro-
teins Keratin 8, Keratin 18 and Annexin IV in SW780 cell 
line with low EMT score, whereas mRNA expression of 
these proteins were high (Fig. 4a–c).

Further, for the most part, high expression of mesen-
chymal marker vimentin (VIM) was observed in cell lines 
with high EMT score (Mesenchymal phenotype) and low 
expression was observed in cell lines with low EMT score 
(Epithelial phenotype) at both protein and transcript 
levels, concordant with their epithelial or mesenchymal 
phenotype (Fig.  4d). However, VMCUB1 and SW780 
with low EMT scores showed a high amount of vimen-
tin (VIM) at the protein level. Similarly, we observed low 
vimentin protein levels in the A549 cell line, which has 
a high EMT score. However, we observed no such dis-
cordant expression of vimentin for these cell lines at the 
mRNA level. This outlier protein expression pattern in 
some cell lines (viz. A549, SW780, and VMCUB1) could 
be one of the features related to the exceptional nature of 

these cell lines, as shown in Fig. 3b. However, additional 
studies are necessary to fully understand the cellular 
mechanisms that govern such contrasting expression pat-
terns and their role in the cellular phenotype.

Expression of EMT related proteins in tumor tissue samples 
from CPTAC database
To further assess the EMT-related protein expression 
in clinical samples and understand how these proteins 
are associated with oncogenic transformation across 
different tumor types, we analyzed quantitative prot-
eomics data from the CPTAC repository [41]. Quanti-
tative proteomics data for 539 cases with tumor-normal 
paired samples across breast and colorectal carcinoma, 
ovarian cancer, clear cell renal cell carcinoma (ccRCC), 
lung adenocarcinoma and, uterine corpus endometrial 
carcinoma (UCEC) were analyzed by the t-SNE method. 
We observed that irrespective of their oncogenic trans-
formation, tumor samples were clustered based on 
their tissue of origin and retained their cellular and 
molecular identity (Fig.  5a, Left panel). These results 
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are in concordance with transcriptome-based data from 
the CCLE and proteome based data by Koplev et al. on 
cell lines which further reinforces the recapitulation of 
tumor characteristics by cell line models [42]. While 
ccRCC tumors showed a distinct lower expression of 
epithelial proteins (Fig.  5a-middle panel) and overex-
pression of mesenchymal proteins (Fig. 5a-right panel), 
no such specific pattern was observed for other cancer 
types, although we also observed a sub-cluster of colo-
rectal tumors with high epithelial and low mesenchy-
mal protein expression pattern. This is further evident 
from the scatter plot showing the average expression 
values of epithelial or mesenchymal proteins across 
tumor samples for different cancer types (Fig.  5b, c). 
Similar results were also observed for renal cancer cell 
lines based on average expression values of epithelial or 
mesenchymal genes (Fig.  5d, e). These results indicate 
that EMT governs the cellular and molecular states of 

tumors across cancer types, and that ccRCC may be 
exceptionally prone to EMT.

Discussion
EMT is a dynamic change in cellular architecture that 
leads to changes in cell migration and invasion. Its role 
has been well documented in developmental process and 
closely associated with tumor dissemination and metas-
tasis [43, 44]. Several genetic, epigenetic, and proteomic 
regulators are known to coordinate this highly complex 
process. Various studies have reported the gain and loss 
of cellular protein components related with EMT. For 
example loss of expression of epithelial marker E-cad-
herin is regulated by differential expression of transcrip-
tional repressors such as SNAI1/2, ZEB1/2,TWIST1/2 
etc. [2]. A comprehensive study using the transcriptom-
ics data by Tan et al. showed the interplay between EMT 
across cancer types [25]. They established a method to 
compute EMT score using published EMT signatures. 
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Similar effort to define and predict EMT phenotype 
based on scoring matrices using transcriptomics data 
was published by Guo et al. [45], and George et al. [46]. 
Another study by Mak et  al. derived pan-cancer EMT 
gene signature that encompasses core EMT mark-
ers functioning across different tumors and calculated 
EMT score for 11 available distinct tumor types data-
sets [47]. However, these approaches lack the assess-
ment of EMT at the protein level. In the present study, 
we aim to develop a method based on a targeted pro-
teomics approach to assess the expression of a panel of 
EMT-related markers across different cancer types. We 
employed parallel reaction monitoring (PRM) based tar-
geted proteomics strategy to quantify EMT markers. The 
established proteome panel and the targeted method in 
our study will help to monitor changes in EMT expres-
sion profile and characterization of tumor phenotype. 
PRM allows selective targeting of predefined precursor 
ions for fragmentation. Signal abundance of fragment 
ions indicates abundance of corresponding peptides in 
each sample. Proteotypic peptides from EMT markers 
were selectively targeted and monitored across samples. 
This strategy allowed quantification of EMT markers 
with high accuracy. To this effect, we curated a panel of 
37 proteins belonging to molecular classes such as tran-
scription factors, cytoskeletal proteins, and cell adhe-
sion molecules. Gene ontology-based classification of 
biological processes associated with these proteins dem-
onstrated that they are associated with EMT-related 
processes such as escape from programmed cell death, 
epithelial cell differentiation and cell migration etc. To 
the best of our knowledge, this is the first effort to define 
absolute quantification of the proteins involved in EMT 
event.

We have also analyzed pan-cancer transcriptomics data 
from 1037 cell lines in the CCLE database [30]. Organi-
zation of cells based on their transcriptome profile on 
t-SNE maps showed that the cell lines clustered largely 
according to their tissue of origin irrespective of the 
oncogenic transformation. Similar results were reported 
by Koplev et  al. at both transcript and proteome levels 
[42]. A false coloured t-SNE map of cell lines based on 
epithelial or mesenchymal gene expression demonstrated 
that cell lines showing high expression of epithelial genes 
show a low expression of mesenchymal genes and vice 
versa. Besides, these cell lines are also organized in two 
distinct clusters based on the expression of either epithe-
lial or mesenchymal genes alone. Koplev et al. have also 
demonstrated similar bimodal segregation of cell lines 
based on the expression of E-cadherin at both the pro-
tein and transcript level [42]. These results indicate that 
the expression of epithelial and mesenchymal genes play 

a deterministic role in defining cellular phenotype across 
cancer types, irrespective of the tissue of origin.

The advent of advanced high throughput proteomic 
techniques has made it possible to study cellular pro-
teome in context to cellular plasticity. Since then it has 
been repeatedly noted that transcriptome and proteome 
abundances do not correlate adequately to be considered 
as proxies for each other [36–38]. The discordance of 
the data at transcriptome or at proteome levels could be 
because of the post-translational regulations of cellular 
proteins. However, large-scale proteomic data sets akin 
to the CCLE transcriptome data are not available for the 
expression of EMT-related proteins, to enable the study 
of their association with cellular phenotype and corre-
sponding changes under different cellular contexts. Thus, 
effective methods to monitor changes in proteins related 
to EMT are needed to elucidate these cellular processes.

To this end, we have developed a PRM-based targeted 
proteomics method for the quantitative evaluation of sev-
eral proteins related to EMT. We observed a higher abun-
dance of epithelial phenotype-related proteins in known 
epithelial cell lines such as MCF7, Cal27 and FaDu along 
with a lower abundance of mesenchymal related pro-
teins. Similarly, we observe a lower abundance of epithe-
lial phenotype proteins in mesenchymal cell lines such 
as MDAMB231, J82 and UMUC3. These observations 
confirm that these cell lines generally exhibit a differ-
entiating pattern of expression of EMT related proteins 
based on their cellular phenotype. Further, we observe a 
similar PCA-based clustering of both epithelial and mes-
enchymal cell lines into 2 distinct groups related to their 
phenotype and EMT scores with either transcriptome or 
PRM-based targeted proteomics data. This indicates that 
the PRM-based targeted proteomics data is largely con-
cordant with the EMT scoring matrices that are based on 
transcriptomics.

Further, we observed clustering of gall bladder can-
cer cell lines (G415, NoZ, and OCUG1), which are not 
represented in the CCLE transcriptome database, with 
other mesenchymal cell lines. OCUG-1 and NOZ have 
been characterized as moderately invasive cell lines while 
G-415 has been characterized as highly invasive [48, 49]. 
In contrast, we observed clustering of the A549 lung 
adenocarcinoma cell line with epithelial cell lines in prot-
eomics data and mesenchymal cell lines in transcriptom-
ics data. Tan et al. has also assigned this cell line a score 
of 0.37 using their EMT scoring matrix indicating a mes-
enchymal phenotype. However, this cell line is known to 
be an epithelial cell line based on multiple reports of its 
non-invasive characteristics, along with the expression of 
epithelial markers such as E-cadherin [50, 51]. Our find-
ings may underpin the propensity of these cells for EMT 
induction heterogeneity and plasticity associated with 
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therapy resistance [52]. Further, we also observed cluster-
ing of SW780 and VMCUB1 cells, which had EMT scores 
of − 0.6 and − 0.23, respectively, with mesenchymal cell 
lines in the proteomics data. However, these cell lines 
clustered along with other epithelial cell lines based on 
transcriptomics data. Interestingly, SW780 and VMCUB1 
have shown higher migration capability and a moder-
ately invasive nature compared to RT112; an epithelial 
cell line [53]. Further, only VMCUB1 cell line has been 
reported to undergo EMT upon lentiviral transduction 
of HDAC5 or overexpression of lncRNA HOTAIR com-
pared to other epithelial urinary bladder cancer cell lines 
such as RT112 and 5637 [54, 55]. Indicators of EMT are 
also observed in certain bladder cancers in vivo, includ-
ing cancers progressing from basal-squamous molecular 
subtype exemplified by cell lines such as VMCUB1 [56]. 
Further, we observed a low correlation score between 
mRNA and protein expression in A549, VMCUB1 and 
SW780 cell lines compared to both epithelial (RT112 and 
MCF7) and mesenchymal (UMUC3 and MDAMB231) 
cell lines. Our observation thus reflects that certain sub-
tle changes related to EMT might be more visible at the 
protein level and may be useful in complementing the 
insights available from other omics data.

Cytokeratins are structural proteins that enable cellu-
lar integrity. Downregulation of the KRT8/KRT18 keratin 
pair is known to induce an increase in cell motility and 
invasion [57]. We observed higher protein abundance of 
keratins 8 and 18 in epithelial cell lines RT112 and MCF7 
compared to mesenchymal cell lines such as UMUC3 and 
MDAMB231. Further, we observed separate clustering 
of mesenchymal and epithelial cell lines for these kerat-
ins at the protein level but not at the mRNA level. We 
also observed discordance between proteins and mRNA 
abundance for SW780 and VMCUB1 cell lines relative 
to other epithelial cell lines such as RT112 and MCF7, 
where the protein abundance of these epithelial markers 
was more in line with the cellular phenotype of moderate 
invasiveness and higher migration capabilities. Similarly, 
we observed SW780 and VMCUB1 expressing higher 
abundance of the mesenchymal protein vimentin closer 
to the range shown by mesenchymal cell lines UMUC3 
and J82. Interestingly, the mRNA abundance of vimentin 
in these cell lines is higher than other epithelial cell lines 
but lower than the mesenchymal cell lines. Our obser-
vation suggests the significance of quantitating protein 
abundances to predict the cellular plasticity with respect 
to the epithelial/mesenchymal/hybrid states.

To further explore how EMT-related proteins are 
expressed in clinical samples across multiple cancer 
types we analyzed quantitative proteomics data from 
the CPTAC database [41]. Based on the proteome pro-
file, tumor samples from different cancers organized into 

tight clusters according to their tissue of origin, indicating 
that akin to cell line samples, tumor samples also retain 
their molecular and cellular identity irrespective of onco-
genic transformation. Further, we observed that tumor 
samples were organized in distinct clusters based on 
the expression of epithelial and mesenchymal proteins. 
With respect to tissue of origin we observed that clear 
cell renal cell carcinoma (ccRCC) samples clustered in 
region with low expression of epithelial proteins and high 
expression of mesenchymal proteins based on the expres-
sion of epithelial and mesenchymal proteins respectively. 
Transcriptomics data from CCLE also showed that renal 
cancer cells show high mesenchymal gene expression and 
low epithelial gene expression. These results indicated a 
mesenchymal phenotype for renal carcinoma samples. 
Similarly, we observed that colorectal cancer tumor sam-
ples primarily clustered in the regions of high epithelial 
protein expression and low mesenchymal protein expres-
sion indicating an epithelial feature of these samples. Tan 
et  al. has also reported a similar finding for colorectal 
cancer in terms of both tumor tissue and cell line sam-
ples, based on transcriptomics data. They have further 
hypothesized that these features of certain cancer types 
exhibiting epithelial or mesenchymal characteristics may 
be associated with embryonic ectodermal or mesodermal 
origins of these organs [25]. Thus, our analysis empha-
sizes the importance of proteomic analysis compared to 
the transcriptome-only approaches. Overall, we dem-
onstrated that the expression of EMT-related genes is 
associated with the oncogenic transformation of cancer 
cells in both cell line models as well as tumor samples. 
We further showed that protein abundance data can be 
leveraged in addition to gene expression data to elucidate 
complex phenomena underlying EMT as well as its cor-
relation with cancer progression and chemotherapeutic 
resistance. We believe the targeted proteomics strategy 
employed in our study can be used as a general-purpose 
tool for accurate estimation of EMT, and could be used to 
more accurately determine the impact of EMT effectors 
or drugs and assess changes in cellular phenotype.

Materials and methods
Bioinformatics and statistical analysis
The CCLE mRNA data and cell line annotations of 1037 
cancer cell lines were retrieved from the CCLE portal 
at: https://​porta​ls.​broad​insti​tute.​org/​ccle. To visualize 
the high-dimensional transcriptomics data we used the 
t-distributed stochastic neighbor embedding (t-SNE) 
algorithm implemented in the Rtsne package in R v.4.0.1 
(http://​www.R-​proje​ct.​org/) with perplexity value of 
30 and at 1000 iterations, and all other arguments at 
their default values. Out of 18 cell lines that are used in 
the current study mRNA data for OCUG1, NoZ, G415 

https://portals.broadinstitute.org/ccle
http://www.R-project.org/
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were not available in CCLE. For further analysis mRNA 
expression values of 20 selected proteins for 15 cell lines 
were used. Principal Component Analysis (PCA) was 
performed using the R-based “prcomp” function.

CCLE has profiled Reverse Phase Protein Array (RPPA) 
data for 159 proteins in 889 cell lines. Out of 18 cancer 
cell lines that are included in our study, 7 cell lines have 
both available RPPA and transcriptomic data. 59 proteins 
were profiled in common between CCLE RPPA data and 
CCLE transcriptomic data. Pearson’s correlation coef-
ficient (r) was used to evaluate the relationship between 
mRNA expression and protein expression in cancer cell 
lines.

To analyze the expression of EMT related protein in 
cancer tissue samples we used publicly available quanti-
tative proteomics data from Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) repository (https://​
cptac-​data-​portal.​georg​etown.​edu/​cptac​Public/) [40]. 
Proteomics data of six cancer types including breast can-
cer, clear cell renal cell carcinoma (CCRCC), colon can-
cer, lung adenocarcinoma (LUAD), ovarian cancer, and 
uterine corpus endometrial carcinoma (UCEC) were 
downloaded from the CPTAC data portal. Samples with 
matched tumor and normal data were taken for further 
analysis whereas the unmatched samples were filtered 
out. Within each proteomics dataset we applied z-score 
normalization of logged expression values to all the sam-
ples. To visualize the proteomics data we again used the 
t-SNE algorithm with the same parameters as mentioned 
above. Out of 20 selected proteins, 15 proteins were 
quantified in all six CPTAC proteomics data. For plotting 
scatter plot, we averaged the expression of selected epi-
thelial and mesenchymal related proteins separately for 
individual samples in each cancer type.

Cell culture conditions
Cell lines used in the current study were grown as per 
vendor recommendations. Briefly the cells were cul-
tured in their respective media as detailed in Additional 
file  1: Method S1 and 1% penicillin/streptomycin mix-
ture at 37  °C in a humidified 5% CO2 atmosphere. Cells 
were harvested at 70% confluency. Gall bladder cancer 
cell lines G-415 was sourced from RIKEN Bio Resource 
Center, Ibaraki, Japan and OCUG-1 and NOZ from 
Health Science Research Resources Bank, Osaka, Japan. 
Bladder cancer cell lines were received from Prof. Jean 
Paul Thiery (Department of Biochemistry, National Uni-
versity of Singapore, Singapore).

Trypsin digestion and Sep‑Pak C18 column‑based cleanup
All the cell lines were grown in recommended media, and 
prior to harvesting washed with ice-cold phosphate-buff-
ered saline thrice to remove media residuals. Cells were 

then harvested and lysed in urea lysis buffer (20  mM 
HEPES pH 8.0, 9 M urea, 1 mM sodium orthovanadate, 
2.5  mM sodium pyrophosphate, 1  mM phosphoglycer-
ophosphate). Protein concentration was measured using 
the bicinchoninic acid assay method as per the manufac-
turer’s protocol (Thermo Scientific, Bremen, Germany). 
500  µg equivalent of protein from each sample were 
reduced using dithiothreitol (DTT, 5  mM) at 60  °C for 
20 min and alkylated with iodoacetamide (IAA, 20 mM) 
for 10  min at room temperature. Protein was precipi-
tated overnight at −  80  °C using ice-cold acetone. The 
samples were centrifuged at 12,000 rpm for 15 min; the 
acetone was removed and the pellet air-dried and then 
dissolved in 4 M urea. Proteins were then digested using 
lysyl endopeptidase, Mass Spectrometry Grade (catalog 
no. 125–05061; Wako, Richmond, VA) at 1:100 enzyme 
to protein ratio for 4 h at 37 °C. After 4 h, the urea con-
centration was reduced from 4 to 2 M using 50 mM Tri-
ethylammonium bicarbonate (TEABC). The samples 
were then digested using tosyl phenylalanyl chloromethyl 
ketone (TPCK)-treated trypsin (Worthington, NJ) at a 
1:20 enzyme to protein ratio for 16 h at 37 °C. The sam-
ples were cleaned using Sep-Pak Classic C18 columns 
(catalog no. WAT051910; Waters, Milford, MA) and then 
completely dried before LC–MS/MS analysis.

LC–MS/MS method
The peptides were analyzed on a QExactive plus mass 
spectrometer interfaced with RS-nanoLC 3000 nano-
flow liquid chromatography system (Thermo Scientific, 
Bremen, Germany). 5  µg equivalent peptide digests 
were reconstituted in 0.1% formic acid and loaded onto 
a trap column (Thermo Scientific™ Acclaim™ PepMap™ 
100 C18, 75  µm × 2  cm, 3  µm particle size, 100  Å pore 
size) at a flow rate of 5  µl/min and resolved on analyti-
cal column (Thermo Scientific™ EASY-Spray™ C18 2 µm 
particle size, 100 Å pore size, 75µmx50cm) at a flow rate 
of 300  nl/min. The peptides were resolved using a step 
gradient of 5–25% solvent B (0.1% formic acid in 85% 
acetonitrile) from 8 to 60 min and 25–40% solvent B for 
60–85 min. The mass spectrometer was operated in data-
independent acquisition PRM mode. A survey full scan 
MS (from m/z 350–1700) was acquired in the Orbit-
rap at a resolution of 70,000 at 200 m/z. A targeted list 
of precursor ions with charge state ≥ 2 was isolated and 
fragmented using HCD fragmentation with 32% normal-
ized collision energy and detected at a mass resolution of 
30,000 at 200 m/z. The data were subsequently analyzed 
using Skyline [58].

Optimization of PRM assay
The PRM assay for a selected panel of 37 epithelial and 
mesenchymal proteins as represented in Additional file 1: 

https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
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Fig. S1 was developed by selecting proteotypic peptides 
based on standard criteria for targeted proteomics [29, 
33–35]. A list of 116 proteotypic peptides selected for 
analysis is represented in Additional file 2: Table S1. For 
the development of assay, 100 femtomol of each sta-
ble isotope-labelled peptide and its synthetic light ver-
sion was subjected to data-dependent MS/MS analysis. 
From this analysis consistently detected peptides were 
considered as detectable targets. A time scheduled PRM 
method for 31 target proteins with 96 peptides was 
developed. The lower limit of detection, the lower limit of 
quantitation, and the linear range were assessed using a 
reverse calibration curve strategy. We spiked 500 femto-
mol of synthetic light version of the selected target pep-
tides (for normalization) and varied the amount of heavy 
isotope-labelled peptide in 1 µg of pooled cell lysate (100 
attomol to 1 picomol). A concentration curve was gen-
erated by taking the ratio of SIL/light peptides and the 
lower limit of detection (LOD) and quantitation (LOQ) 
was estimated using the Skyline software. Linear regres-
sion analysis in log10 space was performed with a maxi-
mum LOQ bias of 10% and LOQ CV of 20%. As lower 
limit of quantitation for few peptides was 20 femtomol, 
for PRM analysis 25 femtomol equivalent of heavy pep-
tide mix was spiked per 5 µg of cell line protein digest.

Data processing
All PRM-MS raw files were processed in Skyline to 
generate XIC and perform peak integration [58]. We 
assessed the PRM data for (a) peak symmetry (b) endog-
enous peptide and SIL peptide retention time alignment 
(c) retention time alignment across transitions for pep-
tides [59]. Although we detected multiple peptides for 
each protein, based on quality control criteria and con-
sistent detection across cell lines, 31 best peptides cor-
responding to 31 proteins (Additional file 1: Fig. S2 and 
3, Additional file  3: Table  S2) were selected for quanti-
tation. The summed peak area of at least 3 most intense 
fragment ions was used to quantify the endogenous and 
heavy peptides, respectively. To determine the relative 
abundance of the target peptides, the summed peak area 
of endogenous peptides was first normalized to their cor-
responding heavy standards. Thus, the relative expression 
level of each peptide in the sample was calculated as the 
ratio of the signal intensities between the light peptide 
(endogenous) and heavy peptide (L/H ratio). A set of 20 
proteins with at least 100 attomole protein concentration 
were further filtered.
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