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Abstract 

Periodontitis is a chronic inflammatory disease that leads to the destruction of both soft and hard periodontal tissues. 
Complete periodontal regeneration in clinics using the currently available treatment approaches is still a challenge. 
Mesenchymal stem cells (MSCs) have shown promising potential to regenerate periodontal tissue in various preclini-
cal and clinical studies. The poor survival rate of MSCs during in vivo transplantation and host immunogenic reaction 
towards MSCs are the main drawbacks of direct use of MSCs in periodontal tissue regeneration. Autologous MSCs 
have limited sources and possess patient morbidity during harvesting. Direct use of allogenic MSCs could induce host 
immune reaction. Therefore, the MSC-based indirect treatment approach could be beneficial for periodontal regen-
eration in clinics. MSC culture conditioned medium (CM) contains secretomes that had shown immunomodulatory 
and tissue regenerative potential in pre-clinical and clinical studies. MSC-CM contains a cocktail of growth factors, 
cytokines, chemokines, enzymes, and exosomes, extracellular vesicles, etc. MSC-CM-based indirect treatment has the 
potential to eliminate the drawbacks of direct use of MSCs for periodontal tissue regeneration. MSC-CM holds the 
tremendous potential of bench-to-bed translation in periodontal regeneration applications. This review focuses on 
the accumulating evidence indicating the therapeutic potential of the MSC-CM in periodontal regeneration-related 
pre-clinical and clinical studies. Recent advances on MSC-CM-based periodontal regeneration, existing challenges, 
and prospects are well summarized as guidance to improve the effectiveness of MSC-CM on periodontal regeneration 
in clinics.
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Background
Periodontitis is a complicated chronic inflammatory 
oral disease, which is globally prevalent and has direct 
involvement of vast oral microbiome, oral tissues and 
immune cells [1, 2]. Periodontitis could cause irreversible 

destruction of periodontal tissues, including periodontal 
ligament (PDL), cementum, and alveolar bone [3]. Dis-
rupted microbial homeostasis in oral cavity may increase 
the risk of occurrence of various systemic diseases, 
including colitis, myocardial infraction, and Alzheimer’s 
diseases [4–9]. Therefore, the effective treatment of 
periodontitis and periodontal regeneration is crucial for 
human health.

Periodontal tissue regeneration involves the regenera-
tion of the gingiva, alveolar bone, PDL and cementum. 
Among them, the regeneration and natural alignment of 
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PDL is so far one of the most challenging tasks in the field 
of tissue engineering [10]. To regenerate lost periodontal 
tissue, numerous procedures and products have been 
developed such as guided tissue regeneration (GTR), 
application of platelet-rich plasma, natural graft tissues 
and synthetic biomaterials [11–16]. However, most of 
the current or emerging paradigms have either proven 
to have limited and variable outcomes or have not been 
developed for clinical use [17].

Stem cell-based periodontal regeneration is currently 
at the center of attention [18]. Different cell types such as 
bone marrow MSCs (BMSCs), periodontal ligament stem 
cells (PDLSCs), dental pulp stem cells (DPSC) are key 
stem cells used in stem cell-based periodontal regenera-
tion [19]. However, stem cell-based therapies have some 
serious limitations, including dedifferentiation during 
MSCs amplification, reduction of regeneration efficiency 
after administration, inconsistent quality control in 
large-scale cell production, and the invasive procedure of 
MSCs isolation [20–24]. In addition, it has been reported 
that in vivo monitoring of transplanted MSCs in an acute 
myocardial infarction tracked only 4.4% of MSCs in the 
transplanted site after 1 week, which indicated the poor 
survival rate of transplanted MSCs. Interestingly, the 
MSCs grafting promotes the functional improvement of 
the infarcted heart suggesting the role of MSCs released 
trophic factors on native cardiac and vascular cells’ func-
tion [25]. This suggests the role of stem cell-released 
signaling molecules and factors on tissue regeneration.

Shreds of evidence suggest that MSCs enhance 
immune responses during early-stage inflammation 
through the paracrine and autocrine manners, and sub-
sequent tissue regeneration by producing a spectrum 
of protective bioactive factors [26, 27]. The factors are 
broadly defined as secretome or conditioned medium 
(CM), and usually classified as cytokines, chemokines, 
cell adhesion molecules, lipid mediators, interleukins, 
growth factors, hormones, exosomes, microvesicles, etc. 
[28]. The CM from stem cells can play a major role in 
tissue repair and regeneration [29]. As a cell-free tech-
nique, MSC-CM transplantation is more convenient and 
safer to apply and has greater potential for clinical trans-
lation than direct MSCs transplantation [30, 31]. MSC-
CM provides several key advantages over cell-based 
applications: (a) MSC-CM employs the administration 
of proteins instead of whole cells that avoids the risk of 
host immune reactions; (b) MSC-CM can be stored for a 
relatively long period without any toxic cryopreservatives 
such as DMSO; (c) MSC-CM is cost-effective; (d) Evalu-
ation of CM for safety and efficacy is much simpler com-
pared to conventional pharmaceutical agents or MSCs 
[32]. Moreover, MSC-CM has immunomodulatory and 
tissue regenerative potential [33, 34]. Therefore, the use 

of MSC-CM could be an effective approach to regener-
ate periodontal tissue in the inflammatory environment 
of periodontitis. The therapeutic use of MSC-CM in peri-
odontal regeneration is still a new frontier. The present 
review discusses the current understanding of the use of 
CM for periodontal tissues regeneration in preclinical 
and clinical studies, existing challenges, and prospects.

Periodontal tissue regeneration
Periodontitis results from oral microbial dysbiosis, 
which disrupts the ecologically balanced biofilm asso-
ciated with periodontal tissue homeostasis and finally 
causes destruction of the tooth-attachment apparatus, 
including gingiva, alveolar bone, root cementum, and 
PDL [6]. The dysbiotic microbes induce host immune 
response recruiting mucosal epithelial cells and gingi-
val fibroblasts, and immune cells such as mononuclear 
phagocytes (MNPs), antigen-presenting cells (APCs), 
and specific T cell subsets (type 17 helper T cells, Th17 
cells) in the periodontal region. The interaction between 
dysbiotic microbes and the host cells leads to the release 
of inflammatory cytokines [35]. The main components 
of these cytokines are interleukin-1 (IL-1) [36], IL-6 
[37], and tumor necrosis factor (TNF) family [38]. These 
are key pro-inflammatory cytokines that promote tis-
sue destruction. Secondly, cytokines secreted by MNPs, 
APCs, and local lymphocytes lead to the differentiation 
of a specific subset of inflammatory lymphocytes. The 
stimulation of IL-1 and IL-6 family cytokines induces 
osteoclast formation and activity in the bony niche [35].

The true regeneration of periodontium includes alveo-
lar bone, PDL, and cementum, which is characterized by 
newly formed alveolar bone and cementum connected by 
regenerated periodontal ligament fibers aligned in certain 
direction [10]. It has been reported that the regeneration 
of periodontium may occur simultaneously, although 
the osteogenic process may be slightly prior to the dif-
ferentiation of cementum and fibers [39]. Therefore, 
the structural and interactive complexity of periodontal 
tissue is the key challenge for effective and functional 
regeneration.

The purpose of periodontal therapy is to control the 
infection and reconstruct the structure and function 
of periodontal tissues. The effectiveness of traditional 
treatments in periodontal tissue regeneration is still 
limited and unpredictable [10]. Tissue engineering is a 
new cutting-edge technology which involves stem cells, 
cytokines, and scaffolds. In recent years, the application 
of tissue engineering in periodontal tissue regeneration is 
increasing [7, 16, 19], the regeneration of alveolar bone 
[40–43], PDL [44–46], cementum [47, 48] and even the 
entire bone-PDL-cementum complex [39] has gained 
success to some extent.
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Sources of MSCs
Stem cells are at the forefront of new therapies because 
of their ability to self-renew and differentiate towards 
various cell lineages [49]. Stem cells are mainly composed 
of embryonic stem cells and somatic stem cells. Somatic 
stem cells include both hematopoietic stem cells (HSCs) 
and MSCs [50]. Mesenchymal and Tissue Stem Cell 
Committee of the International Society for Cellular Ther-
apy have proposed the minimal criteria to define human 
MSCs. [1] MSCs are plastic-adherent when maintained 
in standard culture conditions. [2] MSCs express CD105, 
CD73 and CD90, and lack expression of CD45, CD34, 
CD14 or CD11b, CD79a or CD19 and HLA-DR surface 
molecules. [3] MSCs have osteogenic, adipogenic, and 
chondrogenic plasticity in  vitro [51, 52]. A variety of 
studies have demonstrated that MSCs have great poten-
tial in bone and dental tissue regeneration. The most 
commonly used stem cells are BMSCs [53], periosteal 
stem cells (PSCs) [54], adipose-derived mesenchymal 
stem cells (ASCs) [55], and dental tissue-derived stem 
cells (DSCs) [56], which include PDLSCs [57], dental pulp 
stem cells (DPSCs) [58], gingival fibroblastic stem cells 
(GFSCs) [59], dental follicle stem cells (DFSCs) [60], stem 
cells from human exfoliated deciduous teeth (SHEDs) 
[61], and stem cells from the apical papilla (SCAP) [62] 
(Fig.  1). In addition, the tissues harvested during dental 
implant are also an important source of DSCs [63, 64].

MSCs from different sources display tissue reparative 
potential [65, 66]. MSCs have garnered significant inter-
est in tissue engineering due to their immunomodula-
tory capacity [67]. MSCs express low-level MHC class 
II molecules and no co-stimulatory molecules such as 
CD80 and CD86 required for effector T cell induction to 
ensure allogeneic application [68]. The research related to 
the application of MSCs in bone and tooth regeneration 
is currently a hot topic in the field of tissue engineering 
[63, 69].

For exogenous stem cells therapies, various tech-
niques have been developed to achieve periodontal 
tooth-supportive tissue regeneration. Two review arti-
cles by Park CH et al. and Xu et al. had well summarized 
recent advances on exogenous stem cell-based therapies 
for periodontal tissue regeneration [19, 70]. However, 
exogenous stem therapy requires a large number of cells 
and high technical expertise, which increases the cost 
of treatment. In addition, there are some risk factors in 
the use of stem cell therapy, such as immune reaction, 
disease transmission, stem cells survival, cancer risk, 
etc. More detail on stem cell-treatment-associated risk 
factors could be found in a review article by Herberts 
et al. [71]. Nevertheless, the efficacy of stem cell therapy 
is not always fulfilled according to the microenviron-
ment. The efficacy of transplanted exogenous stem cells 

is compromised by diseased microenvironment of the 
donors and the recipients (Fig.  2). On the other hand, 
the self-renewal and differentiation ability of endogenous 
stem cells are reduced in the diseased microenviron-
ment that leads to compromised tissue regeneration [63, 
72, 73]. Therefore, use of stem cell-CM could be a better 
alternative to direct use stem cells for periodontal regen-
eration that gives similar results to stem cells but elimi-
nate the risks associated with the direct use of stem cells.

Conditioned medium from MSCs (MSC‑CM) 
as cell‑free therapeutic strategy
The function of MSCs appears not to be mediated 
through engraftment in the injured tissues but a ‘hit and 
run’ mechanism, which indicated that MSCs mainly act 
through the bio-active factors [25, 74]. The MSC-CM is 
a cocktail mixture of several hundred to thousands of dif-
ferent proteins, cytokines, growth factors, and enzymes. 
MSC-CM also contains extracellular vesicles (EVs) as a 
cargo of various proteins, coding and non-coding RNA, 
small RNAs, autophagosomes, mitophagosomes. EVs 
could be subdivided into apoptotic bodies, microparti-
cles and exosomes [28]. Cytokine antibody array analysis 
revealed 201 unique gene products in human embryonic 
stem cell-derived MSC-CM (hESC-MSC-CM) (Fig.  3). 
These growth factors significantly drive the biological 
processes of metabolism, defense response, and tissue 
regeneration [75]. Shreds of literature had reported the 
concentration of different cytokines and growth factors 
in different MSC-derived CM. Some researchers have 
even proposed the possible role of certain growth fac-
tors or cytokines present in MSC-CM in tissue regenera-
tion [24, 28, 75]. However, it is very difficult to claim the 
role of only a few growth factors or cytokines present in 
MSC-CM on tissue regeneration. All these cellular and 
biological products might play a role to give the cumu-
lative results of tissue regeneration. Compared to cell-
based therapies, CM may provide several advantages: (1) 
CM uses proteins rather than the whole cells to promote 
regeneration; (2) CM could be stored for a long time 
without using any toxic reagent such as DMSO; (3) The 
preparation of CM is more economical and CM can be 
mass produced; (4) The safety and efficacy evaluation of 
CM will be simpler, similar to traditional pharmaceutical 
preparations [28, 76].

CM from different MSCs for periodontal tissue 
regeneration
CM from different sources of MSCs has been identi-
fied to have beneficial effects on the recipient, such as 
anti-inflammatory, anti-scarring, and immunomodu-
latory [77]. In recent years, MSC-CM has been widely 
used in the field of tissue regeneration [78–80], and its 
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application in periodontal tissue regeneration is also 
gradually increasing [81, 82]. Osteogenesis, angiogene-
sis, cementogenesis, periodontal ligament regeneration 
and inflammation alleviation are key events to address 
during periodontal tissue engineering. Reports from 

literature had unraveled the various biological activities 
of MSC-CM, including, osteoinductive, angioinductive, 
chemotactic, immunomodulatory, and cell growth and 
differentiation (Fig.  4). These entire biological activi-
ties of MSC-CM could facilitate the periodontal tissue 
regeneration.

Fig. 1  Sources of mesenchymal stem cells that are commonly used for tissue regeneration applications
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MSC‑CM‑based periodontal tissue regeneration
MSC-CM could promote the regeneration of periodon-
tal tissues. It has been reported that after transplanta-
tion of MSC-CM for 4  weeks, periodontal ligament 
like structures were seen between regenerated cemen-
tum-like structure and bone [82]. PDLSC-CM contains 
various growth factors, cytokines, extracellular matrix 
proteins, and angiogenic factors. Study has shown that 
PDLSC-CM promoted periodontal regeneration in a 
concentration-dependent manner [83]. 4  weeks after 
CM transplantation, histological images showed higher 
bone levels and newly formed periodontal tissues were 
observed in PDLSC-moderate and PDLSC-high groups 
compared with other groups. Collagen bundles, which 
bridged tooth root and alveolar bone, were evident in 
periodontal space of all sections. Periodontal ligament 
and gingiva are both important sources of stem cells. 
Gingiva is more accessible than periodontal ligament. 
PDLSC-CM and GMSC-CM had demonstrated a sig-
nificant effect on periodontal regeneration by alleviat-
ing TNF-α and IL-1β expression and inducing BSP-II 
and Runx2 expression. Moreover, IL-10 expression was 
significantly higher in the GMSC-CM group than in the 
PDLSC-CM group and the control groups [84]. PDLSCs 
and GMSCs co‐cultured with APTG‐CM could form 
cementum and PDL‐like structures [85]. The exosomes of 
ASCs has been reported to be used as adjunctive therapy 

to nonsurgical periodontal treatment, and organized pro-
liferating periodontal ligament tissue could be seen in 
interdental periodontal ligament space [86]. It has been 
reported that CM from osteogenically induced human 
maxilla BMSCs for 15  days promoted osteogenesis of 
hPDLSCs, and produced cementum-like mineralized and 
PDL-like collagen fibers [87].

Apical tooth germ cell-CM (APTG-CM) had been 
reported to promote cementogenic differentiation of 
PDLSCs [48]. Another study has shown that dental fol-
licle cell-CM could induce cementogenic differentiation 
of rat ASCs, in which Wnt/β-catenin signaling path-
way played a key role [88]. Odontoblast-CM has been 
reported to promote cementogenesis, which indicated 
the secreted products of odontoblasts could induce 
cementoblast differentiation [89]. Endogenous factors 
secreted by ASCs promote cementogenic differentiation 
of hPDLSCs [90]. MSC-CM had shown robust regen-
eration potential of alveolar bone and cementum in dog 
[91], indicating the possible application of MSC-CM on 
cementum regeneration.

Periodontal tissue regenerative potential of MSC-
CM is mainly mediated by the cooperative effects of 
the cocktail of cytokines, growth factors, and enzymes 
such as insulin-like growth factor-1 (IGF-1), vascular 
endothelial growth factor (VEGF), transforming growth 
factor-β1 (TGF-β1) [92, 93], etc. Recent advances in 

Fig. 2  Microenvironment affects the stem cell-based tissue regeneration. The diseased microenvironment impairs functions of endogenous and 
exogenous stem cells leading to declined self-renewal ability and disturbed differentiation potential [63] Reprinted with permission. Copyright 
(2019), Springer Nature
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MSC-CM-derived EVs including exosome-based perio-
dontal tissue regeneration are well-reviewed in literature 
[94, 95]. Sakaguchi et  al. prepared the cytokine cocktail 
(CC) by mixing insulin-like growth factor-1 (IGF-1), vas-
cular endothelial growth factor-A (VEGF-A) and trans-
forming growth factor-β1 (TGF-β1) to mimic MSC-CM 
secretomes. After 8  weeks, the regenerative periodontal 
tissues showed greater osteogenesis and cementogen-
esis by CC than enamel matrix derivative (EMD) [81]. 
IGFBP6 present in ASCs-CM had been reported to pro-
mote periodontal regeneration [90].

The possible mechanism for MSC‑CM‑based periodontal 
tissue regeneration
MSC‑CM‑based angiogenesis
Studies have shown that the process of bone formation 
and tooth regeneration is coupled to angiogenesis [96, 

97]. Osteogenesis-angiogenesis coupling are crucial for 
bone regeneration [98, 99]. Type H vessels are specific 
types of blood vessels that promote osteogenesis-angio-
genesis coupling and bone regeneration [100]. MSC-CM 
is effective in the early phase of bone regeneration and 
angiogenesis in rabbit maxillary synovial floor elevation 
[101]. This study suggests that early vascularization facili-
tates the proliferation and migration of osteoprogenitor 
cells. MSC-CM increases angiogenesis via promoting 
migration and proliferation of endothelial cells [102]. 
VEGF [103] and FGF-2[104] in MSC-CM are proposed 
to be the main signaling factors that induce bone regen-
eration by promoting angiogenesis. However, the ability 
to promote angiogenesis could be relative to the type of 
stem cells. The proangiogenic potential of BMSC-CM is 
higher than DPSC-CM or even BMSC-derived EVs [97]. 
hBMSC-CM had been reported to promote matrigel tube 

Fig. 3  Unique gene products of MSC-CM identified by LC–MS/MS and antibody array [75] Reprinted with permission. Copyright (2007), American 
Society for Biochemistry and Molecular Biology
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formation and migration of human-derived lymphatic 
endothelial cells (HDLECs) [105]. Abundant numbers of 
literature had reported the angiogenic potential of MSC-
CM [103, 106, 107]. The role of MSC-CM on type H ves-
sel formation during bone regeneration has not been 
investigated yet. Future studies focusing on the role of 
MSC-CM in type H vessel formation are strongly recom-
mended to further elucidate the mechanism of MSC-CM 
mediated osteogenesis-angiogenesis coupling and peri-
odontal bone regeneration.

MSC‑CM‑based immunomodulation
Immune cells, including T cells, B cells, macrophages, 
and neutrophils play a vital role in the pathophysiology 
of periodontitis. Regulation of immune cells’ function 
to obtain the favorable immunomodulatory conditions 
for periodontal tissue regeneration is a challenging 
task. The immunomodulatory potential of MSC-CM 
can be utilized for periodontal tissue regeneration in 
clinics. MSC-CM had been reported to treat colitis by 
upregulating TGF-β, IL-10 and percentage of Treg cells, 
and downregulating IL-17 [108]. MSC-CM inhibits M0 
macrophage apoptosis and induces M1 macrophage 
apoptosis. However, MSC-CM had no significant 
effect on macrophage proliferation and the expres-
sion of TNF-α and IL-10 [109]. M2 macrophages had 
anti-inflammatory properties that induce bone regen-
eration via the release of IL4, IL-10, and TGF- β). MSC-
CM induces macrophage M2 polarization via NF-κB 
and STAT3 pathways [110]. Similarly, PDLSC-CM had 

shown M2 macrophage polarization potential by down-
regulating TNF-α and upregulating IL-10, Arg-1, and 
CD163 [111].

MSC-CM had been reported to induce neutrophil 
apoptosis in inflammatory conditions [112]. Human 
ASC-CM had shown potential to suppress inflammatory 
bone loss in the LPS-induced murine model [113]. MSC-
CM increases the percentage of regulatory T (Treg) cells. 
Increased number of Treg cells alleviate periodontitis 
and induce periodontal bone regeneration [114]. MSCs 
cultured in hypoxic condition or in presence of anti-
inflammatory agents such as IL-4 or IL-10 has shown 
better immunomodulatory properties [115, 116]. There-
fore, MSC-CM obtained from optimized in vitro culture 
of MSC with improved immunomodulatory potential 
could be beneficial for periodontal tissue regeneration.

MSC‑CM‑based chemotaxis
The cytokines and growth factors in CM also play a key 
role in the chemotaxis of endogenous precursor cells. 
Chemotaxis of osteogenic and angiogenic precursor 
cells is essential for effective periodontal regeneration. 
It has been reported that MSC-CM could stimulate 
migration and proliferation of dog PDLSCs, which may 
enhance periodontal tissue regeneration [91]. MSC-CM 
could also promote the migration of endothelial cells 
and angiogenic differentiation [102, 117]. MSC-derived 
plasminogen activator inhibitor-1 (PAI-1) and tenascin-
C significantly increase dermal fibroblast (DF) migration 
in vitro and improved wound healing in vivo by shorten-
ing the time for wound closure [118]. On the other hand, 
MSC-CM promotes macrophage chemotaxis via CCL2-
CCR2 interaction [119]. MSC-CM induces higher chem-
otaxis of lymphatic endothelial cells (LEC) compared to 
VEGF-C and bFGF exogenous recombinant proteins 
[120].

MSCs could be harvested from different origins, such 
as bone marrow, adipose tissue, dental tissues, and 
umbilical cord. CM from different MSC sources have dif-
ferent effects on cells migration. BMSCs expresse high-
est mRNA levels of SDF1 and VCAM-1, and TNF-α. 
Priming of ASCs gained a significant increase in IDO1 
and CCL5. And HUCMSCs release higher protein levels 
of IL-6, IL-8, MCP-1, ICAM1, HGF, MMP1 and CH3L1 
[121]. MSC-CM (EVs-depleted) has higher chemotac-
tic potential compared to MSC-EVs [97]. Therefore, the 
MSC-CM could be beneficial for endogenous precursor 
cells’ recruitment in the defect site during periodontal 
regeneration. The in  vitro and in  vivo effects of MSC-
CM on bone regeneration, cementogenesis, angiogenesis, 
immunomodulation, and chemotaxis reported in litera-
ture are summarized in Tables 1 and 2, respectively.

Fig. 4  Biological activities of MSC-CM that could facilitate 
periodontal regeneration
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Summary and prospects
Recent studies have shown that stem cells are effective in 
tissue mainly via the paracrine effect [125]. The secreted 
molecules of stem cells play a key role in influencing the 
cross-talk communications between the cells and the 
surrounding tissues [29]. In this review, we summarized 
the regeneration of periodontal tissue by CM from differ-
ent MSC sources, including BMSCs, PDLSCs, GMDCs, 
APTGs, DFGs, ADMPCs, ASCs, osteoblast, etc. Pre-
vious studies revealed that MSC-CM contains several 
cytokines, such as IGF-1, VEGF, TGF-β1, and HGF 
[82, 91, 126, 127]. These cytokines have been proved to 
regulate angiogenesis, cell migration, proliferation, and 
osteoblast differentiation to achieve the regeneration of 
periodontal tissue [127].

Although the applications of MSC-CM on periodon-
tal regeneration have been proved useful in animal 
models from pre-clinical studies, much work needs to 
be done to apply it to clinics. The content of MSC-CM 
varies from cell type to culture condition and batch. It 
is impossible to get the MSC-CM containing similar 

secretomes in each treatment in clinics. Therefore 
MSC-CM cannot guarantee a similar effect in every 
treatment. The regenerative effect of MSC-CM is usu-
ally from the cumulative effect of a cocktail of cytokines 
and growth factors rather than a few factors present in 
elevated levels. Not having the worldwide consensus 
protocol for MSC-CM harvesting for tissue regenera-
tion application is also one problem. So far, there is no 
data to illustrate that CM from which specific MSC ori-
gin is suitable for the specific tissue regeneration. This 
makes it difficult to choose the proper MSC origin for 
MSC-CM-based periodontal regeneration. Limited 
source and invasive procedures to harvest MSCs are key 
challenges of the use of autologous or allogenic MSC-
CM for periodontal regeneration. CM from cell-sheet 
and co-culture of different cell types such as MSCs, 
ECs, monocytes, etc. could be more effective for peri-
odontal regeneration compared to 2D expanded MSC-
CM. Further in  vitro, preclinical, and clinical studies 
are indispensable to improve the clinical efficacy of 
MSC-CM-based periodontal tissue regeneration.

Table 1  Periodontal regeneration-related in vitro biological activities of MSC-CM

S. No. Source of MSC-CM Cell type Biological activity Refs.

Bone regeneration

 1 hASCs hPDLSCs Upregulates osteoblastic gene expression in hPDLSCs [90]

 2 hBMSCs hPDLSCs Triggers osteogenesis of hPDLSCs [87]

 3 Healthy or inflamed PDLSCs ‘Inflamed’ PDLSCs Healthy PDLSCs-CM rescues impaired-differentiation of inflamed-PDLSCs [122]

Cementum regeneration

 1 hMSCs Dog MSCs and dog PDLSCs Promotes dog MSCs and dog PDLSCs proliferation and migration [91]

 2 rAPTGs hGMSCs Promotes differentiation of hGMSCs along the cementoblastic lineage [85]

 3 rDFCs ASCs Promotes ASCs towards cementoblast-like cells [88]

 4 rAPTGs hPDLSCs Promotes hPDLSCs towards cementoblast-like cells [123]

Angiogenesis

 1 hMSCs rMSCs Increases angiogenesis [82]

 2 hMSCs Human umbilical vein 
endothelial cells (HUVECs)

Promotes angiogenesis and migration of HUVECs [103]

 3 equine-PB-MSCs ECs Induces angiogenesis in equine vascular ECs [106]

 4 mMSCs and hEPCs HUVECs Promotes cell adhesion and proliferation [107]

Immunomodulatory and anti-inflammatory

 1 hPDLSCs RAW 264.7 Inhibits TNF-α expression [83]

 2 rPDLSCs rBMDMs Induces macrophage polarization towards the M2 phenotype [111]

 3 hPDLSCs THP-1 Induces M1 macrophage polarization [124]

Chemotaxis

 1 hMSCs Dog BMSCs and dog PDLSCs Enhances migration and proliferation of dMSCs and dPDLCs [91]

 2 hBMSCs HUVECs Promotes functional angiogenic effects [97]

 3 hMSCs and canine MSCs ECs Increases EC migration, proliferation and the formation of tubule-like 
structures

[102]

 4 mMSCs Dermal fibroblast Induces dermal fibroblast migration [118]

 5 mMSCs RAW264.7 Enhances the chemotaxis of RAW264 cells [119]

 6 hMSCs Human dermal lymphatic ECs Stimulates proliferation, migration, and tube formation of lymphatic ECs [120]
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Conclusion
The role of stem cells in promoting tissue regeneration 
mainly depends on their paracrine function. The use 
of MSC-CM is safer and effective for periodontal tis-
sue regeneration compared to MSC transplantation. 
The MSC-CM can be tailored as required using differ-
ent drugs or culture conditions during in vitro culture of 
MSC. Moreover, the concentration of effective compo-
nents and growth factors in MSC-CM can be optimized 
as required. MSC-CM-based periodontal tissue regener-
ation has the potential to eliminate the use of autologous 
and allogeneic stem cells. Based on the aforementioned 
facts, MSC-CM-based periodontal tissue regeneration 
has tremendous potential for bench-to-bed translation.
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papilla; EVs: Extracellular vesicles; APTG: Apical tooth germ cell-CM; HDLECs: 
Human-derived lymphatic endothelial cells; DF: Dermal fibroblast; LEC: Lym-
phatic endothelial cells; HUVECs: Human umbilical vein endothelial cells.
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Table 2  Summary of in vivo results showing the periodontal tissue regenerative potential of MSC-CM

Source of CM Factors in CM Study model Route of delivery Dose Duration Outcomes Refs.

hPDLSCs Matrix proteins, 
enzymes, growth fac-
tors, cytokines, and 
angiogenic factors

Rat periodontal 
defect

Fibrin coated col-
lagen sponge

10 br 4 weeks Enhances periodon-
tal regeneration 

[83]

hPDLSCs and 
hGMSCs

– Rat periodontal 
defect

Collagen scaffolds 1, 2, and 4 weeks Promotes periodon-
tal regeneration

[84]

hMSCs IGF-1, VEGF, TGF-1, 
and HGF

Rat periodontal 
defect

Collagen sponge 30 ll 2 and 4 weeks Enhances peri-
odontal regenera-
tion via promoting 
osteogenesis and 
angiogenesis

[82]

hBMSCs – Ectopic transplanta-
tion in immunocom-
promised mice

Dentin block 
wrapped with 
hBMSC-CM-treated 
hPDLSC cell sheet

– 8 weeks Promotes regen-
eration of cemen-
tum and PDL-like 
structure

[87]

rAPTGs – Ectopic transplanta-
tion in immunocom-
promised mice

PDLSCs (induced by 
APTG-CM) + CBB

– 6 weeks Induces develop-
ment of cemen-
tum and PDL-like 
structure

[48]

rAPTGs – Ectopic transplanta-
tion in immunocom-
promised mice

Cell sheet + den-
tin + CBB

– 8 weeks Induces develop-
ment of cemen-
tum and PDL-like 
structure

[85]

dMSCs IGF-1, VEGF, TGF-β1, 
and HGF

Critical-size one-wall 
intrabony mandibular 
defects in dog

Atelo-collagen 
sponge

300 μL 4 weeks Promotes alveolar 
bone and cementum 
regeneration

[91]

Cytokine cocktail-
mimicking MSC-CM 
secretomes

IGF-1, VEGF-A, TGF-β1 Class II bifurcation 
premolar defect in 
dog

Hydroxypropyl cel-
lulose

100 μL 8 weeks Induces osteogenesis 
and cementogenesis

[81]

hMSCs IGF-1, VEGF, TGF-β1, 
and HGF

Partially edentulous 
patients

MSC-CM + PLGA/β-
TCP or MSC-C + ACS

3 mL 6 months Promotes early 
bone formation and 
reduces inflamma-
tory cell infiltration

[92]

hMSCs IGF-1 VEGF TGF-b1 Rabbit bilateral 
maxillary sinus floor 
elevation model

β-TCP + MSC-CM – 2, 4, 8 weeks Promotes vasculariza-
tion and early bone 
regeneration

[101]
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