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Single‑cell analysis revealed that IL4I1 
promoted ovarian cancer progression
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Abstract 

Background:  Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially 
incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproduc-
ible prognostic classifications.

Methods:  We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and 
identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epi-
thelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction 
model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO 
Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–
Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore 
the roles of IL4I1, an important gene in Riskscore, in OC progression.

Results:  We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs 
were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower 
RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 
3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of 
IL4I1 inhibited OC cells proliferation, migration and invasion.

Conclusions:  Our work provide novel insights into our understanding of the heterogeneity among OCs, and would 
help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients.

Keywords:  Ovarian cancer, Single-cell RNA-sequencing, Heterogeneity, M2-like TAMs, Malignant epithelial cluster, 
Prognosis, IL4I1
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Introduction
Ovarian cancer (OC) was one of the most fatal and 
aggressive tumors of the female reproductive system 
and had emerged at an increased incidence in recent 
years. Generally acknowledged treatment for OC is sur-
gery followed by platinum and taxane-based combina-
tion chemotherapy. However, nearly 25 percent of OC 
patients were found to relapse within six months after 
combination therapy [1]. Most patients finally died from 

metastasis, due to a lack of other treatments aimed at 
improving the prognosis of OC patients. Thus, it is nec-
essary to recognize OC-associated risks and make accu-
rate prognostic of OC.

Effort made in understanding prognosis [2, 3] and 
response to platinum-based chemotherapy [4–6] in OC 
was highly focused on profiling gene expression and 
genetic aberrations. A prior report pointed out that OC 
patients studied by TCGA, revealed that critical gene 
mutations drive the pathogenesis of OC, which include 
the TP53 driver mutation (95%), and other major tar-
get genes including CCNE1, MYC, TERT, and NF1[7]. 
Known risk factors that can accelerate ovarian carcinoma 
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progression include BRCA1/BRCA2 mutations, family 
history, pregnancy, and other factors [8, 9]. Although car-
cinogenic- and metastatic-specific mutations were con-
firmed to accelerate carcinogenesis, dysregulated signal 
transduction or genetic variation of tumor cells were also 
critical for cancer progression.

Exploring the mechanisms of OC progression using 
bulk transcriptomics are confounded by a variety of fac-
tors, including copy number variation and infiltration by 
non-cancerous cells. Understanding the relationship of 
cancer cells and the tumor microenvironment (TME) is 
dependent on the accurate identification and characteri-
zation of individual cell states. In addition, intra-tumori-
genic heterogeneity represents a key mechanism for both 
OS and progression of cancer [10, 11]. Moreover, the 
extensive intra-tumor heterogeneity that exists between 
OC cells, makes accurate identification of genetic diver-
sity based on bulk mRNA sequencing highly contro-
versial. Actionable diagnostic markers and identified 
therapeutic targets were based on bulk profiling technol-
ogies, with a complete disregard for intra-tumoral het-
erogeneity, which was not suitable for all patients. Recent 
advances in single-cell sequencing provide powerful 
tools to explore genetic and functional heterogeneity, 
which should assist in resolving the problem. In addition, 
scRNA-seq studies have revealed new insights into intra-
tumor heterogeneity and have identified distinct sub-
populations, which have provided novel mechanisms in 
our understanding of both carcinogenesis and in reveal-
ing strategies for treatment [12–15]. However, few stud-
ies have explored OC at the single cell level.

One recent scRNA-seq study of OC performed by Shih 
et al., [16] investigated intra- and inter-tumorigenic het-
erogeneity at the cellular resolution with a large number 
of samples. That study not only identified several cell 
clusters, but also found that specific cell types were corre-
lated with a well-known cancer subtype. Their single-cell 
assessment of patient samples enhanced our cognition 
of OC, and provided critical information that was help-
ful in advancing our understanding of OC progression. 
Regretfully, the clinical application of markers across OC 
progression at the single cell level was not explored, and 
these markers might display greater precision in the con-
text of personalized anti-cancer therapy with considera-
tion for intra-tumoral heterogeneity.

To overcome this limitation, in present study we per-
formed further bioinformatics analysis using the data 
from the Shih et  al., [16] study, with the aim of identi-
fying several diverse clusters. The design of this study 
and workflow was summarized in Fig.  1. Significantly, 
we identified the dominant M2-like TAMs in OC and 
explored the critical pathways across tumor progression 
in OC. In addition, we developed a RiskScore that was 

associated with robust prognosis in OCs based on mark-
ers of OC progression. Interleukin 4 Induced 1 (IL4I1) 
was an important gene in Riskscore. Notably, a variety 
of bioinformatic methods and experimental assays were 
conducted, revealing that IL4I1 accelerated cell prolif-
eration, migration and invasion. Our work would help 
elucidate the biology of OC based on single-cell RNA-
sequencing, which might provide clinical guidance in 
prognosis for OC patients.

Methods
Ovarian cancer and other cancer datasets
Single-cell RNA-seq for ovarian cancers (GSE118828) 
was downloaded from GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/); bulk RNA-seq data and corresponding 
clinic-pathological data of multiple cancer patients in 
TCGA were obtained from UCSC Xena (https://​xenab​
rowser.​net/​datap​ages/). Data retrieved from multiple 
GEO databases was used for integrated analysis using the 
Combat with the sva package [17]. All public data used in 
this study is described in Additional file 1: Table S1.

Single‑cell RNA‑seq data preprocessing
The barcode matrix was processed with Seurat v3 [18], 
a toolkit for single-cell RNA-seq data analysis. All func-
tions were run with default parameters, unless otherwise 
specified. Low quality cells (< 300 genes/cell, and < 3 cells/
gene) were excluded. The UMI count data was normal-
ized by log-transformation. The top 2000 highly variable 
genes (HGVs) were selected to aggregate samples into a 
merged dataset. Next, the merged cells-by-genes matrix 
was scaled by dividing the centered expression by the 
standard deviation. Batch effects among patients were 
eliminated using the “RunHarmony” function with the 
harmony package [19]. The top 20 principal components, 
along with HGVs were used in this process.

Subsequently, the main cell clusters were identified 
using the “FindClusters” function of Seurat and visual-
ized using the t-distributed stochastic neighbor embed-
ding (tSNE) function. DEGs were appraised using the 
“FindMarkers” or “FindAllMarkers” function with the 
default parameter. For sub-clustering analysis, we applied 
the same procedure of finding variable genes, dimension-
ality reduction, and clustering.

Cluster annotation was based on classical markers. 
We characterized the identities of cell types based on 
known markers: EPCAM and KRT18 [20] (epithelium), 
ACTA2 [20] (mesenchyme), CD163 and CD68 [21] (mac-
rophage), CCL5 [22] and IL7R [23] (T cell), VWF and 
CDH5 [21] (endothelium), CD79A and MS4A1 [23] (B 
cell).

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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The chromosomal copy number variation (CNV) estimation
Initial CNVs for each region were estimated by the 
infer-CNV package [24]. The CNV of total cell types 
were calculated by expression levels from single-cell 
sequencing data for each cell with a cut-off 0.1. The 
CNV score of each cell was calculated as the mean of 
the CNV region.

Pseudotime analysis
Single cell trajectories were performed to explore cell-
state transitions using the Monocle2 package [25]. 
Differentially expressed genes over the Pseudo-time 
among cluster cell transitions were calculated by the 
“differentialGeneTest” function (q value < 0.1). The 
“DDRTree” was applied to reduce dimensions and visu-
alization functions, and the “plot_cell_trajectory” was 
used to plot the minimum spanning tree on cells.

Recognition of malignant transcription factors (TFs)
In order to identify malignant TFs, we extracted a list 
of all identified TFs from Animal TFDB 2.0 (http://​
bioin​fo.​life.​hust.​edu.​cn/​Anima​lTFDB2/​about.​shtml). 
We compared the TFs list with 2397 DEGs from 2 dif-
ferent epithelial cells (C0 and C6), and identified the 
malignant TFs.

Gene set functional analysis
Gene set functional analysis was done by the clusterPro-
filer package [26], gsva package [27], and DAVID (https://​
david.​ncifc​rf.​gov/​home.​jsp). The h.all.v7.0.symbols.
gmt and c2.cp.reactome.v7.0.symbols.gmt were down-
loaded from the Molecular Signatures Database (http://​
www.​broad.​mit.​edu/​gsea/​msigdb/). To investigate IL4I1 
mediated biological parameters in OC, gene set enrich-
ment analysis (GSEA) was conducted by clusterProfiler 
package. False discovery rate (FDR) < 0.05 and P < 0.05 
were utilized as the enriched terms. In addition, 308 OC 
patients in the TCGA dataset were divided into high-
expression group and low-expression group according to 
the median value of IL4I1.

Construction a single‑cell transcriptome network
To explore the relationship between the clusters, a 
Python-based computational analysis tool for single-
cell RNA-seq data analysis—CellPhoneDB [28] was 
used to construct the single-cell transcriptome net-
work. Namely, ligand-receptor pairs for each cluster 
with other clusters were generated.

Construction a RiskScore with malignant marker genes
To build a novel RiskScore associated with survival in 
OC, firstly, malignant marker genes associated with 

survival were selected at P < 0.05 with the univari-
ate Cox proportional hazards regression model, 117 
of 2397 genes were identified with statistical signifi-
cance in the GEO OC meta-dataset1 (an integrated 
OC cohort: GSE14764, GSE23554, and GSE26712 with 
GPL96). Subsequently, the 117 genes were narrowed 
down using the penalized logistical least absolute 
shrinkage and selector operation (LASSO) algorithm. 
The GEO OC meta-dataset1 as the training cohort and 
TCGA OC dataset used as the testing cohort. Using OS 
as the predictor variable, this procedure was repeated 
10,000 times to construct the RiskScore, which gener-
ated with a linear combination of expression values and 
LASSO coefficients of signature genes using the follow-
ing formula:

Kaplan Meier survival analysis and time-dependent 
ROC curves were used to assess the performance of gene 
signatures. Patients were divided into a high- and low-
RiskScore group based on the median value of RiskScore. 
The Kaplan–Meier survival curves of the RiskScore were 
generated using the log-rank test. The time-dependent 
receiver operating characteristic (ROC) curve was gen-
erated with the timeROC package. The prognostic value 
of the RiskScore was externally validated with GEO OC 
meta-dataset2 (an integrated OC cohort: GSE18520, 
GSE26193, GSE30161, GSE63885, GSE54388, and 
GSE9891 with GPL570), and other TCGA cancers.

Cell culture and siRNA transfection
All OC cell lines (SKOV3, A2780 and CAOV8) were 
obtained from ATCC. SKOV3 and A2780 were cul-
tured in Roswell Park Memorial Institute (RPMI)-1640 
medium supplemented with 10% fetal bovine serum 
(FBS) and 100 U/ml penicillin/streptomycin. CAOV8 
was cultured in high-glucose Dulbecco’s modifed Eagle’s 
medium (DMEM) with 10% FBS and 100 U/ml penicil-
lin/streptomycin. All cell lines were incubated at 37 ℃ 
with 5% CO2.

All cell lines are transfected with Lipofectamine™  
RNAmax according to the manufacturers’ instructions. 
IL4I1-target specific small interfering RNA (siRNA) is 
synthesized by JTSBIO Co., Ltd. (Wuhan, China). The 
sequences of IFI6-target-specifc-siRNA (siIL4I1) were as 
follows: siRNA1, 5ʹ-GCA​UGC​AGG​AUC​CUG​ACU​ATT​
UAG​UCA​GGA​UCC​UGC​AUG​CTT​-3ʹ; siRNA2, 5ʹ-GCG​
AUG​AAG​AAG​UUU​GAA​ATT​UUU​CAA​ACU​UCU​UCA​

Y =[ZNF440 × (−0.237) + USP53 × (−0.455)

+ TSPAN12 × 0.469 + RARS × (−0.153)

+ NFX1 × (−0.246) + LRRC6 × (−0.369)

+ IL4I1 × (−0.258) + GPC1 × (0.269)

+ CD59 × (−0.386) + ARID5B × 0.334].

http://bioinfo.life.hust.edu.cn/AnimalTFDB2/about.shtml
http://bioinfo.life.hust.edu.cn/AnimalTFDB2/about.shtml
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
http://www.broad.mit.edu/gsea/msigdb/
http://www.broad.mit.edu/gsea/msigdb/
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UCG​CTT​-3ʹ, siRNA3, 5ʹ-GCU​UCU​UCU​AUC​UCA​GCU​
UTT​AAG​CUG​AGA​UAG​AAG​AAG​CTT​-3ʹ; and the 
sequence of control is 5ʹ-UUC​UCC​GAA​CGU​GUC​ACG​
UTT​ACG​UGA​CAC​GUU​CGG​AGA​ATT​-3ʹ. The trans-
fected cells were cultured in a fresh medium for 24 h for 
the subsequent assays.

Western blot analysis
Total protein was extracted using RIPA buffer (Thermo 
Fisher Scientific, Waltham, MA, USA) and detected uti-
lizing BCA assay (Thermo Fisher Scientific, Waltham, 
MA, USA). 30  μg of protein per sample was separated 
by SDS-PAGE, then transferred onto PVDF membrane 
(Gene Molecular Biotech, Inc., Shanghai, China). After 
obturated with 5% milk for 2 h at room temperature, the 
membrane was incubated overnight at 4 °C with primary 
antibodies as follow: GAPDH (1:1000, CST), MMP2 
(1:1000, CST), MMP9 (1:1000, CST). Afterwards, the 
membrane was incubated with HRP-conjugated rabbit 
IgG secondary antibodies (1:7500, CST) for 1 h at room 
temperature, the expression level was measured with an 
ECL kit (Roche Diagnostics, Basel, Switzerland) by West-
ern blot imaging system.

Cell proliferation assays
1 × 103 cells were incubated in 96-well plates. Then, 10 
uL Cell Counting Kit-8 (CCK-8; Dojindo, Rockville, MD, 
USA) solution was added to each well and incubated for 
2  h for evaluating cell proliferation. The absorbance of 
each well was measured at OD450 with a Tecan Infinite 
M1000 PRO (Tecan, Switzerland) from days 1 to 4.

Cell wound healing assay
The transfected SKOV3 were cultured in 6-well plates 
with 1 × 106 cells/well for 24  h. Then, the wounds were 
produced using a 100 μL pipette tip. The images were 
photographed with a microscope after 0 and 96  h. The 
scratch area was measured to evaluate cell migration 
ability by image J software.

Transwell assays
The transwell migration and invasion assays were con-
ducted with Corning Transwell Inserts (8.0 μm). For the 
transwell migration assay, 1.5 × 104 transfected cells sus-
pended in 50 μL serum-free medium were placed in the 
upper chamber and 600 μL medium (10% FBS) was filled 
in the lower compartment. The cells were incubated at 37 
℃ for 24 h. The successfully translocated cells were fixed 
with 4% paraformaldehyde (PFA) and stained with 0.1% 
crystal violet, and counted in four randomly chosen fields 
(200×) under a microscope.

For the transwell invasion assay, 1.2 × 105 cells were 
seeded on transwell coated with 50 μL Matrigel (dilution 

of 1:4 with 0.2% BSA). It is worth noting that Matrigel 
was used to coat membranes for 12  h at 37  °C prior to 
invasion assays. The culture condition was the same as 
the transwell migration assay. The cells on the lower sur-
face were fixed, stained, and photographed microscopi-
cally after 48 h.

All the statistical analyses were performed using R 
3.6.1 and Graphpad prism 8.0 software. The assay was 
repeated at least three times and the data were presented 
as mean ± standard deviation (SD). Two-tailed Student’s 
t-test was used to assess the differences between two 
groups. P < 0.05 was considered statistically significant.

Results
A single‑cell atlas of ovarian cancers and control samples
Eighteen samples obtained from GSE118828 were stud-
ied, namely a total of 17 neoplasms including 1 benign 
cancer, 1 peritoneal cancer, 3 LGSOC, 12 HGSOC, and 1 
control ovarian. After removing low quality cells, a total 
of 3066 cells were finally acquired. In Shih’s [16] paper, 
they only studied 14 samples and captured 2911 cells. A 
reason for disparate cell count between our study and 
Shih’s might be the inequable samples we analyzed. These 
cells were classified into 9 main cell lineages namely 
C0-C8 (Fig.  2A). The clinical information of each cell 
population was illustrated in Fig. 2B–F. The correspond-
ing proportions for each cluster with different clinical 
characteristics were discrepant (Fig.  2G–K). Based on 
the expression of well-known markers (Fig. 2L), we found 
that the atlas mainly comprised two different types of 
epithelial cell (i.e., C0 and C6), two mesenchyme clusters 
(i.e., C1 and C4), a T cell cluster (C2), a macrophage clus-
ter (C5), an endothelium cluster (C7), and a B cell cluster 
(C8). C3 was an XIST highly expressed cluster. The gene 
ontology (GO) analysis for each cluster also confirmed 
the cluster annotation (Fig. 2M).

To explore the relationship between these clusters in 
OC, we used CellPhoneDB to calculate potential ligand-
receptor pairs of each cluster and construct the single-
cell transcriptome network. Network was visible using 
Cytoscape (Fig.  2N). Notably, macrophages possessed 
the most interaction pairs with other clusters, revealing 
the dominant role of macrophages in OC (Fig.  2O). As 
shown in Fig. 2O, TNF, TNFRSF10B, LGALS9, CX3CR1, 
VEGFA, and LAMP1 secreted by C5 interact with recep-
tors expressed on epithelial cells, mesenchymal cells, 
endothelial cells, and other immune cells. These ligand-
receptor pairs may be related to immune, angiogenesis, 
and CAF proliferation.

Macrophages exhibit M2 polarization in OC
For discussing the heterogeneity among macrophages, 
236 macrophages were reclustered into 2 subclusters 
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Fig. 2  Overview of single-cell transcriptomes derived from OCs. A–F) TSNE plot of all single cells, with each color coded for the following: A 9 
major cell types; B sample origin (normal, primary or metastatic); C type of neoplasm; D tumor stage; E age and F samples. The proportion of 
diverse cell types across different G sample origins, H type of neoplasm, I tumor stage, J age and K samples. L Violin plots exhibiting the expression 
of representative markers across diverse cell types. The y axis was the normalized read count. M Functional analysis of each cluster was illustrated 
with GO analysis. N Interaction network constructed by CellPhoneDB. O The barplot illustrating the ranks of ligand-receptor pairs with cell types 
interactions. P Heatmap of ligand-receptor interactions between diverse cell types and C5. Point size indicates p-value (CellPhoneDB). Colour 
indicates the mean expression level of ligand and receptor (Mol1/2)
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basis on tSNE analysis, including 158 cells in S0 and 
78 cells in S1 (Fig.  3A, B). Top 10 genes of each sub-
cluster were shown Fig.  3C. Pseudotime analysis sug-
gested that a differential process existed from S1 to S0 
(Fig.  3D). In addition, we explored the stem score with 
GSVA based on multiple terms, it showed that higher 
stem score enriched in S1 (Fig.  3E). Thus, we inferred 
that S0 might originate from S1. Based on the trajectory 

graph, it seemed that S0 had different branches of dif-
ferentiation, meaning that cells in S0 had different dif-
ferential fate, and the heterogeneity existed in S0. Thus, 
we reclustered S0 cells to 4 cluster (Fig. 3F), mac_0 was 
consisted of most S0 cells (Fig.  3G). Subsequently, we 
explored their characteristics, top 5 markers of each 
cell types were shown in Fig. 3H. Obviously, the mono-
like marker, FCN1, was highly expressed in mac_1; the 

Fig. 3  Macrophages exhibited M2 Polarization in the in OCs. A TSNE representation of two subgroups generated from macrophages. B Proprotions 
of S0 and S1. C Heatmap illustrated top 10 genes of each subcluster. D Pseudotime graph illustrated the differentiated trajectory between S1 
and S0. E Violin plots illustrating that higher stem score enriched in S1. F TSNE representation of four subgroups from S0. G Proprotions of four 
subgroups in S0. H Dotplot shown top 5 genes of each subgroup. I Violin plots shown the representative markers of four subgroups. J GSVA analysis 
with hallmark terms for mac_0 to mac_3. K Forest plot illustrating the survival associated with gsvascore of four subgroups in OC, mac_0 was 
associated with survival. L Kaplan–Meier plot illustrating that OC patients with higher mac_0 gsvascore demonstrated worse survival. M Gsvascore 
of four subgroups based on top 5 markers in different clinical phenotypes
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DC markers, CD1C/E, were highly expressed in mac_2; 
markers associated with proliferation related genes 
and functions were highly enriched in mac_3, such as 
TOP2A, G2M_CHECKPOINT, and etc. (Fig.  3H–J). To 
deeply expounded their clinical features in OC, we calcu-
lated the GSVA score using top 5 genes of each celltype. 
As a results, OC patients with higher mac_0 gsvascore 
demonstrated worse survival (Fig.  3K, L). According 
to violinplot, the M2-like TAMs marker, TGFBR2, was 
highly expressed in mac_0. Thus, we inferred that mac_0 
represented an M2-like TAMs cluster, which was the 
dominant type of macrophages in OC. Furthermore, we 
explored the gsvascore of four celltypes in different clini-
cal phenotypes (Fig. 3M). As a results, mac_3 gsvascore 
was highest in proliferation_subtype, which was accorded 
with our previous finds that mac_3 was associated with 
proliferation.

Malignant epithelial cells were distinguished in OCs
As we were aware, ovarian cancer mainly originated from 
the epithelium. In the present study, the presence of two 
different types of epithelial cells (C0 and C6) encour-
aged us to investigate their malignant status. The chro-
mosomal copy number variation (CNV) score of each 
cell help to identify the malignant clusters. First, we cal-
culated large-scale CNV in each cell type based on aver-
aged expression patterns across intervals of the genome. 
For all cell groups and different subtypes, we found that 
C0 exhibited remarkably higher CNV levels than C6 and 
other types of cells (Fig. 4A). The CNV score of each sub-
type and each sample was shown in Additional file 1: Fig. 
S1.

Then, we analyzed the gene expression profiles along 
the trajectory of C0 and C6 with pseudotime analysis 
and demonstrated a differentiated process from C6 to C0 
(Fig. 4B). Heatmap analysis showed dynamically changed 
genes from C6 to C0 and identified 3 clusters (Fig. 4C). 
Functional enrichment analysis illustrated that multiple 
oncogenesis pathways were activated during OC pro-
gression, such as the cAMP signaling pathway, the T cell 
receptor signaling pathway, pathways in cancer develop-
ment and progression, and the HIF-1 signaling pathway 
(Fig.  4C). We also explored the expression of multiple 
TFs that associated with the tumorigenesis of OC, such 
as the oncogene MYC (Additional file 1: Fig. S2).

We compared discrepant genes between C0 and C6, 
identifying 1264 upregulated and 1133 down-regu-
lated genes in C0 (Fig.  4D, Additional file  1: Table  S2). 
The peculiar marker used in the clinical identification 
of the malignant OCs, PAX8, was highly expressed in 
C0 (Fig.  4D, E). In addition, GSVA demonstrated that 
C0 was significantly related to carcinogenic terms, 
such as MYC_TARGETS, G2M_CHECKPOINT, 

EPITHELIAL_MESENCHYMAL_TRANSITION, etc. 
(Fig. 4F). Thus, C0 was the malignant epithelial cluster. In 
addition, we explored the ligand-receptor pairs interac-
tions between C0 and other cell types. As a results, C0 
had the most relationship with C5 (Fig.  4G), certifying 
the close contact between tumor cells and macrophages 
in OC carcinogenesis.

Distinct subgroups in the epithelial cluster
To identify the heterogeneity of epithelial cells in OC, we 
reclustered the two former epithelial clusters. Four dis-
tinct subgroups in the malignant epithelial cluster were 
identified on basis of tSNE analysis (Fig. 5A). We noticed 
that specific markers of S0-S2 were related to immunity; 
CAV1 was related to carcinogenesis and was specifically 
shown in S3 (Fig. 5B). Pseudotime graphs demonstrated 
that S1 represented the original cells that could differen-
tiate into S0 and S2 (Fig. 5C). Functional terms confirmed 
that S0-S2 were related to immunity, and S3 was related 
to carcinogenesis, including the Hippo signaling pathway 
and the PI3K-AKT signaling pathway (Fig. 5D, E).

Another epithelial cluster, C6, was reclustered to two 
subtypes (Fig. 5F). S0 was found to highly express ITGB4 
and DDX3X, and was associated with the functions of 
RNA splicing and cell cycle checkpoint (Fig. 5G, H); and 
S1 specifically expressed BIRC3 and TM4SF1, which was 
related with protein targeting functions to the ER and 
neutrophil-mediated immunity (Fig.  5G, I). The above 
observations indicated that epithelial cells were closely 
associated with host immunity.

Construction a robust prognostic model based 
on malignant epithelial markers in OC
To explore the clinical application of gene expression 
patterns in malignant epithelial cells, we used univariate 
Cox proportional hazards regression and LASSO algo-
rithms to narrow down 2397 malignant genes. The GEO 
OC meta-dataset1 (an integrated OC cohort: GSE14764, 
GSE23554, and GSE26712 with GPL96) was used as the 
training set and the TCGA OC was used as the testing 
set. Ultimately, we selected 10 prognosis-specific genes 
to construct the RiskScore. The formula of the RiskScore 
was Y = [ZNF440 × (− 0.237) + USP53 × (− 0.455) + TSP
AN12 × 0.469 + RARS × (−  0.153)     + NFX1 × (− 0.246
) + LRRC6 × (− 0.369) + IL4I1 × (− 0.258) + GPC1 × (0.2
69) + CD59 × (− 0.386) + ARID5B × 0.334]. In addition, 
the prognostic value of the     RiskScore was externally 
validated with GEO meta-dataset2 (an integrated OC 
cohort: GSE18520, GSE26193, GSE30161, GSE63885, 
GSE54388, and GSE9891 with GPL570).

RiskScore analysis for 10 specific biomarkers in 
OC patients was shown in Fig.  6A–C. Significantly, 
RiskScore was negative association with survival in OC 
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Fig. 4  C0 was a malignant epithelial cluster in OCs. A Violin plots showing CNV scores across different cell types in OCs. B Pseudotime of epithelial 
cells with abnormal gene expression profiles and malignant epithelial cells that were inferred by Monocle2. Each point corresponds to a single 
cell. C Heat-map showing DEGs (rows) along the pseudo-time (columns), which was clustered into three profiles. Color key differentially coding 
from blue to red that indicated the relative expression levels from low to high. D Scatter plots showing relative gene expression levels of C0 (x axis) 
and C6 (y axis) in OCs. E TSNE plot illustrated that PAX8 was only existed in C0. F GSVA analysis for C0 and C6. G The ranks of ligand-receptor pairs 
interactions between C0 and other cell types
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patients (log-rank P < 0.01; Fig.  6D–F). RiskScore was 
reliable and robust to predict the survival of OCs based 
on time-dependent ROC curves (Fig. 6G–I). As a result, 
the area under curve (AUC) in GEO OC meta-dataset1 
validation set was 0.666, 0.743 and 0.809 in 1-year, 
3-year and 5-year survival, respectively. In TCGA test-
ing set, the AUC was 0.629, 0.644 and 0.623 for 1-year, 
3-year and 5-year survival, respectively. Meanwhile, we 
found that RiskScore also had a high predictive accu-
racy of survival in GEO OC meta-dataset2 validation 
set. Furthermore, we explored the prognostic capability 
of the RiskScore of multiple cancers in TCGA, and the 

forest plot demonstrated the diverse OS across multiple 
cancers (Additional file  1: Fig. S3). This indicated the 
good potential of RiskScore in survival monitoring.

IL4I1 accelerated OC cells proliferation, invasion 
and migration
IL4I1, an important gene in Riskscore model, was 
reported to play important roles in immunoregulation 
and tumor progression [29–32]. In present study, IL4I1 
was higher in multiple cancers than paired normal sam-
ples in GTEx (Fig.  7A). Noteworthy was the observa-
tion that the representative protein expression level of 

Fig. 6  Excellent prognosis of RiskScore based on carcinogenic genes. (A–C) RiskScore distribution, survival status, and gene expression profile, (D–
F) Kaplan–Meier survival curves, (G–I) time-dependent ROC curve analyses for patients in high- and low-RiskScore groups in GEO OC meta-dataset1 
training set, TCGA OC testing set, and GEO OC meta-dataset2 validation set



Page 12 of 15Zhao et al. J Transl Med          (2021) 19:454 

IL4I1 was positive in OCs based on the Human Protein 
Atlas database (HPA) (Fig. 7B). In truth, IL4I1 upregula-
tion was associated with poor OS in OC (Fig. 7C). GSEA 
shown that high-IL4I1 group were mainly associated 
with G2M Checkpoint and EMT (Fig. 7D). As validation, 

downregulation of IL4I1 notably inhibited the prolifera-
tion of SKOV3, A2780 and CAOV8 (Fig. 7E).

Given the effect of IL4I1 on OC cells metastasis, the 
expression of MMP2 and MMP9 were lower in siIL4I1 
group (Fig.  7F). Furthermore, siIL4I1 significantly 

Fig. 7  IL4I1 was a carcinogenesis gene in OC. A The mRNA expression level of IL4I1 was higher in OCs than paired normal samples. B 
Representative protein expression level of IL4I1 was high in OCs based on the Human Protein Atlas database. C Kaplan–Meier curve illustrating 
higher IL4I1 accompanied by poor OS. D Functions of IL4I1 with GSEA in OC. E Expression of MMP2, MMP9 were lower in siIL4I1 cells in protein level. 
F Downregulation of IL4I1 slow downed OC cell lines proliferation. G siIL4I1 significantly inhibited wound closure compared to the corresponding 
controls. Migratory (H) and invasive (I) cells were dramatically reduced in OC cells transfected with siIL4I1
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inhibited wound closure in SKOV3 compared to the 
control cells based on wound healing assay (Fig.  7G). 
In the transwell migration and invasion assay, migrated 
(Fig.  7H) and invasive (Fig.  7I) cells transfected with 
siIL4I1 were remarkably decreased, as compared to the 
control groups. Thus, IL4I1 was carcinogenesis in OC.

Discussion
Ovarian cancer was characterized as having a poor rate 
of survival and being deficient in an effective treatment 
because of the inherent intra-tumoral heterogeneity. 
Studies have attempted to identify distinct sub-popula-
tions and to explore mechanisms in disease carcinogen-
esis and strategies for the treatment of multiple cancers 
with scRNA-seq [12–15]. However, the gene expression 
profiles of different gene clusters in OC are unclear. It is 
highly desirable to explore the heterogeneity of OC and 
to explore the underlying mechanisms that are crucial in 
improving OC prognosis.

According to Shih’s [16] study, they captured 2911 cells 
from 14 samples. However, we downloaded 18 samples 
from the GEO datasets and ultimately obtained 3066 
cells which was different from them. In this study, we 
conducted a comprehensive single-cell expression atlas 
of the 3066 cells and identified nine diverse cell types of 
OC, including epithelial cluster, mesenchyme cluster, 
macrophage cluster, T cell cluster, endothelial cluster, and 
B cell cluster. Despite our cluster number was disparate 
with Shih’s 16 clusters, the cell types in our study were 
similar with that described by Shih et al., demonstrating 
the reliability of our methods. In our study, we undertook 
a more thorough analysis using their OC single-cell data-
sets. We identified M2-like TAMs were the dominant 
type of macrophages in OC; in addition, we explored the 
potential mechanism of tumorigenesis and clinical appli-
cation of malignant epithelial markers in OC.

In this study, macrophages exhibited the most ligand-
receptor pairs with other clusters, revealing its’ impor-
tant role in OC. Macrophages were reclustered to two 
subtypes that revealed the heterogeneity of macrophages. 
Studies revealed that TAMs could promote tumorigen-
esis through TGFβ signaling in tumor cells [33–35]. In 
present study, we observed some carcinogenesis genes 
such as TGFBR2 were highly expressed in S0. GSVA 
demonstrated that more carcinogenesis hallmark terms 
existed in S0, such as EMT, angiogenesis, and PI3K_
AKT_MTOR_SIGNALING, etc. In addition, pseudotime 
analysis illustrated a differentiated trajectory from S1 to 
S0. Thus, we inferred that S0 was M2-like TAMs, which 
accounted for a greater proportion of macrophages in 
OC. Crosstalk between high EMT, angiogenesis and 
TAMs might exist in OC, influencing OC progression. 
TAM-derived exosomes enriched miRNA, lncRNA, 

and specific proteins that were contribute to tumor cell 
dissemination in gastric cancer [36]. A high density of 
CD206 + TAM was significantly associated with worse 
survival in colon cancer [37]. CAF might have crosstalk 
with TME and contribute to cancer biology by induc-
ing the EMT process [38]. Tumour  angiogenesis  could 
be indirectly regulated by  promoting  M2  polariza-
tion of macrophages in liver cancer [39].

Epithelial ovarian cancer (EOC) accounts for the 
majority OC cases and advanced EOC eventually devel-
ops into a recurrent platinum-resistant disease. In the 
present study, we identified two epithelial cell types with 
different gene expression patterns, namely C0 and C6, 
which demonstrated heterogeneity in epithelial cells. C0 
predominantly comprised HGSOC cells and C6 mainly 
comprised fallopian cells. Pseudotime analysis demon-
strated a differentiated trajectory from C6 to C0; further-
more, CNV-based analysis demonstrated that C0 was a 
relatively malignant epithelial cluster. GSVA identified 
some carcinogenic terms that were enriched in C0, and 
the classical clinical marker for identification of malig-
nant OCs, PAX8, was only found in C0. The above obser-
vations collectively demonstrated that C0 belonged to 
malignant epithelial cells and displayed wide divergence 
in diverse epithelial cells because of their differential 
origins. A similar study exploring an OC differentiated 
trajectory with single-cell sequencing has not previously 
been reported. Furthermore, our study found that the 
malignant epithelial cells possessed the most interaction 
pairs with macrophages, and macrophages play impor-
tant roles in tumorigenesis and had crosstalk with tumor 
cells. Macrophages M2 polarization was related to malig-
nancy events in cancers [40, 41]. Meaningfully, some 
immune-associated subtypes were identified for two epi-
thelial clusters, which considered the heterogeneity of 
epithelial cells in OC and supported the important roles 
of immunity in OC disease progression.

To explore the clinical application of markers in malig-
nant epithelial cells, we construct a Riskscore consisted of 
ten genes, which presented encouraging prognostic value 
in predicting survival in OCs. During the past years, sev-
eral signatures have been identified for prognostic pre-
diction based on bulk mRNA transcription dataset [42, 
43]. However, they ignored the heterogeneity of tumors. 
In this study, RiskScore generated with carcinogenic 
genes in single-cell levels which was more credible. Inter-
leukin-4 Induced gene 1 (IL4I1), an important gene in 
Riskscore model, was reported to play important roles in 
immunoregulation and tumor progression [29–32].

IL4I1 was strongly detected in the tumor bed of most 
human tumor types [44] and was identified as a prog-
nostic biomarker [45, 46]. Our results were similar with 
them. In the current research, prognostic IL4I1 was 
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higher in ovarian tumors compared to the normal ovary. 
Dysregulated signal transduction of tumor cells was criti-
cal for cancer progression, and carcinogenic- and meta-
static-specific genes that were confirmed to accelerate 
carcinogenesis. In our study, we linked IL4I1 to tumor 
intrinsic malignant properties. As a result, we disclosed 
that IL4I1 promotes OC cell proliferation, migration and 
invasion. IL4I1 was a secreted L-phenylalanine oxidase 
expressed by antigen-presenting cells. IL4I1 increased 
the threshold of T-cell activation, inhibiting T-cell pro-
liferation or differentiation [29, 44, 47], thus influencing 
immune microenvironment. Imbalance of tumor cell 
and immune cell might promote cancer progression. By 
enhancing systemic Trp-catabolism, IL4I1 contributed to 
a systemic tumor-promoting environment that allowed 
tumor cells to migrate and protected them from immune 
destruction [29]. Thus, IL4I1 might promote tumor pro-
gression through influencing tumor cell motility and 
adaptive immunity, and regulating the priming of tumor-
specific immune cell, such as T cells [29, 31, 32, 47], B cell 
[48, 49] and macrophage [48].

Conclusion
Our findings provided a new perspective for under-
standing the progression of OC. We identified the domi-
nant M2-like TAMs in OC and recognized some novel 
markers of tumorigenesis. In addition, we developed a 
RiskScore that was associated with robust prognosis in 
OCs based on markers of OC progression. Furthermore, 
we demonstrated that IL4I1 was an oncogene and pro-
moted OC progression. This approach was potentially 
helpful for personalized anti-cancer strategies in the set-
ting of OC.
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